首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method is proposed to adjust allele frequencies when allelic drop‐out is common. This method assumes Hardy–Weinberg equilibrium (HWE), and treats the problematic alleles as a one‐locus two‐allele system with dominance. By assuming that the homozygote frequency of the ‘recessive’ allele is measured correctly, we can back calculate the allele frequency of the ‘dominant’ allele, and adjust the heterozygote frequency accordingly. The drawback is that multilocus genotypes cannot be constructed and tests that use deviations from Hardy–Weinberg such as tests for bottlenecks become impossible. An example is given where a large homozygote excess (FIS = 0.44) is adjusted to a reasonable level (FIS = 0.046). The effect of scoring error was set in relation to sampling error and while FIS values can be seriously biased, FST values are not necessarily so, if scoring error and sample size are both low. As sample size increases, the effect of scoring error increases.  相似文献   

2.
Nonamplified (null) alleles are a common feature of microsatellite genotyping and can bias estimates of allele and genotype frequencies, thereby hindering population genetic analyses. The frequency of microsatellite null alleles in diploid populations can be estimated for populations that are in Hardy–Weinberg equilibrium. However, many microsatellite data sets are from nonequilibrium populations, often with known inbreeding coefficients (F) or fixation indices (FIS or FST). Here, we propose a novel null allele estimator that can be used to estimate the null allele frequency and adjust visible allele frequencies in populations for which independent estimates of F, FIS or FST are available. The algorithm is currently available as an Excel macro that can be downloaded at no cost from http://www.microchecker.hull.ac.uk/ and will be incorporated into the software micro ‐checker .  相似文献   

3.
In this study we investigated the within- and between-population genetic variation using microsatellite markers and quantitative traits of the shea tree, Vitellaria paradoxa, an important agroforestry tree species of the Sudano–Sahelian region in Africa. Eleven populations were sampled across Mali and in northern Côte d’Ivoire. Leaf size and form and growth traits were measured in a progeny test at the nursery stage. Eight microsatellites were used to assess neutral genetic variation. Low levels of heterozygosity were recorded (1.6–3.0 alleles/locus; HE = 0.25–0.42) and the fixation index (FIS = −0.227–0.186) was not significantly different from zero suggesting that Hardy–Weinberg equilibrium is encountered in all populations sampled. Quantitative traits exhibited a strong genetic variation between populations and between families within populations. The degree of population differentiation of the quantitative traits (QST = 0.055–0.283, QSTmean = 0.189) strongly exceeds that in eight microsatellite loci (FST = −0.011–0.142, FSTmean = 0.047). Global and pairwise FST values were very low and not significantly different from zero suggesting agroforestry practices are amplifying gene flow (Nm = 5.07). The population means for quantitative traits and the rainfall variable were not correlated, showing variation was not linked with this climatic cline. It is suggested that this marked differentiation for quantitative traits, independent of environmental clines and despite a high gene flow, is a result of local adaptation and human selection of shea trees. This process has induced high linkage disequilibrium between underlying loci of polygenic characters.  相似文献   

4.
Santure AW  Wang J 《Genetics》2009,181(1):259-276
QST measures the differentiation of quantitative traits between populations. It is often compared to FST, which measures population differentiation at neutral marker loci due to drift, migration, and mutation. When QST is different from FST, it is usually taken as evidence that selection has either restrained or accelerated the differentiation of the quantitative trait relative to neutral markers. However, a number of other factors such as inbreeding, dominance, and epistasis may also affect the QSTFST contrast. In this study, we examine the effects of dominance, selection, and inbreeding on QSTFST. We compare QST with FST at selected and neutral loci for populations at equilibrium between selection, drift, mutation, and migration using both analytic and simulation approaches. Interestingly, when divergent selection is acting on a locus, inbreeding and dominance generally inflate QST relative to FST when they are both measured at the quantitative locus at equilibrium. As a consequence, dominance is unlikely to hide the signature of divergent selection on the QSTFST contrast. However, although in theory dominance and inbreeding affect the expectation for QSTFST, of most concern is the very large variance in both QST and FST, suggesting that we should be cautious in attributing small differences between QST and FST to selection.  相似文献   

