首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Heat shock proteins (Hsps) have been reported to protect cells, tissues, and organisms against damage from a wide variety of stressful stimuli. Whether they protect against deoxyribonucleic acid (DNA) damage in individuals exposed to environmental stresses and chemical carcinogens is unknown. In the study, we investigated the association between Hsp70 levels (the most abundant mammalian Hsp) and genotoxic damage in lymphocytes of workers exposed to coke-oven emission using Western dot blot and 2 DNA damage assays, the comet assay and the micronucleus test. The data show that there is a significant increase in Hsp70 levels, DNA damage score, and micronucleus rates in lymphocytes of workers exposed to coke-oven emission as compared with the control subjects. Furthermore, there was a significant negative correlation of Hsp70 levels with DNA damage scores in the comet assay (r = -0.663, P < 0.01) and with micronucleus rates (r = -0.461, P < 0.01) in the exposed group. In the control group, there was also a light negative correlation between Hsp70 with DNA damage and micronuclei rate (r = -0.236 and r = 0.242, respectively), but it did not reach a statistically significant level (P > 0.05). Our results show that individuals who had high Hsp70 levels generally showed lower genotoxic damage than others. These results suggest a role of Hsp70 in the protection of DNA from genotoxic damage induced by coke-oven emission.  相似文献   

2.
The suitability of comet assay to identify DNA damage induced by neutrons of varying energy was tested. For this purpose, monoenergetic neutrons from Hiroshima University Radiobiological Research Accelerator (HIRRAC) were used to induce DNA damage in irradiated human peripheral blood lymphocytes. The level of damage was computed as tail moment for different doses (0.125-1 Gy) and compared with the effects resulting from irradiation with (60)Co gamma. The neutron-irradiated cells exhibited longer comet tails consisting of tiny pieces of broken DNA in contrast to the streaking tails generated by (60)Co gamma. The peak biological effectiveness occurred at 0.37 and 0.57 MeV; a further increase or decrease in neutron energy led to a reduced RBE value. The RBE values, as measured by the comet assay, were 6.3, 5.4, 4.7, 4.3, 2.6, and 1.7 for 0.37, 0.57, 0.79, 0.186, 1, and 2.3 MeV neutrons. The lower RBE value obtained by the comet assay when compared to that for other biological end points is discussed. This study reports the usefulness of the alkaline comet assay for identifying DNA damage induced by neutrons of the same radiation weighting factor. The comet assay is a potential tool for use in neutron therapy, as well as a method for the rapid screening of samples from individuals accidentally exposed to radiation.  相似文献   

3.
Blood cultures from human volunteers were exposed to an acute 1.9 GHz pulse-modulated radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) ranged from 0 to 10 W/kg, and the temperature within the cultures during the exposure was maintained at 37.0 +/- 0.5 degrees C. DNA damage was quantified in leukocytes by the alkaline comet assay and the cytokinesis-block micronucleus assay. When compared to the sham-treated controls, no evidence of increased primary DNA damage was detected by any parameter for any of the RF-field-exposed cultures when evaluated using the alkaline comet assay. Furthermore, no significant differences in the frequency of binucleated cells, incidence of micronucleated binucleated cells, or total incidence of micronuclei were detected between any of the RF-field-exposed cultures and the sham-treated control at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz pulse-modulated RF-field exposure causes DNA damage in cultured human leukocytes.  相似文献   

4.
Previous studies have revealed that organophosphate pesticides (OPs) are primarily metabolized by xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticides-exposed workers. Present study was designed to determine the influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to OPs. We examined 268 subjects including 134 workers occupationally exposed to OPs and an equal number of normal healthy controls. The DNA damage was evaluated using alkaline comet assay and genotyping was done using individual polymerase chain reaction (PCR) or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Acetylcholinesterase and paraoxonase activity were found to be significantly lowered in workers as compared to control subjects which were analyzed as biomarkers of toxicity due to OPs exposure (p<0.001). Workers showed significantly higher DNA tail moment (TM) compared to control subjects (14.32±2.17 vs. 6.24±1.37 tail % DNA, p<0.001). GSTM1 null genotype was found to influence DNA TM in workers (p<0.05). DNA TM was also found to be increased with concomitant presence of NAT2 slow acetylation and CYP2C9*3/*3 or GSTM1 null genotypes (p<0.05). DNA TM was found increased in NAT2 slow acetylators with mild and heavy smoking habits in control subjects and workers, respectively (p<0.05). The results of this study suggest that GSTM1 null genotypes, and an association of NAT2 slow acetylation genotypes with CYP2C9*3/*3 or GSTM1 null genotypes may modulate DNA damage in workers occupationally exposed to OPs.  相似文献   

