首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The aim of the present study was to estimate the genetic intra-breed variability of Churra tensina and Churra lebrijana endangered breeds and to establish genetic relationships with Churra, Latxa and Merino breeds, as well as Spanish mouflon, by using 28 microsatellite markers, to provide useful information for their conservation. Allele frequencies and heterozygosity revealed high genetic variation in the two endangered breeds despite their small population size. Estimates of inbreeding coefficient (FIS) were significant for all breeds studied, except for Churra lebrijana breed. The highest inbreeding coefficient (FIS = 0.143) was found in the Spanish mouflon. Genetic differentiation tests (FST = 0.121) and assignment of individuals to populations indicated the existence of defined breed populations, and low genetic flow between these breeds. The highest pairwise Reynolds distance (DR) values were observed between Mouflon and the domestic sheep breeds. Considering only domestic sheep breeds, the Churra lebrijana breed showed the highest pairwise DR values. The lowest values were found between Latxa and the other domestic sheep, except for Churra lebrijana. Results of pairwise DR values, as well as phylogenetic tree and bottleneck analysis showed an important genetic isolation of the Churra lebrijana breed from the other Churra types, and genetic signatures of a demographic bottleneck. Finally, structure analysis of populations detected a population subdivision in the Latxa sheep breed. In conclusion, this study presents valuable insight into the existing genetic variability of two Spanish endangered breeds, as well as the first study in Spanish mouflon based on microsatellite analysis. The high degree of variability demonstrated in Churra tensina and Churra lebrijana implies that these populations are rich reservoirs of genetic diversity.  相似文献   

2.
Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat‐tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7–22) and by the high within‐breed expected heterozygosity (average 0.75, range 0.72–0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between‐population component, and by the small fixation index (FST = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within‐breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes, are discussed.  相似文献   

3.
Seven microsatellite DNA loci were optimized to assess genetic differentiation in coastal steelhead (Oncorhynchus mykiss irideus) sampling groups from the lower Klamath River (California, USA). Genetic relationships among three winter‐run and two summer‐run groups were investigated. The different groups displayed high levels of allelic variation. Pairwise FST comparisons and Nei's genetic distance supported low, yet significant, genetic differentiation between summer and winter run‐timings similar to other studies of temporal variation in salmonids. Analysis of molecular variance showed that most of the genetic variation was at the individual level (97.9%), although significant genetic variation existed between timing of runs (2.59%). Additionally, at least one locus in each group was out of Hardy–Weinberg equilibrium due to a deficiency in heterozygotes, and significant FIS values were observed in three temporal collections. Together, these results suggest stock admixture, caused by multiple populations of origin in each sampling group, better known as the Wahlund Effect. These observations are preliminary evidence for isolation by time between Klamath River steelhead runs during distinct periods.  相似文献   

4.
This study assessed the usefulness of geographic and pairwise genetic distances in the characterization of five sheep populations using 15 microsatellite markers. The average F statistics across loci were F IT = 0.523 ± 0.140, F ST = 0.363 ± 0.131, and F IS = 0.263 ± 0.092. The average heterozygosity was 0.716 ± 0.069, polymorphism information content was 0.691 ± 0.070, and effective number of alleles was 3.736 ± 0.998. Sheep populations clustered into group 1 (Hu and Tong breeds) and group 2 (small-tailed Han, Wadi, and Tan breeds). Reynolds’ distance varied from 0.0062 to 0.0499, and the range of gene flow (N m) was 4.8834–40.0726 among the sheep populations. The results showed that the genetic structure of the five populations was not consistent with their genetic distances, and the population genetic divergence was not linearly related to geographic distance as indicated by a Mantel test (P = 0.7936).  相似文献   

5.
Spinner dolphins (Stenella longirostris) exhibit different social behaviours at two regions in the Hawaiian Archipelago: off the high volcanic islands in the SE archipelago they form dynamic groups with ever‐changing membership, but in the low carbonate atolls in the NW archipelago they form long‐term stable groups. To determine whether these environmental and social differences influence population genetic structure, we surveyed spinner dolphins throughout the Hawaiian Archipelago with mtDNA control region sequences and 10 microsatellite loci (n = 505). F‐statistics, Bayesian cluster analyses, and assignment tests revealed population genetic separations between most islands, with less genetic structuring among the NW atolls than among the SE high islands. The populations with the most stable social structure (Midway and Kure Atolls) have the highest gene flow between populations (mtDNA ΦST < 0.001, P = 0.357; microsatellite FST = ?0.001; P = 0.597), and a population with dynamic groups and fluid social structure (the Kona Coast of the island of Hawai’i) has the lowest gene flow (mtDNA 0.042 < ΦST < 0.236, P < 0.05; microsatellite 0.016 < FST < 0.040, P < 0.001). We suggest that gene flow, dispersal, and social structure are influenced by the availability of habitat and resources at each island. Genetic comparisons to a South Pacific location (n = 16) indicate that Hawaiian populations are genetically depauperate and isolated from other Pacific locations (mtDNA 0.216 < FST < 0.643, P < 0.001; microsatellite 0.058 < FST < 0.090, P < 0.001); this isolation may also influence social and genetic structure within Hawai’i. Our results illustrate that genetic and social structure are flexible traits that can vary between even closely‐related populations.  相似文献   