5.
Niu LL  Li HB  Ma YH  Du LX 《Animal genetics》2012,43(1):108-111
The purpose of this study was to assess the genetic characteristics of six breeds of Chinese local sheep using 19 microsatellite loci and to effectively validate statistical methods for individual assignment based on informative microsatellites. All the six breeds deviated from Hardy–Weinberg equilibrium expectations, while the majority of markers complied. The polymorphism information content (PIC) of overall loci for the six populations ranged from 0.283 (SRCRSP5) to 0.852 (OarVH72). Tibetan sheep were the most diverse population with the highest mean allelic richness (6.895), while Ujmuqin (UQ) harboured the lowest allelic richness (6.000). The F‐statistics for the six populations were FIS = ?0.172, FIT = ?0.082 and FST = 0.077, respectively. Furthermore, the pair‐wise FIS revealed a moderate genetic differentiation among populations (P < 0.01), indicating that all breeds can be considered genetically independent entities. The lowest genetic differentiation was between Tengchong (TC) and UQ (FST = 0.041), and the highest one was between TC and Fat‐tailed Han (FST = 0.111). In comparing the three statistical models, we note that the seven microsatellite loci (MAF65, OarJMP58, SRCRSP9, MCM140, OarAE129, BM8125 and SRCRSP5) commonly used for individual assignment will ensure a powerful detection of individual origin, with accuracy up to 91.87%, when the likelihood‐based method is used. Overall, these findings shed light onto the genetic characteristics of Chinese indigenous sheep and offer a set of microsatellite loci that is simple, economic and highly informative for individual assignment of Chinese sheep.  相似文献   

6.
Seven microsatellite DNA loci were optimized to assess genetic differentiation in coastal steelhead (Oncorhynchus mykiss irideus) sampling groups from the lower Klamath River (California, USA). Genetic relationships among three winter‐run and two summer‐run groups were investigated. The different groups displayed high levels of allelic variation. Pairwise FST comparisons and Nei's genetic distance supported low, yet significant, genetic differentiation between summer and winter run‐timings similar to other studies of temporal variation in salmonids. Analysis of molecular variance showed that most of the genetic variation was at the individual level (97.9%), although significant genetic variation existed between timing of runs (2.59%). Additionally, at least one locus in each group was out of Hardy–Weinberg equilibrium due to a deficiency in heterozygotes, and significant FIS values were observed in three temporal collections. Together, these results suggest stock admixture, caused by multiple populations of origin in each sampling group, better known as the Wahlund Effect. These observations are preliminary evidence for isolation by time between Klamath River steelhead runs during distinct periods.  相似文献   

7.
Interdemic selection, inbreeding and highly structured populations have been invoked to explain the evolution of cooperative social behaviour in the otherwise solitary and cannibalistic spiders. The family Eresidae consists of species ranging from solitary and intermediate subsocial to species exhibiting fully cooperative social behaviour. In this study we, in a hierarchical analysis, investigated relatedness of putative family clusters, inbreeding and population genetic structure of the subsocial spider Eresus cinnaberinus. Five hierarchical levels of investigation ranging from large scale genetic structure (distances of 250 and 50 km level 1 and 2) over microgeographic structure (20 km2 and 4 km2, level 3 and 4) to a single hill transect of 200 m (level 5) were performed. The purpose of level 5 was two-fold: (1) to investigate the relatedness of putative family groups, and (2) to evaluate the influence of both family living and sampling design on higher level estimates. Relatedness estimates of putative family groups showed an average relatedness of R=0.26. There was no indication of inbreeding. In contrast to social spiders, genetic variation was abundant, He?0.10. The population genetic structure was intermediate between social and asocial spiders. Genetic variance increased continually across hierarchical levels. Family structured neighbourhoods biased differentiation estimates among level 5 samples (FST? 0.04) and level 3 and 4 samples (0.07ST<0.18), and apparent inbreeding among level 3 and 4 samples, FIS>0, was caused by disjunct sampling from separate neighbourhoods. Larger scale samples were highly differentiated 0.12ST<0.26, depending on level and sampling design. Due to a distance effect family living did not influence estimates of the higher level 1. Although the dispersing sex among social spiders and the subsocial E. cinnebarinus differ, females versus males, female behaviour of both sociality classes lead to high genetic variance.  相似文献   

