首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
甘草药材上的污染真菌类群及其产毒素特性   总被引:5,自引:0,他引:5  
陈娟  杨蕾  蔡飞  杨美华  高微微 《菌物学报》2010,29(3):335-339
对药材市场上霉变甘草样品的污染真菌进行分析,共得到4属7种真菌,包括Penicillium、Aspergillus、Fusarium、Mucor属,其中Penicillium polonicum、Aspergillus parasiticus以及P.crustosum是优势真菌。采用高效液相色谱-质谱联用技术对优势菌菌株产黄曲霉毒素及赭曲霉毒素A的特性进行检测。结果表明A.parasiticus主要产生黄曲霉毒素(AFG2、AFG1、AFB2、AFB1)和赭曲霉毒素A(OTA);而Penicillium polonicum主要产生赭曲霉毒素A(OTA)。  相似文献   

2.
黄曲霉菌主要真菌毒素次级代谢与调控的研究进展   总被引:1,自引:0,他引:1  
黄曲霉菌(Aspergillus flavus)是一种腐生型好氧真菌,其次级代谢产生的黄曲霉毒素(Aflatoxin,AFT)是一种强致癌性剧毒物质。黄曲霉菌侵染农作物导致相关农产品黄曲霉毒素的污染,危及食品安全及人和动物的健康。黄曲霉菌有8条染色体,基因组大小约37 Mb,含有13 000多个功能基因,55个次级代谢基因簇,其中只明确了AFT、环匹阿尼酸(Cyclopiazonic acid,CPA)和黄曲霉震颤素(Aflatrem)3个次级代谢基因簇的特征。次级代谢基因簇的表达受不同环境条件、次级代谢调控因子、酶活性、复杂的脂氧合物转导信号及群体密度效应的调控。LaeA和VeA是抑制AFT、CPA和黄曲霉震颤素等真菌毒素生物合成的次级代谢调控因子,抑制加氧酶类(Ppo和Lox)的表达则能促进真菌毒素的合成,而其氧化产物(脂氧合物)则是真菌-寄主互作的重要信号分子。群体密度和水解酶类也影响黄曲霉菌的次级代谢,群体密度高能降低黄曲霉毒素的生成量而增加分生孢子的形成;α-淀粉酶、果胶酶、蛋白酶等酶活性的改变可以影响黄曲霉菌分生孢子萌发、菌丝生长,以及真菌毒素的次级代谢。本文系统评述了黄曲霉主要真菌毒素的次级代谢与调控的研究进展。此外,对黄曲霉次级代谢物的研究也做了进一步的评述和讨论。  相似文献   

3.
真菌毒素是真菌在生长过程中所产生的一些次级代谢产物,广泛存在于谷物和饲料中,对人畜健康危害极大。常见的真菌毒素有:黄曲霉毒素、赭曲霉毒素、玉米赤霉烯酮、脱氧雪腐镰刀菌烯醇、T-2毒素、伏马菌素等。真菌毒素的脱毒主要是指破坏、除去以及减少粮食中毒素毒害的收获后处理。在现有的脱毒方法中,物理脱毒方法包括蒸煮、吸附、辐射等,化学脱毒方法包括添加化学物质和杀菌剂等,生物脱毒方法包括微生物吸附和微生物降解等。本文对常见真菌毒素的脱毒方法以及其它最新的脱毒方法进行了综述。  相似文献   

4.
黄曲霉毒素是由黄曲霉菌合成的一类毒性极高、致癌性极强的次生代谢物。一般认为,高油脂含量的作物种子被曲霉属真菌感染后容易产生黄曲霉毒素,但是,脂肪酸的处理实验结果表明不同类型的脂肪酸对曲霉属真菌毒素合成的作用不同,有的促进合成,有的抑制合成。最近研究结果显示所有脂肪酸都促进黄曲霉毒素合成,但是多不饱和脂肪酸在暴露空气之后对毒素合成有抑制作用。这种抑制产毒的作用似乎是由多不饱和脂肪酸氧化所产生的脂氧合物所介导。本文结合我们的研究结果,综合评述了脂肪酸和脂氧合物调控曲霉属真菌菌丝生长、产孢和毒素合成研究的最新进展。  相似文献   