6.
The aim of this study was to investigate the genetic relationships between Taiwan black pigs (TBP) and other pig breeds by means of 15 fluorescent-labeled microsatellite markers. DNA from a total of 299 TBP from eight private farms and 234 purebred pigs representing six breeds and one synthetic line was used. Among the 15 microsatellite loci, polymorphism information content (PIC) values were all above 0.500; the numbers of observed alleles were all greater than the numbers of effective alleles (10.1 vs. 4.3 in averages). But 13 of the 15 microsatellite markers significantly deviated from the Hardy-Weinberg equilibrium (HWE); moreover, 13 of the 15 tested populations also deviated from the HWE. The inbreeding coefficient (FIS) indicated that two TBP populations (TBP-3 and TBP-4) had heterozygote deficiency (P < 0.01). The pair-wise FST, representing the genetic diversity between the two populations, ranged from 0.0332 to 0.3809. Meishan and Taoyuan breeds with black hair were previously considered closely related to TBP; however, the result of genetic relationship refuted this assumption. In conclusion, TBP is more similar to the European than Chinese breeds, and further investigations will need to clarify it more accurately.  相似文献   

7.
This study aims to assess the genetic diversity and population structure of two major zebu dairy breeds (Tharparkar and Rathi) adapted to the arid region of Rajasthan state of India. Various variability estimates indicate the existence of sufficient within-breed genetic diversity. Mean estimates of F-statistics are significantly different from zero: F IS = 0.112 ± 0.029, F IT = 0.169 ± 0.033, F ST = 0.065 ± 0.017. The overall positive value of F IS (0.112) and an F IT value (0.169) that is more than the F ST (0.065) indicate departure from random mating. The drift-based estimates reflect a moderate yet significant level of breed differentiation between the Tharparkar and Rathi breeds. The evaluation of an exact test, showing that allele frequencies across all the loci differed significantly, supports the population differentiation. This is paralleled by the outcome of neighbor-joining clustering based on allele-sharing distance measures. The allocation of a high percentage of individuals (95.7%) to their population of origin and correspondence analysis further substantiates the existence of a cohesive genetic structure in both the breeds.  相似文献   

8.
Using mitochondrial and microsatellite DNA data and a population genetic approach, we tested male‐mediated gene flow in the toad‐headed lizards Phrynocephalus przewalskii. The mitochondrial DNA (ND2 gene), on the one hand, revealed two major lineages and a strong population genetic structure (FST = 0.692; FST = 0.995). The pairwise differences between the two lineages ranged from 2.1% to 6.4% and the geographical division of the two lineages coincided with a mountain chain consisting of the Helan and Yin Mountains, suggesting a historical vicariant pattern. On the other hand, the nuclear microsatellite DNA revealed a significant but small population genetic structure (FST = 0.017; FST = 0.372). The pairwise FST among the nine populations examined with seven microsatellite DNA loci ranged from 0.0062 to 0.0266; the assignment test failed to detect any naturally occurring population clusters. Furthermore, the populations demonstrated a weak isolation by distance and a northeast to southwest clinal variation, rather than a vicariant pattern. A historical vicariant event followed by male‐mediated gene flow appears to be the best explanation for the data. Approximately 2–5 Ma, climatic change may have created an uninhabitable zone along the Helan‐Yin mountain chain and initiated the divergence between the two mitochondrial lineages. With further climatic changes, males were able to disperse across the mountain chain, causing sufficient gene flow that eventually erased the vicariant pattern and drastically reduced the population genetic structure, while females remained philopatric and maintained the mitochondrial DNA (mtDNA) divergence. Although polygyny mating system and female philopatry may partially contribute to the reduced movement of females, other hypotheses, such as female intrasexual aggression, should also be explored.  相似文献   

