首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhang W  Miao J  Ma C  Han D  Zhang Y 《Peptides》2012,36(2):186-191
This study was designed to investigate the putative protective effect of β-casomorphin-7 on diabetic nephropathy in a rat model, and to explore the possible mechanism of this effect. SD rats were randomly divided into the following three groups: control group, diabetes group and β-casomorphin-7-treatment group. All rats were euthanized after 30 days with or without β-casomorphin-7 treatment. Biochemical parameters including blood glucose and renal function were quantified. The concentration of plasma TGF-β1 was measured by ELISA. Histopathological changes to the kidney were studied by Masson and Sirius red staining. Expressions of α-smooth muscle actin (α-SMA), E-cadherin, vimentin, cytokeratin19 and TGF-β1 mRNA in rat renal cortices were analyzed by real-time PCR. Changes in α-SMA and E-cadherin protein expression in rat renal cortices were quantified by Western blot. β-Casomorphin-7 treatment of diabetic rats reduced urinary glucose, urinary protein, serum creatinine, blood urinary nitrogen, plasma TGF-β1 and the ratio of kidney: body weight. Masson and Sirius red staining showed that β-casomorphin-7 treatment attenuated renal interstitial fibrosis in diabetic rats. Compared to the control rats, diabetic rats had elevated expressions of α-SMA, vimentin and TGF-β1 mRNA and α -SMA protein and decreased expression of E-cadherin and cytokeratin19 mRNA, and E-cadherin protein. β-Casomorphin-7 treatment of diabetic rats partially normalized these changes. Our results suggest that administration of β-casomorphin-7 attenuates renal interstitial fibrosis caused by diabetes. This protective effect may be associated, in part, with down regulation of epithelial-mesenchymal transition of renal tubular epithelial cells.  相似文献   

2.
The induction of renal cyclooxygenase-2 (COX-2) in diabetes has been implicated in the renal functional and structural changes in models where hypertension or uninephrectomy was superimposed. We examined the protective effects of 3 mo treatment of streptozotocin-diabetic rats with a highly selective COX-2 inhibitor (SC-58236) in terms of albuminuria, renal hypertrophy, and the excretion of TNF-α and TGF-β, which have also been implicated in the detrimental renal effects of diabetes. SC-58236 treatment (3 mg·kg(-1)·day(-1)) of diabetic rats resulted in reduced urinary excretion of PGE(2), 6-ketoPGF(1α), and thromboxane B(2), all of which were increased in the diabetic rat compared with age-matched nondiabetic rats. However, serum thromboxane B(2) levels were unchanged, confirming the selectivity of SC-58236 for COX-2. The renal protective effects of treatment of diabetic rats with the COX-2 inhibitor were reflected by a marked reduction in albuminuria, a reduction in kidney weight-to-body weight ratio, and TGF-β excretion and a marked decrease in the urinary excretion of TNF-α. The protective effects of SC-58236 were independent of changes in plasma glucose levels or serum advanced glycation end-product levels, which were not different from those of untreated diabetic rats. In an additional study, the inhibition of COX-2 with SC-58236 for 4 wk in diabetic rats resulted in creatinine clearance rates not different from those of control rats. These results confirm that the inhibition of COX-2 in the streptozotocin-diabetic rat confers renal protection and suggest that the induction of COX-2 precedes the increases in cytokines, TNF-α, and TGF-β.  相似文献   