8.
Intra‐ and interpopulation variation was studied, by means of cellulose acetate allozyme electrophoresis, on 16 populations of helicoid snail Bradybaena fruticum (O. F. Müller, 1774) in South Poland. Four enzyme systems, coded by seven loci, were analysed. Calculated with Fisher's technique and Ohta's D‐statistics, four cases of linkage disequilibrium were detected, reflecting population subdivision. The mean number of alleles per locus equalled 2.16 and the mean expected heterozygosity was 0.287. Exact multipopulation and multilocus tests for Hardy–Weinberg equilibrium indicated a statistically significant homozygote excess in all the loci and all populations but three. Each population, however, was at Hardy–Weinberg equilibrium for most loci, though the values of f (FIS) were usually high. Homozygote excess was ascribed partly to inbreeding and partly to Wahlund's effect (spatial subdivision of population; at least two cohorts of adult, reproducing snails), disrupting selection in this polymorphic species not excluded. F‐statistics showed relatively low values of θ (FST ; mean for all loci = 0.224) and those of Nm usually below 1 (mean 0.866). Pairwise values of either θ or Cavalli‐Sforza and Edwards arc distance were statistically significantly associated with geographic distances. Contrary to this, no geographic pattern of interpopulation differences was detected by correspondence analysis on allele frequencies, non‐linear multidimensional scaling, UPGMA clustering or neighbour‐joining trees constructed on θ and Cavalli‐Sforza and Edwards arc distance. Accordingly, some most distant populations were more similar to one another than the close ones.  相似文献   

9.
Eleven microsatellites were isolated in the freshwater snail Bulinus forskalii, intermediate host for the medically important trematode Schistosoma intercalatum. Characterization in 60 snails from three populations of B. forskalii from Cameroon revealed 4 to 18 alleles per locus. Low observed heterozygosity but higher expected heterozygosity, high FIS estimates, significant departures from Hardy–Weinberg equilibrium and genotypic linkage disequilibria all indicate that B. forskalii is a preferential selfer. High FST estimates suggest that effective dispersal is limited and genetic drift is an important determinant of genetic structure. The potential utility of the microsatellite primers in other closely related Bulinus species was explored.  相似文献   

10.
In this article, it is shown that available genetic tools for the omnipresent parasite Anguillicoloides crassus in European eels Anguilla anguilla are sensitive to different immigration rates into local A. anguilla stocks for two separated river systems. Relying on four highly polymorphic microsatellite markers, it was inferred that under natural recruitment, nematode samples meet Hardy–Weinberg expectations for a single panmictic population, while genetic signals show signs for a strong Wahlund effect most likely due to very recent population mixing under frequent restocking of young A. anguilla. This was indicated by a low but significant FST value among within‐host populations (infrapopulations) along with high inbreeding indices FIS consistent over all loci. The latter signal is shown to stem from high levels of admixture and the presence of first‐generation migrants, and alternative explanations such as marker‐ and sex‐specific biases in the nematode populations could be dismissed. Moreover, the slightly increased degree of relatedness within infrapopulations in the stocked river system cannot explain the excessive inbreeding values found and are most likely a direct consequence of recent influx of already infected fish harbouring parasites with different genetic signatures. Applying a simulation approach using known variables from the nematode's invasion history, only the artificial introduction of a Wahlund effect leads to a close match between simulated and real data, which is a strong argument for using the parasite as a biological tag for detecting and characterizing fish translocation.  相似文献   

11.
A knowledge of the effective size of a population (Ne) is important in understanding its current and future evolutionary potential. Unfortunately, the effective size of a hierarchically structured population is not, in general, equal to the sum of its parts. In particular, the inbreeding structure has a major influence on Ne. Here I link Ne to Wright's hierarchical measures of inbreeding, FIS and FST, for an island-structured population (or metapopulation) of size NT. The influence of FST depends strongly on the degree to which island productivity is regulated. In the absence of local regulation (the interdemic model), interdemic genetic drift reduces Ne. When such drift is combined with local inbreeding under otherwise ideal conditions, the effects of FIS and FST are identical: increasing inbreeding either within or between islands reduces Ne, with Ne = NT/[(1 + FIS)(1 + FST) ? 2FISFST]. However, if islands are all equally productive because of local density regulation (the traditional island model), then Ne = NT/[(1 + FIS)(1 –FST)] and the effect of FST is reversed. Under the interdemic model, random variation in the habitat quality (and hence productivity) of islands act to markedly decrease Ne. This variation has no effect under the island model because, by definition, all islands are equally productive. Even when no permanent island structure exists, spatial differences in habitat quality can significantly increase the overall variance in reproductive success of both males and females and hence lower Ne. Each of these basic results holds when other nonideal factors are added to the model. These factors, deviations from a 1:1 sex ratio, greater than Poisson variance in female reproductive success, and variation in male mating success due to polygynous mating systems, all act to lower Ne. The effects of male and female variance on Ne have important differences because only females affect island productivity. Finally, it is noted that to use these relationships, FIS and FST must be estimated according to Wright's definition (and corrected to have a zero expectation under the null model). A commonly used partitioning (θ, θg) can be biased if either island size or the number of islands is small.  相似文献   