9.
Genetic variation for six loci in 37 populations of Muscari comosum L. (Liliaeeae) is surveyed. One locus is monomorphic and identical in all the populations. The remaining loci are polymorphic. Although the GOT-1 and GOT-3 loci show a pronounced heterozygote deficit explained by selection acting upon these loci (or on genes linked to them), the remaining loci nearly conform to Hardy-Weinberg proportions. The overall pattern shows a low level of heterozygote deficit (FIS=0.08) explained by the mixed mating system. The organization of genetic variation shows a low level of interpopulation differentiation (FST or GST=0.04). At the same time, autocorrelation analysis shows no pattern of geographical variation. It is concluded that gene flow and selection interact to produce the overall pattern of genetic variation.  相似文献   

10.
We investigated the population genetics of seven maternity roosts of Bechstein’s bats widely distributed across the south of England. Across all of the populations sampled, two mitochondrial DNA microsatellite loci were fixed for single haplotypes. Genetic diversity across eight nuclear microsatellite loci was similar in all seven populations, with a mean He of 0.727. However, six of the populations showed substantial homozygote excess, with F IS estimates greater than zero, indicative of recent inbreeding. Bottleneck tests also implied that six of the populations have experienced recent declines. Genetic differentiation among the populations was low, with a mean intersite F ST estimate of 0.041. There was no significant isolation by distance using allele frequency-based criteria (F ST and genetic distances), however, a weak correlation was found using the allele size-based R ST criterion. Assignment tests were unable to distinguish the seven sampling sites as distinct clusters. Mean intra-roost relatedness (r) was 0.079, indicative of recent inbreeding relative to German populations. All but one of the bats had one or more half or full siblings in its maternity roost. In addition, family relationships of individuals within a colony were significantly commoner than family relationships among four proximal roosts <8 km apart. The results are discussed in the context of conservation requirements for this rare British bat.  相似文献   

11.
A combination of founder effects and local adaptation – the Monopolization hypothesis – has been proposed to reconcile the strong population differentiation of zooplankton dwelling in ponds and lakes and their high dispersal abilities. The role genetic drift plays in genetic differentiation of zooplankton is well documented, but the impact of natural selection has received less attention. Here, we compare differentiation in neutral genetic markers (FST) and in quantitative traits (QST) in six natural populations of the rotifer Brachionus plicatilis to assess the importance of natural selection in explaining genetic differentiation of life‐history traits. Five life‐history traits were measured in four temperature × salinity combinations in common‐garden experiments. Population differentiation for neutral genetic markers – 11 microsatellite loci – was very high (FST = 0.482). Differentiation in life‐history traits was higher in traits related to sexual reproduction than in those related to asexual reproduction. QST values for diapausing egg production (a trait related to sexual reproduction) were higher than their corresponding FST in some pairs of populations. Our results indicate the importance of divergent natural selection in these populations and suggest local adaptation to the unpredictability of B. plicatilis habitats.  相似文献   

12.
We have analyzed five Y-specific microsatellite loci (DYS388, DYS390, DYS391, DYS394, DYS395) in 17 Asian and Pacific populations representing a broad geographical area and different linguistic families, with an emphasis on populations from mainland and insular Southeast Asia. Analysis of gene diversity indicates that several of the studied populations have experienced substantial genetic isolation, and a reduction in male effective sizes (viz. the Northeast Indian populations Nishi, Adi and the Taiwanese aboriginals). The average values of the FST and (ST statistics indicate a high degree of genetic differentiation among these populations at the five Y-specific markers (FST =0.21 and (ST = 0.33, based on individual loci; FST = 0.09 and (ST = 0.36, based on haplotypes), which conform to the expectation of a fourfold smaller effective size of the Y-linked loci compared with the autosomal loci. Dendrogram and principal coordinates analysis, with few exceptions, show a major separation between mainland and insular populations. Among the mainland populations, the Tibeto-Burman speakers from Northeast India cluster in a well-defined group, supported by high bootstrap values. The Southern Chinese, Northern Thai, So, and Cambodian also are integral to this cluster. The other major cluster is rather heterogeneous and includes, among others, the Austronesian-speaking populations. The Samoans of the Pacific, with a distinctive pattern of allelic distributions, stand as an outlier in the tree and PC representations. Although trends of genetic affinities among ethnically and geographically related populations are evident from the Y-specific microsatellite data, microsatellites are not optimal for deciphering complex migratory patterns of human populations, which could possibly be clarified by using additional and more stable genetic markers. Am J Phys Anthropol 110: 1–16, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