5.
黄曲霉毒素是一类具有较强毒性和致癌力的次级代谢产物,在小麦、水稻、玉米和花生等多种粮食、油料、饲料和食品中检出率均比较高。因此,黄曲霉毒素不仅给人和动物的健康造成极其严重的威胁,而且也给食品和饲料等行业造成了巨大的经济损失。黄曲霉毒素主要由黄曲霉和寄生曲霉产生。自上个世纪60年代首次发现黄曲霉毒素以来,研究者在黄曲霉毒素合成途径、降解、合成机制和致病机理等方面做了大量研究。本文主要综述近年来国内外以黄曲霉为对象的黄曲霉毒素合成的遗传调控机制研究进展。从转录调控、蛋白翻译后修饰、信号转导途径、参与生长发育和形态建成的蛋白和其他酶等方面对黄曲霉毒素合成机制展开综述,为今后进一步深入系统研究黄曲霉毒素合成机制奠定基础,同时为制定防治黄曲霉及其毒素的策略提供理论基础。  相似文献   

6.
赭曲霉毒素A(ochratoxin A, OTA)是曲霉属和青霉属等真菌的次生代谢物,广泛污染谷物、葡萄、坚果等农产品和饲料,造成严重的经济损失。此外,OTA的肝肾毒性和三致作用(致畸、致癌、致突变)已经得到越来越多的数据支撑,证实其对人类健康存在巨大威胁。OTA及其衍生物的理化性质已经有较为全面的研究,但是其合成过程及调控机理尚不明确。本文整理了赭曲霉毒素A的理化性质及产毒菌株,总结了OTA污染及致病情况的最新研究进展和各国的限量标准,最后分析了OTA的合成机制,讨论了未来OTA理论及应用层面的研究方向,为赭曲霉毒素A的风险评估提供数据支持,同时为OTA生物合成和调控机制提供理论参考。  相似文献   

7.
真菌对黄曲霉毒素B_1污染的防治研究   总被引:1,自引:0,他引:1  
黄曲霉毒素是由黄曲霉、寄生曲霉等曲霉属菌株所分泌的毒性次级代谢产物,其中,尤以黄曲霉毒素B1(Aflatoxin B1,AFB1)的毒性、致突变性、致癌性最强,而且其在农作物的栽培、收获、贮藏和加工过程中污染严重,受到全世界的广泛关注。因此,为保证食品的安全性,各国研究人员一直都在寻求安全、高效、经济、环保的方法来控制食品和饲料中AFB1的污染。近年来真菌在AFB1的生物防治方面已取得很大进展,并有部分菌株已应用于生产中。本研究就真菌对AFB1的防治机制及其前景展望进行综述。  相似文献   

8.
高婧  梁志宏 《微生物学通报》2020,47(6):1721-1729
【背景】赭曲霉毒素A (ochratoxin A,OTA)是曲霉属和青霉属等真菌的次级代谢产物,严重威胁农产品及食品安全,氧脂素羟基十八碳二烯酸(hydroxyoctadecaenoic acids,HODEs)被认为可能是曲霉属的群体感应信号分子,调节曲霉的生长发育和次级代谢物生成。【目的】主要研究HODEs对赭曲霉(Aspergillusochraceus)菌株AS3.4412产生OTA的影响,检测孢子密度、培养基类别以及内、外源HODEs作用下OTA产量的不同变化。【方法】分别在PDB、黄豆和黑豆培养基中进行赭曲霉的培养,采用高效液相色谱-荧光检测法测定OTA含量,采用高效液相色谱-质谱法测定氧脂素含量,根据变化规律寻找赭曲霉群体密度、氧脂素、OTA三者间的关系。【结果】低密度赭曲霉培养物(103 spores/mL)中9(S)-HODE/13(S)-HODE及OTA产量高于高密度赭曲霉(106 spores/mL);外源添加9(S)-HODE能促进OTA合成,13(S)-HODE可以抑制OTA合成;赭曲霉侵染抗氧化能力更高的黑豆产生更多的OTA。【结论】OTA的合成受到赭曲霉群体密度和氧脂素的影响,推测9(S)-HODE和13(S)-HODE是赭曲霉群体感应信号分子,并且二者在调节OTA合成中具有相反的作用。  相似文献   