3.
目的动态观察链脲佐菌素(STZ)诱导的糖尿病大鼠血糖控制前后肾小管上皮细胞(TEC)中血管内皮生长因子(VEGF)、转化生长因子β1(TGF-β1)、Smad2/3、Smad4的表达情况,探讨四者在糖尿病大鼠TEC表型转变和肾间质纤维化中可能发挥的作用及相互关系。方法实验动物随机分为5组,依病程长短分为①A组(2周组),②B组(4周组),③C组(8周组),④D组(16周组),⑤E组(24周组),每组分别设有正常对照组(N组)和糖尿病组(a组);另外,16周、24周两组加设胰岛素治疗组(b组)。采用尾静脉注射STZ法复制糖尿病大鼠模型;免疫组织化学方法检测肾小管VEGF、TGF-β1、Smad2/3、Smad4及α-平滑肌肌动蛋白(-αSMA)和纤连蛋白(FN)的表达;Western blot检测肾皮质VEGF和TGF-β1蛋白;PAS染色光镜观察肾小管基底膜变化及细胞外基质沉积情况等形态学改变;生化方法测定血糖、血肌酐及24小时尿蛋白量。结果正常对照组VEGF、TGF-β1及Smad2/3、Smad4在肾小管均有少量表达,-αSMA在肾小管无表达;糖尿病组肾小管前述四者的表达均显著高于正常对照组,且从16周开始肾小管上皮细胞可见α-SMA蛋白阳性表达;糖尿病16周时肾小管VEGF、TGF-β1、Smad2/3、Smad4两两之间呈正相关;随糖尿病进展,α-SMA及FN在肾小管表达增多,24h尿蛋白增多,肾脏肥大指数增大,而VEGF、TGF-β1二者都分别和-αSMA、FN、24h尿蛋白及肾脏肥大指数呈正相关性;胰岛素治疗后,VEGF、TGF-β1、Smad2/3、Smad4及FN的表达都比糖尿病组明显下降,且各指标之间的正相关性依然存在,-αSMA蛋白则呈阴性表达。结论糖尿病肾病大鼠肾小管上皮细胞表达的VEGF、TGF-β1及Smad2/3、Smad4参与了TEC表型转变和肾间质纤维化的发生,并且VEGF和TGF-β1相互作用,共同促进了肾脏损害。胰岛素对DN大鼠TEMT和肾间质纤维化的影响可能部分是通过间接阻断VEGF、TGF-β1和Smad2/3、Smad4在TEC中的合成来实现的。  相似文献   

4.
Wang YY  Liu RX  Guo B  Xiao Y  Shi MJ  Pi MJ  Wen QY  Zhang GZ 《生理学报》2011,63(4):325-332
转化生长因子-β1(transforming growth factor-β1,TGF-β1)激活磷脂酰肌醇-3-激酶(phosphoinositide-3-kinase,PI3K)-蛋白激酶B(protein kinase B,PKB/Akt)通路与糖尿病肾病(diabetic nephropathy,DN)的发生发展密切相关,而第10号染色体缺失的磷酸酶和张力蛋白同源基因(phosphatase and tensin homology deleted on chromosome ten,PTEN)可以负调节PI3K-PKB/Akt通路。本研究旨在观察糖尿病大鼠肾组织PTEN的表达变化及其在DN发生发展中的可能作用。16只Sprague-Dawley大鼠分成正常对照组和糖尿病组(n=8)。尾静脉注射链脲菌素(streptozotocin,STZ)复制糖尿病大鼠模型;12周处死大鼠,检测相应生化指标并计算肾脏指数;HE染色观察肾组织病理学改变;免疫组化和Western blotting检测PTEN、TGF-β1、PI3Kp110α、Akt1、p-Akt1(Ser473)、纤维连接蛋白(fibronectin,...  相似文献   

5.
《Phytomedicine》2014,21(5):734-739
Chronic hyperglycemia leads to the formation of advanced glycation end products (AGEs), which accelerates the development of diabetic complications. Previous studies have shown that extract of Cassiae semen (CS), the seed of Cassia tora, has inhibitory activity on AGEs formation in vitro and reduces transforming growth factor-beta1 (TGF-β1) and extracellular matrix protein expression via inhibition of AGEs-mediated signaling in glomerular mesangial cells. In this study, to examine the preventive effects of CS extract on the development of diabetic nephropathy in vivo, streptozotocin (STZ)-injected diabetic rats were orally administered CS extract (200 mg/kg body weight/day) for 12 weeks. Serum glucose, triglycerides, and total cholesterol in diabetic rats were significantly higher compared to control rats. CS or aminoguanidine (AG) treatment significantly reduced these factors. Proteinuria and creatinine clearance were also significantly decreased in the CS-treated group compared with the untreated diabetic group. The CS-treated group had significantly inhibited COX-2 mRNA and protein, which mediates the symptoms of inflammation in the renal cortex of diabetic rats. Furthermore, histopathological studies of kidney tissue showed that in diabetic rats, AGEs, the receptor for AGEs, TGF-β1, and collagen IV were suppressed by CS treatment. Our data suggest that oral treatment of CS can inhibit the development of diabetic nephropathy via inhibition of AGEs accumulation in STZ-induced diabetic rats.  相似文献   