12.
The comparison of the degree of differentiation in neutral marker loci and genes coding quantitative traits with standardized and equivalent measures of genetic differentiation (FST and QST, respectively) can provide insights into two important but seldom explored questions in evolutionary genetics: (i) what is the relative importance of random genetic drift and directional natural selection as causes of population differentiation in quantitative traits, and (ii) does the degree of divergence in neutral marker loci predict the degree of divergence in genes coding quantitative traits? Examination of data from 18 independent studies of plants and animals using both standard statistical and meta‐analytical methods revealed a number of interesting points. First, the degree of differentiation in quantitative traits (QST) typically exceeds that observed in neutral marker genes (FST), suggesting a prominent role for natural selection in accounting for patterns of quantitative trait differentiation among contemporary populations. Second, the FSTQST difference is more pronounced for allozyme markers and morphological traits, than for other kinds of molecular markers and life‐history traits. Third, very few studies reveal situations were QST < FST, suggesting that selection pressures, and hence optimal phenotypes, in different populations of the same species are unlikely to be often similar. Fourth, there is a strong correlation between QST and FST indices across the different studies for allozyme (r=0.81), microsatellite (r=0.87) and combined (r=0.75) marker data, suggesting that the degree of genetic differentiation in neutral marker loci is closely predictive of the degree of differentiation in loci coding quantitative traits. However, these interpretations are subject to a number of assumptions about the data and methods used to derive the estimates of population differentiation in the two sets of traits.  相似文献   

13.
Genetic differentiation within and among isolated populations of the arctic‐alpine leaf beetle, Chrysomela lapponica L. (Coleoptera: Chrysomelidae), specialized on either Salix L. (Salicaceae) or Betula L. (Betulaceae) species, was assessed by F‐statistics analysis at seven allozyme loci. Beetles were collected on Salix spp. in lowland Finland (four samples), at mid elevation in the Black Forest in Germany (450 m) and the Massif Central in France (two samples, 930–1 300 m), and at high elevation in the French Alps (2 300 m). Beetles sampled in the Czech Republic (650 m) fed on Betula pubescens Ehrh. Larvae feeding on Salix spp. secreted host‐derived salicylaldehyde as major toxin; those feeding on B. pubescens secreted isobutyrates and 2‐methylbutyrates of mixed plant–insect origin. In all samples, a heterozygote deficit was observed (0.120<FIS<0.568), in particular in populations collected at mid or high elevation (FIS>0.4). The estimated mean level of genetic differentiation among all populations was high (FST = 0.276). Differentiation was highly variable between pairs of populations (FST = 0.093–0.455, all significant) without any correlation with geographic distance. The sample collected in the Czech Republic, from the only population on B. pubescens, was not the most divergent.  相似文献   

14.
Genetic diversity and population structure of 9 populations of Bufo gargarizans with total 111 samples in China were assessed using seven microsatellite loci. The analysed microsatellite markers produced 161 alleles, varied from 9 to 38 alleles each locus. The number of alleles per population per locus ranged from 4.43 to 10.29. Polymorphic information content showed that all seven loci were highly informative (mean = 0.810 ± 0.071). The average observed heterozygosity was less than the expected (0.353 ± 0.051 and 0.828 ± 0.067, respectively). All tested populations gave significant departures from Hardy–Weinberg equilibrium. Genetic differentiation among the populations was considerably high with the overall and pairwise F ST values (mean = 0.160 ± 0.039), and showed fairly high level of inbreeding (indicated by a mean F IS value of 0.504 ± 0.051) and global heterozygote deficit. In comparison to other amphibian studies; however, our results suggested that the level of genetic structuring in B. gargarizans was relatively low in the geographical scale of the study area. Interestingly, the speculated population bottleneck was found to be absent and the analyses provide only weak evidence for a recent contraction in size even though there was severe inbreeding (indicated by the F IS value) in the Chinese toad populations.  相似文献   