9.
真菌毒素是真菌产生的次级代谢产物,可污染粮食、水果、食品、饲料、中草药等多种农产品。严重威胁食品安全、危害人畜健康,真菌毒素的形成除了受到产毒菌自身遗传因素的调控外,还受到宿主、环境因素的调控。此外,上述的多种因素的交互作用为真菌毒素的产生和调节增加了另一个层次上的多样性和复杂性。为了探究调控真菌毒素形成的因素,本文综述了真菌毒素合成及调控基因、温度、水分活度、光照、渗透压、基质、酸碱度、植物损伤、宿主抗性等因素对真菌毒素形成的影响,同时探讨了真菌毒素的防控,以期为探究真菌毒素形成的调控机制奠定基础,为真菌毒素防控策略的开发提供理论依据。  相似文献   

10.
为获得同时抑制产毒赭曲霉(Aspergillus ochraceus)和黄曲霉(Aspergillus flavus)生长的拮抗菌株,充分开发利用有益微生物资源。从种植园土壤和赤豆(Vigna angularis)中分离筛选拮抗赭曲霉和黄曲霉的细菌,通过形态学、生理生化反应、16S rDNA序列同源性及特异PCR鉴定其种属;并研究菌株发酵上清液的抑菌稳定性等指标。结果显示,从种植园土壤中筛选出同时抑制赭曲霉和黄曲霉生长的拮抗细菌SC-B15,对赭曲霉和黄曲霉抑菌率分别达到47.30±13.17%和52.44±2.78%,鉴定结果为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。其上清液对赭曲霉和黄曲霉的抑菌圈直径分别为15.03±2.66 mm和13.95±2.62 mm。抑菌物质在20-40℃,pH 6-10条件下保持稳定,对胰蛋白酶和木瓜蛋白酶不敏感,显微检测赭曲霉和黄曲霉菌丝均出现异常。分离自土壤的B. amyloliquefaciens SC-B15菌株及其上清液可以有效抑制产毒赭曲霉和黄曲霉,对食品及饲料的防霉抑菌具有一定的开发应用价值。  相似文献   

11.
Ji Y  Yang F  Ma D  Zhang J  Wan Z  Liu W  Li R 《Mycopathologia》2012,174(4):273-282
Aspergillus fumigatus is naturally exposed to a highly variable environment and subjected to various kinds of stresses. High-osmolarity glycerol mitogen-activated protein kinase (HOG-MAPK) pathway plays a crucial role in regulating cellular homeostasis in response to environmental changes. Here, we explored the contribution of HOG-MAPK pathway to the adaptive responses to thermal stress and other related stresses in A. fumigatus. We observed the phenotype features of wild-type strains and their derived mutants at 37 and 48?°C, and the results suggested that tcsB participates in response to high temperature. Furthermore, susceptibility test for antifungal drugs showed that SHO1 branch is probably involved in the susceptibility of A. fumigatus to itraconazole at high temperature. Although sakA expression at mRNA level appeared unchanged in wild-type AF293 subjected to thermal stress, phosphorylated SakAp level increased significantly in the strains exposed to cold stress, 250?mmol/L nystatin or 10?% dimethyl sulfoxide in a manner dependent on the SLN1 branch and independent on the SHO1 branch. Taken together, these results indicate that HOG-MAPK pathway, especially the SLN1 branch, plays an important role in the adaptations of A. fumigatus to thermal stress and other related stresses.  相似文献   