6.
目的: 研究有氧运动和白藜芦醇对2型糖尿病大鼠肾脏Janus激酶2(JAK2)及转化生长因子-β1(TGF-β1)表达的影响,探讨运动与白藜芦醇改善糖尿病肾损伤的可能作用机制。方法: SD大鼠经5周高糖高脂饲料喂养加腹腔注射链脲佐菌素(STZ)建立糖尿病模型后,将糖尿病大鼠随机分为糖尿病安静组(DC组),糖尿病运动组(DE组),糖尿病药物组(DR组)和糖尿病运动药物组(DER组),每组各12只,另设正常对照组(NC组)。运动组大鼠进行8周的有氧运动(跑速为20 m/min),每天运动60 min,每周运动6 d;药物组大鼠进行8周的白藜芦醇灌胃(每天45 mg/kg,7天/周)。8周末,检测血糖、24 h尿白蛋白(24 h UA)、血肌酐(Scr)、血尿素氮(BUN)的变化;采用荧光定量PCR检测肾脏JAK2 mRNA的表达,免疫组织化学法和Western blot法检测肾脏JAK2和TGF-β1的表达。结果: 8周干预后,与NC组相比, DC组血糖浓度、24 h UA、Scr、BUN均显著上升(P<0.05),肾组织病理损伤加重,肾组织TGF-β1、JAK2和JAK2 mRNA的表达均明显增加(P<0.05)。与DC组相比,DE、DR和DER组血糖浓度、24 h UA、Scr、BUN均显著下降(P<0.05),肾组织病理损伤减轻,肾组织TGF-β1、JAK2和JAK2 mRNA的表达均明显减少(P<0.05),且DER组的降低更显著,与DE、DR组相比差异有显著性(P<0.05)。结论: 有氧运动、白藜芦醇及联合干预可能通过下调肾脏JAK2 mRNA表达,抑制JAK2蛋白的合成,使TGF-β1表达减少,从而改善糖尿病大鼠肾脏损伤的病理性变化。有氧运动联合白藜芦醇干预减轻肾脏病理损伤的效果优于单一的有氧运动或白藜芦醇干预。  相似文献   

7.
AimDiabetic nephropathy is a serious complication for patients with diabetes mellitus. Approximately 30–40% of patients with type I and 15% with type II diabetes mellitus develop end stage renal disease. The study was designed to evaluate the impact of tocotrienol on renal function and reno-inflammatory cascade in streptozotocin-induced diabetes.Main methodsStreptozotocin (STZ)-induced diabetic rats were treated with tocotrienol (25, 50 and 100 mg/kg), α-tocopherol (100 mg/kg) or with vehicle form 5th to 8th weeks. After 8 weeks, urine albumin excretion, urine output, serum creatinine, blood urea nitrogen, creatinine and urea clearance were measured. Cytoplasmic and nuclear fractions of kidney was prepared for the quantification of oxidative–nitrosative stress (lipid peroxidation, superoxide dismutase, catalase, non protein thiols, total nitric oxide), tumor necrosis factor-alpha (TNF-α), tissue growth factor-1beta (TGF-β1), p65 subunit of NFκβ and caspase-3.Key findingsAfter 8 weeks of STZ injection, the rats produced significant alteration in renal function, increased oxidative–nitrosative stress, TNF-α, TGF-β1, caspase-3 activity in cytoplasmic lysate and active p65 subunit of NFκβ in nuclear lysate of kidney of diabetic rats. Interestingly, co-administration of tocotrienol significantly and dose-dependently prevented biochemical and molecular changes associated with diabetes. Tocotrienol (100 mg/kg) was demonstrated to be more effective than α-tocopherol (100 mg/kg). Moreover, diabetic rats treated with insulin-tocotrienol combination produced more pronounced effect on molecular parameters as compared to their respective groups.SignificanceTaken together, the data reveal that tocotrienol modulates the release of profibrotic cytokines, oxidative stress, ongoing chronic inflammation and apoptosis and thus exerts a marked renoprotective effect.  相似文献   