13.
Nonamplified (null) alleles are a common feature of microsatellite genotyping and can bias estimates of allele and genotype frequencies, thereby hindering population genetic analyses. The frequency of microsatellite null alleles in diploid populations can be estimated for populations that are in Hardy–Weinberg equilibrium. However, many microsatellite data sets are from nonequilibrium populations, often with known inbreeding coefficients (F) or fixation indices (FIS or FST). Here, we propose a novel null allele estimator that can be used to estimate the null allele frequency and adjust visible allele frequencies in populations for which independent estimates of F, FIS or FST are available. The algorithm is currently available as an Excel macro that can be downloaded at no cost from http://www.microchecker.hull.ac.uk/ and will be incorporated into the software micro ‐checker .  相似文献   

14.
Fine‐scale genetic structure of large mammals is rarely analysed. Yet it is potentially important in estimating gene flow between the now fragmented wildlife habitats and in predicting re‐colonization following local extinction events. In this study, we examined the extent to which warthog populations from five localities in Uganda are genetically structured using both mitochondrial control region sequence and microsatellite allele length variation. Four of the localities (Queen Elizabeth, Murchison Falls, Lake Mburo and Kidepo Valley) are national parks with relatively good wildlife protection practices and the other (Luwero), not a protected area, is characterized by a great deal of hunting. In the total sample, significant genetic differentiation was observed at both the mtDNA locus (FST = 0.68; P < 0.001) and the microsatellite loci (FST = 0.14; P < 0.001). Despite the relatively short geographical distances between populations, significant genetic differentiation was observed in all pair‐wise population comparisons at the two marker sets (mtDNA FST = 0.21–0.79, P < 0.001; microsatellite FST = 0.074–0.191, P < 0.001). Significant heterozygote deficiency was observed at most loci within protected areas while no significant deviation from Hardy–Weinberg expectation was observed in the unprotected Luwero population. We explain these results in terms of: (i) a strong philopatry among warthogs, (ii) a Wahlund effect resulting from the sampling regime and (iii) break down of social structure in the disturbed Luwero population.  相似文献   

15.
The knowledge of the genetic relationship and admixture among neighbouring populations is crucial for conservation efforts. The aim of this study was to analyse the genetic diversity of five Italian sheep breeds (Appenninica, Garfagnina Bianca, Massese, Pomarancina and Zerasca) using a panel of 24 microsatellite markers. Blood samples from 226 individuals belonging to the aforementioned populations were obtained and genotyped. All the investigated breeds showed a significant heterozygote deficiency caused by the high level of inbreeding indicated also by the high level of FIS (0.146). Genetic differentiation between breeds was moderate (FST = 0.05) but significant and the individuals could be assigned to their breeds with an high success rate even if the inter-individual distances showed that few animals clustered separately from the other individuals of the same breed, especially for Pomarancina breed. The genetic distances reflect the historical knowledge of these breeds and some patterns of ancestral and recent gene flow between neighbour populations arise. The clustering analysis detects the presence of six clusters. Massese and Zerasca breeds were grouped together as well as Appenninica and Pomarancina with the latter forming two distinct clusters equally represented. The formation of this last breed is occurred with the absorption of individuals of the Appenninica breed and the gene flow probably continued in these recent years allowing the presence of a population substructure for Pomarancina breed. Such substructure supports the high level of heterozygote deficiency found for this breed despite the relatively high population size. The five populations analysed presented some genetic similarities but a clear uniqueness of the populations has been showed for almost all of them. Special attention to monitor genetic variability and to organize mating plans should be given especially for the three endangered breeds.  相似文献   

16.
Six polymorphic dinucleotide microsatellite loci were isolated and characterized from the White‐chinned Petrel Procellaria aequinoctialis, using a degenerate primer and PCR‐based technique to construct and screen an enriched genomic library. Preliminary data on three populations show heterozygosity levels ranging from 0.22 to 0.67 and allele numbers from three to nine. Preliminary data also suggest genetic distance between these three populations (FST 0.088). Cross‐species amplification of these six microsatellite loci and one further locus were tested in six other procellariiform species of the genus Procellaria, Macronectes, Thalassarche and Diomedea.  相似文献   

17.
We investigated the mating system and population genetic structure of the invasive haplodiploid palm‐seed borer Coccotrypes dactyliperda in California. We focused on whether these primarily inbreeding beetles have a ‘mixed‐breeding’ system that includes occasional outbreeding, and whether local inbreeding coefficients (FIS) varied with dominant environmental factors. We also analysed the genetic structure of C. dactyliperda populations across local and regional scales. Based on the analysis of genetic variation at seven microsatellite loci in 1034 individual beetles from 59 populations, we found both high rates of inbreeding and plentiful evidence of mixed‐breeding. FIS ranged from ?0.56 to 0.90, the highest variability reported within any animal species. There was a negative correlation between FIS and latitude, suggesting that some latitude‐associated factor affecting mating decisions influenced inbreeding rates. Multiple regressions suggested that precipitation, but not temperature, may be an important correlate. Finally, we found highly significant genetic differentiation among sites, even over short geographic distances (< 1000 m).  相似文献   