12.
13.
The high‐osmolarity glycerol pathway plays an important role in the responses of fungi to various environmental stresses. Saccharomyces cerevisiae Skn7 is a response regulator in the high‐osmolarity glycerol pathway, which regulates the oxidative stress response, cell cycle and cell wall biosynthesis. In this study, we characterized an Skn7 orthologue BcSkn7 in Botrytis cinerea. BcSKN7 can partly restore the growth defects of S. cerevisiae SKN7 mutant and vice versa. The BcSKN7 mutant (ΔBcSkn7‐1) revealed increased sensitivity to ionic osmotic and oxidative stresses and to ergosterol biosynthesis inhibitors. In addition, ΔBcSkn7‐1 was also impaired dramatically in conidiation and sclerotial formation. Western blot analysis showed that BcSkn7 positively regulated the phosphorylation of BcSak1 (the orthologue of S. cerevisiae Hog1) under osmotic stress, indicating that BcSkn7 is associated with the high‐osmolarity glycerol pathway in B. cinerea. In contrast with BcSak1, BcSkn7 is not involved in the regulation of B. cinerea virulence. All of the phenotypic defects of ΔBcSkn7‐1 are restored by genetic complementation of the mutant with the wild‐type BcSKN7. The results of this study indicate that BcSkn7 plays an important role in the regulation of vegetative differentiation and in the response to various stresses in B. cinerea.  相似文献   

14.
Cells possess stress‐activated protein kinase (SAPK) signalling pathways, which are activated practically in response to any cellular insult, regulating responses for survival and adaptation to harmful environmental changes. To understand the function of SAPK pathways in T. atroviride, mutants lacking the MAPKK Pbs2 and the MAPK Tmk3 were analysed under several cellular stresses, and in their response to light. All mutants were highly sensitive to cellular insults such as osmotic and oxidative stress, cell wall damage, high temperature, cadmium, and UV irradiation. Under oxidative stress, the Tmk3 pathway showed specific roles during development, which in conidia are essential for tolerance to oxidant agents and appear to play a minor role in mycelia. The function of this pathway was more evident in Δpbs2 and Δtmk3 mutant strains when combining oxidative stress or cell wall damage with light. Light stimulates tolerance to osmotic stress through Tmk3 independently of the photoreceptor Blr1. Strikingly, photoconidiation and expression of blue light regulated genes was severally affected in Δtmk3 and Δpbs2 strains, indicating that this pathway regulates light responses. Furthermore, Tmk3 was rapidly phosphorylated upon light exposure. Thus, our data indicate that Tmk3 signalling cooperates with the Blr photoreceptor complex in the activation of gene expression.  相似文献   

15.
Autophagy in plants and phytopathogens   总被引:1,自引:0,他引:1  
Plants and plant-associated microorganisms including phytopathogens have to adapt to drastic changes in environmental conditions. Because of their immobility, plants must cope with various types of environmental stresses such as starvation, oxidative stress, drought stress, and invasion by phytopathogens during their differentiation, development, and aging processes. Here we briefly describe the early studies of plant autophagy, summarize recent studies on the molecular functions of ATG genes, and speculate on the role of autophagy in plants and phytopathogens. Autophagy regulates senescence and pathogen-induced cell death in plants, and autophagy and pexophagy play critical roles in differentiation and the invasion of host cells by phytopathogenic fungi.  相似文献   

16.
When Saccharomyces cerevisiae cells are exposed to hyper-osmotic stress, the high-osmolarity glycerol response (HOG) pathway is activated to induce osmotic responses. The HOG pathway consists of two upstream osmosensing branches, the SLN1 and SHO1 branches, and a downstream MAP kinase cascade. Although the mechanisms by which these upstream branches transmit signals to the MAP kinase cascade are well understood, the mechanisms by which they sense and respond to osmotic changes are elusive. Here we show that the HOG pathway is activated in an SLN1 branch-dependent manner when cells are exposed to cold stress (0 degrees C treatment). Dimethyl sulfoxide (DMSO) treatment, which rigidifies the cell membrane, also activates the HOG pathway in both SLN1 branch- and SHO1 branch-dependent manners. Moreover, cold stress, as well as hyper-osmotic stress, exhibits a synergistic effect with DMSO treatment on HOG pathway activation. On the other hand, ethanol treatment, which fluidizes the cell membrane, partially represses the cold stress-induced HOG pathway activation. Our results suggest that both osmosensing branches respond to the rigidification of the cell membrane to activate the HOG pathway.  相似文献   