8.
目的:研究淫羊藿总黄酮(TFE)对链脲佐菌素(STZ)致糖尿病大鼠肾脏损伤的影响,并初步探讨其可能的作用机制。方法:健康雄性SD大鼠一次性尾静脉注射STZ(40 mg/kg)建立糖尿病模型。动物随机分成3组(n=10):对照组、模型组和TFE组(100 mg/kg,i.g.)。12周后,处死大鼠。测定空腹血糖,肾脏脏器系数,血清尿素氮(BUN)、肌酐(Cr)含量;测定肾组织中超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量;Masson染色观察肾组织胶原纤维增生;免疫组化测定转化生长因子β1(TGF-β1)蛋白的表达。结果:与对照组比较,模型组肾脏脏器系数增大、肾功能下降、肾组织抗氧化能力降低;病理学可见肾小球、肾小管间质纤维化;同时TGF-β1蛋白表达水平上调。TFE组明显改善上述指标。结论:TFE对STZ致糖尿病大鼠肾脏损伤有明显的改善作用,其作用机制可能与抗氧化作用和抑制TGF-β1蛋白表达有关。  相似文献   

9.
In this study, 12 months old female Swiss albino rats were used. They were randomly divided into four groups. The animals of group I were fed with pellet chow. Group II were fed with pellet chow and treated with 250 μg/kg CrCl3.6H2o and 100 mg/kg niacinfor 45 days. Group III were fed a lipogenic diet consisting of 2% cholesterol, 0.5% cholicacidand 2%sun flower oil added to the pellet chow, andgiven 3%alcoholic water for 60 days. Group IV were fed with the same lipogeni cdiet for 60 day sand treated by gavage technique to rats at a dose of 250 mu/kg CrCl3.6H2O and 100 mg/kg niacin for 45 days, 15 days after experimental animals were rendered hyperlipidemic. At the 60th day, renal tissue and blood samples were taken from the animals. The sections were examined under light and electron microscopy. The degenerative changes were much more in the hyperlipidemic rats than the control group. The changes in renal tissue were also observed in hyperlipidemic animals given niacin and chromium. In the hyperlipidemic rats, renal glutathione levels decreased and renal lipid peroxidation levels, and serum urea and creatinine levels were increased. But, renal glutathione levels increased and lipid peroxidation levels and serum urea and creatinine levels decreased in hyperlipidemic rats given niacin and chromium. The purpose of this study was to investigate whether a protective effect of a combination of niacin and chromium is present on the renal tissue of hyperlipidemic rats or not. In conclusion, we can say that niacin and chromium do not have a protective effect on the morphology of the renal tissue of hyperlipidemic rats, except a protective effect on their biochemical parameters.  相似文献   

10.
Cisplatin is the first platinum-containing anti-cancer drugs. Cisplatin notable side effect of nephrotoxicity limits its use in clinic. Meanwhile, arjunolic acid possesses anti-inflammatory properties and plays protective roles against chemically induced organ pathophysiology. This study was conducted to find out whether arjunolic acid could attenuate kidney damage in rats, and to elucidate its possible mechanism of action. Fifty rats were treated with cisplatin (10 mg/kg) in the presence/absence of 100 or 250 mg/kg arjunolic acid. Arjunolic acid is given 1 h after cisplatin. Morphological changes were assessed in kidney sections stained with Hematoxylin/Eosin and Masson Trichrome. Kidney samples were used for measurements of transforming growth factor (TGF)-β1 and its type 1 receptor (TGF-βR1), tumor necrosis factor (TNF)-α and interleukin (IL)-1β by ELISA. Gene expression NFκB was determined by real time-PCR. Kidney tissue apoptosis was assessed by measuring the activities of caspase-3/8/9. The renal protective effect of arjunolic acid was confirmed by approximately normal appearance of renal tissue and the relatively unaffected serum creatinine and urea levels. Furthermore, arjunolic acid showed dose dependent reduction in cisplatin-induced elevation in renal levels of TGF-βR1, TGF-β1, TNF-α, IL-1β and caspases. These findings demonstrated that arjunolic acid attenuates cisplatin nephrotoxicity either indirectly by enhancing body antioxidant activity or directly through several mechanisms, including inhibition of pro-inflammatory cytokines, blocking activation of TGF-β1, and anti-apoptotic effects.  相似文献   