15.
Fu R  Dey DK  Holsinger KE 《Biometrics》2011,67(3):1073-1082
Summary An important fraction of recently generated molecular data is dominant markers. They contain substantial information about genetic variation but dominance makes it impossible to apply standard techniques to calculate measures of genetic differentiation, such as F‐statistics. In this article, we propose a new Bayesian beta‐mixture model that more accurately describes the genetic structure from dominant markers and estimates multiple FST s from the sample. The model also has important application for codominant markers and single‐nucleotide polymorphism (SNP) data. The number of FST is assumed unknown beforehand and follows a random distribution. The reversible jump algorithm is used to estimate the unknown number of multiple FST s. We evaluate the performance of three split proposals and the overall performance of the proposed model based on simulated dominant marker data. The model could reliably identify and estimate a spectrum of degrees of genetic differentiation present in multiple loci. The estimates of FST s also incorporate uncertainty about the magnitude of within‐population inbreeding coefficient. We illustrate the method with two examples, one using dominant marker data from a rare orchid and the other using codominant marker data from human populations.  相似文献   

16.
17.
We characterized new variable microsatellites in two congeneric species of hermaphroditic freshwater snails (Drepanotrema depressissimum and D. surinamense), as well as conditions for multiplexing and simultaneously genotyping sets of loci. D. depressissimum had high mean gene diversity (> 0.8) and large number of alleles (= 10.9) per population. Most loci and populations were at Hardy–Weinberg equilibrium. The FST estimates were low among lesser Antilles populations and larger with a Venezuelan population. Far less diversity was found in D. surinamense with mean number of alleles and gene diversity per population of 2.8 and 0.34, respectively. Very few heterozygous individuals were observed. The most likely explanation is a high selfing rate (> 0.825) in this species. Unsurprisingly, the FST estimates among populations were much higher than in D. depressissimum. Cross‐species amplification in three congeneric species was on the whole unsuccessful.  相似文献   

18.
Although adaptive divergence along environmental gradients has repeatedly been demonstrated, the role of post‐glacial colonization routes in determining phenotypic variation along gradients has received little attention. Here, we used a hierarchical QSTFST approach to separate the roles of adaptive and neutral processes in shaping phenotypic variation in moor frog (Rana arvalis) larval life histories along a 1,700 km latitudinal gradient across northern Europe. This species has colonized Scandinavia via two routes with a contact zone in northern Sweden. By using neutral SNP and common garden phenotypic data from 13 populations at two temperatures, we showed that most of the variation along the gradient occurred between the two colonizing lineages. We found little phenotypic divergence within the lineages; however, all phenotypic traits were strongly diverged between the southern and northern colonization routes, with higher growth and development rates and larger body size in the north. The QST estimates between the colonization routes were four times higher than FST, indicating a prominent role for natural selection. QST within the colonization routes did not generally differ from FST, but we found temperature‐dependent adaptive divergence close to the contact zone. These results indicate that lineage‐specific variation can account for much of the adaptive divergence along a latitudinal gradient.  相似文献   

19.
QST, a measure of quantitative genetic differentiation among populations, is an index that can suggest local adaptation if QST for a trait is sufficiently larger than the mean FST of neutral genetic markers. A previous method by Whitlock and Guillaume derived a simulation resampling approach to statistically test for a difference between QST and FST, but that method is limited to balanced data sets with offspring related as half‐sibs through shared fathers. We extend this approach (i) to allow for a model more suitable for some plant populations or breeding designs in which offspring are related through mothers (assuming independent fathers for each offspring; half‐sibs by dam); and (ii) by explicitly allowing for unbalanced data sets. The resulting approach is made available through the R package QstFstComp.  相似文献   

20.
We investigated the mating system and population genetic structure of the invasive haplodiploid palm‐seed borer Coccotrypes dactyliperda in California. We focused on whether these primarily inbreeding beetles have a ‘mixed‐breeding’ system that includes occasional outbreeding, and whether local inbreeding coefficients (FIS) varied with dominant environmental factors. We also analysed the genetic structure of C. dactyliperda populations across local and regional scales. Based on the analysis of genetic variation at seven microsatellite loci in 1034 individual beetles from 59 populations, we found both high rates of inbreeding and plentiful evidence of mixed‐breeding. FIS ranged from ?0.56 to 0.90, the highest variability reported within any animal species. There was a negative correlation between FIS and latitude, suggesting that some latitude‐associated factor affecting mating decisions influenced inbreeding rates. Multiple regressions suggested that precipitation, but not temperature, may be an important correlate. Finally, we found highly significant genetic differentiation among sites, even over short geographic distances (< 1000 m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号