17.
Physiological capabilities and fermentation performance of Saccharomyces cerevisiae strains to be employed during industrial wine fermentations are critical for the quality of the final product. During the process of biomass propagation, yeast cells are dynamically exposed to a mixed and interrelated group of known stresses such as osmotic, oxidative, thermic, and/or starvation. These stressing conditions can dramatically affect the parameters of the fermentation process and the technological abilities of the yeast, e.g., the biomass yield and its fermentative capacity. Although a good knowledge exists of the behavior of S. cerevisiae under laboratory conditions, insufficient knowledge is available about yeast stress responses under the specific media and growth conditions during industrial processes. We performed growth experiments using bench-top fermentors and employed a molecular marker approach (changes in expression levels of five stress-related genes) to investigate how the cells respond to environmental changes during the process of yeast biomass production. The data show that in addition to the general stress response pathway, using the HSP12 gene as a marker, other specific stress response pathways were induced, as indicated by the changes detected in the mRNA levels of two stress-related genes, GPD1 and TRX2. These results suggest that the cells were affected by osmotic and oxidative stresses, demonstrating that these are the major causes of the stress response throughout the process of wine yeast biomass production.  相似文献   

18.
Wang Y  Liu C  Li K  Sun F  Hu H  Li X  Zhao Y  Han C  Zhang W  Duan Y  Liu M  Li X 《Plant molecular biology》2007,64(6):633-644
The nuclear protein ETHYLENE INSENSITIVE2 (EIN2) is a central component of the ethylene signal transduction pathway in plants, and plays an important role in mediating cross-links between several hormone response pathways, including abscisic acid (ABA). ABA mediates stress responses in plants, but there is no report on the role of EIN2 on plant response to salt and osmotic stresses. Here, we show that EIN2 gene regulates plant response to osmotic and salt stress through an ABA-dependent pathway in Arabidopsis. The expression of the EIN2 gene is down-regulated by salt and osmotic stress. An Arabidopsis EIN2 null mutant was supersensitive to both salt and osmotic stress conditions. Disruption of EIN2 specifically altered the expression pattern of stress marker gene RD29B in response to the stresses, but not the stress- or ABA-responsive genes RD29A and RD22, suggesting EIN2 modulates plant stress responses through the RD29B branch of the ABA response. Furthermore, disruption of EIN2 caused substantial increase in ABA. Lastly, our data showed that mutations of other key genes in ethylene pathway also had altered sensitivity to abiotic stresses, indicating that the intact ethylene may involve in the stress response. Taken together, the results identified EIN2 as a cross-link node in ethylene, ABA and stress signaling pathways, and EIN2 is necessary to induce developmental arrest during seed germination, and seedling establishment, as well as subsequent vegetative growth, thereby allowing the survival and growth of plants under the adverse environmental conditions. Youning Wang and Chuang Liu contributed equally to this work.  相似文献   

19.
20.
Molecular biology of mycotoxin biosynthesis   总被引:9,自引:0,他引:9  
Mycotoxins are secondary metabolites produced by many important phytopathogenic and food spoilage fungi including Aspergillus, Fusarium and Penicillium species. The toxicity of four of the most agriculturally important mycotoxins (the trichothecenes, and the polyketide-derived mycotoxins; aflatoxins, fumonisins and sterigmatocystin) are discussed and their chemical structure described. The steps involved in the biosynthesis of aflatoxin and sterigmatocystin and the experimental techniques used in the cloning and molecular characterisation of the genes involved in the pathway are described in detail. The biosynthetic genes involved in the fumonisin and trichothecene biosynthetic pathways are also outlined. The potential benefits gained from an increased knowledge of the molecular organisation of these pathways together with the mechanisms involved in their regulation are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号