11.
Diabetic nephropathy is one of the most serious complications of diabetes and the major cause of end-stage renal failure. Consequences of diabetic nephropathy include increased kidney size and glomerular volume, thickening of basement membranes and progressive accumulation of extracellular matrix. Reports in the literature support an association between increased secretion of inflammatory molecules, such as cytokines, growth factors and metalloproteinases, and development of diabetic nephropathy. We investigated the potential of granulocyte colony- stimulating factor (G-CSF) as a therapeutic candidate for preventing diabetic nephropathy. We used 21 8-week-old male rats; 14 were administered a single dose of 60 mg/kg streptozotocin (STZ) to induce diabetes. The rats were divided into three groups of seven: group 1, control; group 2, diabetic; group 3, diabetic plus G-CSF treatment. After 4 weeks, immunoexpressions of transforming growth factor β1 (TGF-β1), Akt and CD34 levels were measured in the kidney tissue. Blood glucose, urine protein and the glomerular area also were measured for each group. We found that G-CSF treatment decreased TGF-β1 immunoexpression, urine protein and glomerular area in kidneys of diabetic rats, and increased CD 34 and Akt immunoexpression in kidneys of diabetic rats. The effects of G-CSF were independent of blood glucose levels. G-CSF may be a useful therapeutic agent for preventing diabetic nephropathy.  相似文献   

12.
We produced an animal model of CdCl2 nephrotoxicity in rats, and treated them with polyaspartic acid (PAA) to prevent renal damage. Male Sprague-Dawley (SD) rats (190–200 g) were used to induce proximal renal tubular damage by daily injection of CdCl2 3.0 mg/1,000 g body wt for 2 wk. CdCl2-exposed SD rats exhibited significant increases in urine volume, urinary excretion ofN-acetyl-β-D-glucosaminidase (NAG), alanine aminopeptidase (AAP), and fractional excretion of sodium (FENa) and a decrease in the percentage of tubular reabsorption of phosphate (%TRP). Of these indicators of proximal tubular function, AAP and %TRP are more sensitive than NAG or FENa. No glycosuria or aminoaciduria, however, were observed. PAA markedly improved these indicators of proximal tubular function. Daily urinary protein excretion and creatinine clearance, on the other hand, did not change after administration of PAA. Cd concentrations in the cortex were 3 times higher than in the medulla, however, there were no differences between Cd-treated rats and PAA-treated rats. Our animal model is an excellent one for determining the effect of cadmium on renal proximal tubule damage. PAA appears to be useful in the treatment of CdCl2 nephrotoxicity.  相似文献   