18.
The mangrove cricket Apteronemobius asahinai is endemic to mangrove forest floors in China, Southeast Asia and the Ryukyu archipelago (Amamiohsima, Okinawa, Miyako, Ishigaki and Iriomote Islands) of Japan. We developed six polymorphic microsatellite markers for the mangrove cricket from genomic DNA libraries enriched for CA, GA, AAG and ATG motifs. The M13‐tailed primer method was used in the process of screening of amplification and polymorphism of primers. A total of 64 specimens from two populations (one from Okinawa and the other from Iriomote) were genotyped for allelic diversity. The average number of alleles per locus was 4.67 and 6.67 for Okinawa and Iriomote populations, respectively. A significant genetic differentiation was detected between the two populations (pairwise FST 0.2404). These polymorphic microsatellite loci will be useful in ongoing studies of the population genetic structure of the mangrove cricket including several populations in the Ryukyu archipelago.  相似文献   

19.
We analysed 16 populations of Dactylorhiza majalis subsp. majalis from northern Poland, simultaneously utilizing both morphological and molecular data. Genetic differentiation was examined using five microsatellite loci, and morphological variation was assessed for 23 characters. At the species level, our results showed a moderate level of genetic diversity (A = 6.00; Ae = 1.86; Ho = 0.387; FIS = 0.139) which varied between the studied populations (A = 2.60–4.20; Ae = 1.68–2.39; Ho = 0.270–0.523; FIS = ?0.064–0.355). A significant excess of homozygotes was detected in five population, while excess of heterozygotes was observed in four populations, but the latter values were statistically insignificant. Moderate, but clear between population genetic differentiation was found (FST = 0.101; p < 0.001). Considering pairwise‐FST and number of migrants among populations, we recognized three population groups (I, II, III), where the first could be further divided into two subgroups (Ia, Ib). These three groups differed with respect to gene flow values (Nm = 0.39–1.12). The highest number of migrants per generation was noticed among populations of subgroup Ia (8.58), indicative of a central panmictic population with free gene flow surrounded by peripatric local populations (Ib) with more limited gene flow. Geographic isolation, habitat fragmentation and limited seed dispersal are inferred to have caused limitations to gene flow among the three indicated population groups. There was a significant correlation between the morphological and genetic distance matrices. A weak but significant pattern of isolation by distance was also observed (r = 0.351; p < 0.05).  相似文献   

20.
《Small Ruminant Research》2008,79(1-3):32-40
Population structure and genetic diversity in the Portuguese native breeds of sheep Algarvia (AL), Badana (BA), Galega Bragançana (GB), Galega Mirandesa (GM), Mondegueira (MO) and Churra da Terra Quente (TQ), as well as the exotic Assaf (AS), were analyzed by typing 25 microsatellite markers in 210 individuals. The markers used exhibited high levels of polymorphism, with means for total and effective number of alleles per locus of 13.0 and 4.2, respectively, and an expected heterozygosity of 0.72 across loci. The mean number of alleles per locus and expected heterozygosity were highest in GM and GB, and lowest in AS. Exclusive alleles were found in 10 of the 25 markers analysed, mostly in the AS breed. The proportion of loci which were not in Hardy–Weinberg equilibrium in each breed ranged between 0.12 (GB) and 0.40 (AL and GM), mostly due to a lower than expected number of heterozygotes in those loci. All breeds showed a significant deficit in heterozygosity, which was more pronounced in GM (FIS = 0.113) and BA (FIS = 0.103), suggesting that inbreeding might be a major concern in these breeds. The analysis of relationships among breeds, assessed by different methods, indicates that AS and AL are the more distanced breeds relative to the others, while the closest relationships were observed between TQ with MO and GM with GB. The estimated FST indicates that only 0.049 of the total genetic variability can be attributed to differences among breeds, and this ratio dropped to 0.029 when only the native breeds were considered. The analysis of individual distances based on allele-sharing indicates that only AS and AL had a tendency for animals of the same breed to cluster together, while for the other breeds there was overlapping among breeds. The results of this study confirm that native breeds of sheep represent an important reservoir of genetic diversity, even though the level of differentiation among closely located breeds tends to be rather small. For several of the breeds analyzed, the levels of inbreeding currently observed cause some apprehension, and recommend the establishment of appropriate conservation strategies, aimed at minimizing inbreeding to avoid further losses of genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号