13.
Diabetic nephropathy (DN) is the major cause of end-stage renal disease in diabetic patients. Zicao, a well-known Chinese traditional medicine, has attracted much attention due to its beneficial effects in various medical fields. In this study, we attempted to investigate the effects and mechanisms of action of acetylshikonin, the main ingredient of Zicao, on renal dysfunction in DN. Our results showed that administration with acetylshikonin not only decreased blood urea nitrogen, urine creatinine and the mean kidney-to-body weight ratio in streptozotocin-induced diabetic mice, but also restored the loss of body weight, whereas the blood glucose was not changed. Masson’s trichrome staining showed that acetylshikonin treatment resulted in a marked decrease in kidney fibrosis from diabetic mice. The increased expression of fibrosis proteins, such as plasminogen activator inhibitor type 1 (PAI-1), connective tissue growth factor, and collagen III and IV, were reduced after acetylshikonin administration. In addition, the expressions of interleukin-1β, interleukin-6, monocyte chemoattractant protein-1, intercellular adhesion molecule 1 and infiltration of macrophages in kidney tissues were decreased in acetylshikonin-treated diabetic mice. Acetylshikonin led to a reduction of transforming growth factor-β1 (TGF-β1) expression and Smad-2/3 phosphorylation, as accompanied by increased Smad7 expression. Furthermore, in vitro treatment with acetylshikonin markedly attenuated TGF-β1-induced the PAI-1, collagen III and IV, and Smad-2/3 phosphorylation in HK2 immortalized human proximal tubule epithelial cells. Acetylshikonin also prevented epithelial-to-mesenchymal transition induced by TGF-β1. Collectively, our study provides evidences that acetylshikonin attenuates renal fibrosis though inhibiting TGF-β1/Smad signaling pathway, suggesting that acetylshikonin may be a novel therapeutic agent for the treatment of DN.  相似文献   

14.
15.
16.
Diabetic nephropathy (DN) is the leading cause of death in diabetic patients and the current treatment options available have a limited significance. The insect galls of Quercus infectoria are traditionally important in the treatment of numerous diseases including diabetes. Hence, the present study was undertaken to evaluate the effect of Q. infectoria gall extract (QIGE) against experimental DN. Type 2 diabetes was induced by feeding rats with a high-fat diet (HFD) initially for 5 weeks, followed by a single intraperitoneal injection of streptozotocin (STZ, 35?mg/kg?bw/day). QIGE was administered to the rats orally at doses of 100 and 200?mg/kg?bw/day, respectively. At the end of the experimental period, various glycemic and renal function parameters were evaluated in the serum, urine and kidney tissues. The QIGE treatment significantly (p?p?via the inhibition of hyperglycemia-induced oxidative stress and renal TGF-β expression and is, therefore, a potential therapeutic agent in the treatment of diabetic complications, especially DN.  相似文献   

17.
The present study was undertaken to assess the role of prostaglandin system in the compensatory response to reduced nephron population, respective to renal function and electrolyte excretion. Intact and nephrectomized rats were divided in 4 groups: 1) rats pretreated with indomethacin, 2) rats pretreated with the vehicle of indomethacin, 3) rats pretreated with sulindac, and 4) rats pretreated with the vehicle of sulindac.In normal rats, indomethacin administration resulted in a mild decrease in creatinine clearance and a significant reduction of the urinary Na excretion. In the rats with reduced renal mass treated with indomethacin, the creatinine clearance did not differ from that in the control group. The 24 h urinary sodium excretion and the fractional excretion of sodium, however, were significantly lower in the indomethacin treated animals than in the control rats. No change in the creatinine clearance or in the sodium excretion was observed in all groups pretreated with sulindac.The urinary PGE2 and thromboxane excretion was significantly lower in the indomethacin treated intact rats and the rats with reduced renal mass. Sulindac induced a slight decrease in urinary excretion of PGE2 in intact rats. No significant change in urinary excretion of PGE2 or thromboxane was seen after sulindac in the rats with reduced renal mass.The antinatriuretic effect of indomethacin was dissociated from changes in urine flow in all groups of animals, suggesting that the increase in Na reabsorption tool place in a water impermeable segment of nephron.These results suggest that the compensatory increase in urinary Na excretion per nephron in rats with reduced nephron population at least partly depends on an intact prostaglandin synthesis.  相似文献   

18.
Chronic aristolochic acid (AA) nephropathy (CAAN) caused by intake of AA-containing herbs is difficult to treat. We evaluated the therapeutic effect of bone marrow (BM) mesenchymal stem cells (MSCs) on a rat model of CAAN. Female Wistar rats were fed with decoction of Caulis Aristolochia manshuriensis by intragastric administration. MSCs were prepared from BM of male Wistar rats and injected into female CAAN rats through tail vein. Body weight, renal function, and urinary excretion of these CAAN rats were monitored before killing at the end of the 20th week. Blood, urine, and tissue samples were collected from experimental (MSC and non-MSC) and normal control groups. All animals developed renal fibrosis after 12 weeks of intake of AA-containing decoction. Fibrosis in the MSC groups was significantly reduced as examined with light and electron microscopy. Blood urea nitrogen, serum creatinine, and urine protein levels were significantly reduced and hemoglobin levels were improved in the MSC group as compared with the non-MSC group (p < 0.01). The expression of TGF-β1 mRNA and protein was reduced but hepatic growth factor (HGF) was increased in the MSC group compared with the non-MSC group, but still higher than the normal control level as measured by immunochemical, RT-PCR, and western blotting assays (p < 0.01). The renal fibrosis of CAAN could be protected by isogenic MSC transplantation, probably via upregulation of HGF and downregulation of TGF-β1.  相似文献   

19.
This study investigated if the nephroprotective effect of Curcumin in streptozotocin-induced type 1 diabetes mellitus (DM) in rats involves downregulation/inhibition of p66Shc and examined the underlying mechanisms. Rats were divided into 4 groups (n = 12/group) as control, control + Curcumin (100 mg/kg), T1DM, and T1DM + Curcumin. Curcumin was administered orally to control or diabetic rats for 12 weeks daily. As compared to diabetic rats, Curcumin didn't affect either plasma glucose or insulin levels but significantly reduced serum levels of urea, blood urea nitrogen, and creatinine, and concurrently reduced albumin/protein urea and increased creatinine clearance. It also prevented the damage in renal tubules and mitochondria, mesangial cell expansion, the thickness of the basement membrane. Mechanistically, Curcumin reduced mRNA and protein levels of collagen I/III and transforming growth factor- β-1 (TGF-β1), reduced inflammatory cytokines levels, improved markers of mitochondrial function, and suppressed the release of cytochrome-c and the activation of caspase-3. In the kidneys of both control and diabetic rats, Curcumin reduced the levels of reactive oxygen species (ROS), increased mRNA levels of manganese superoxide dismutase (MnSOD) and gamma-glutamyl ligase, increased glutathione (GSH) and protein levels of Bcl-2 and MnSOD, and increased the nuclear levels of nuclear factor2 (Nrf2) and FOXO-3a. Besides, Curcumin reduced the nuclear activity of the nuclear factor-kappa B (NF-κB), downregulated protein kinase CβII (PKCβII), NADPH oxidase, and p66Shc, and decreased the activation of p66Shc. In conclusion, Curcumin prevents kidney damage in diabetic rats by activating Nrf2, inhibiting Nf-κB, suppressing NADPH oxidase, and downregulating/inhibiting PKCβII/p66Shc axis.  相似文献   

20.
Hyperglycemia-mediated oxidative stress plays a crucial role in the progression of diabetic nephropathy. Hence, the present study was hypothesized to explore the renoprotective nature of resveratrol by assessing markers of oxidative stress, proinflammatory cytokines and antioxidant competence in streptozotocin-nicotinamide-induced diabetic rats. Oral administration of resveratrol to diabetic rats showed a significant normalization on the levels of creatinine clearance, plasma adiponectin, C-peptide and renal superoxide anion, hydroxyl radical, nitric oxide, TNF-α, IL-1β, IL-6 and NF-κB p65 subunit and activities of renal aspartate transaminase, alanine transaminase and alkaline phosphatase in comparison with diabetic rats. The altered activities of renal aldose reductase, sorbitol dehydrogenase and glyoxalase-I and elevated level of serum advanced glycation end products in diabetic rats were also reverted back to near normalcy. Further, resveratrol treatment revealed a significant improvement in superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities and vitamins C and E, and reduced glutathione levels, with a significant decline in lipid peroxides, hydroperoxides and protein carbonyls levels in diabetic kidneys. Similarly, mRNA and protein analyses substantiated that resveratrol treatment notably normalizes the renal expression of Nrf2/Keap1and its downstream regulatory proteins in the diabetic group of rats. Histological and ultrastructural observations also evidenced that resveratrol effectively protects the kidneys from hyperglycemia-mediated oxidative damage. These findings demonstrated the renoprotective nature of resveratrol by attenuating markers of oxidative stress in renal tissues of diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号