5.
DNA sensitivity in peripheral blood leukocytes of radar-facility workers daily exposed to microwave radiation and an unexposed control subjects was investigated. The study was carried out on clinically healthy male workers employed on radar equipment and antenna system service within a microwave field of 10 μW/cm2–20 mW/cm2 with frequency range of 1,250–1,350 MHz. The control group consisted of subjects of similar age. The evaluation of DNA damage and sensitivity was performed using alkaline comet assay and chromatid breakage assay (bleomycin-sensitivity assay). The levels of DNA damage in exposed subjects determined by alkaline comet assay were increased compared to control group and showed inter-individual variations. After short exposure of cultured lymphocytes to bleomycin cells of subjects occupationally exposed to microwave (MW) radiation responded with high numbers of chromatid breaks. Almost three times higher number of bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes were determined in comparison with control group. The difference in break per cell (b/c) values recorded between smokers and non-smokers was statistically significant in the exposed group. Regression analyses showed significant positive correlation between the results obtained with two different methods. Considering the correlation coefficients, the number of metaphase with breaks was a better predictor of the comet assay parameters compared to b/c ratio. The best correlation was found between tail moment and number of chromatid with breaks. Our results indicate that MW radiation represents a potential DNA-damaging hazard using the alkaline comet assay and chromatid breakage assay as sensitive biomarkers of individual cancer susceptibility.  相似文献   

6.
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.  相似文献   

7.
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.  相似文献   

8.
GSTM1, T1 and P1 are important enzymes of glutathione S-transferases (GSTs), involved in the metabolism of many endogenous and exogenous compounds. Individual genetic variation in these metabolizing enzymes may influence the metabolism of their substrates. The present study was designed to determine the genotoxic effects using DNA damage and its association with GSTM1, GSTT1, and GSTP1 (Ile105Val) genetic polymorphisms in workers occupationally exposed to organophosphate pesticides (OPs). We examined 230 subjects including 115 workers occupationally exposed to OPs and an equal number of normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using individual PCR or PCR-RFLP. Significantly higher DNA tail moment (TM) was observed in workers as compared to control subjects (14.41 ± 2.25 vs. 6.36 ± 1.41 tail % DNA, p<0.001). The results revealed significantly higher DNA TM in workers with GSTM1 null genotype than those with GSTM1 positive (15.18 vs. 14.15 tail % DNA, p=0.03). A significantly higher DNA TM was also observed in workers with homozygous Ile-Ile GSTP1 genotype than heterozygous (Ile-Val) and mutant (Val-Val) GSTP1 genotype (p=0.02). In conclusion, the results show that null deletion of GSTM1 and homozygote wild GSTP1 genotype could be related to inter-individual differences in DNA damage arises from the gene-environment interactions in workers occupationally exposed to OPs.  相似文献   

9.
The comet assay is one of the most versatile and popular tools for evaluating DNA damage. Its sensitivity to low dose radiation has been tested in vitro, but there are limited data showing its application and sensitivity in chronic exposure situations. The influence of the internal contamination caused by the Chernobyl accident on the level of DNA damage was evaluated by the comet assay on lymphocytes of 56 Ukrainian children. The study was performed during 2003 on children with demonstrable 137Cs internal contamination caused by food consumption. The children were selected for the study immediately after a 137Cs whole body counter measurement of internal contamination. The minimal detectable amount of 137Cs was 75 Bq. The control group included 29 children without detectable internal contamination, while in the exposed group 27 children with measured activity between 80 and 4037 Bq and committed effective dose between 54 and 3155 microSv were included. Blood samples were taken by a finger prick. The alkaline version of the comet assay was used, in combination with silver stained comets and arbitrary units (AU), for comet measurement. Factors such as disease, medical treatment, surface contamination of children's living location, etc., were considered in the study. Non-significant differences (p > 0.05) in DNA damage in control (9.0 +/- 5.7 AU) versus exposed (8.5 +/- 4.8 AU) groups were found. These results suggest that low doses of 137Cs internal contamination are not able to produce detectable DNA damage under the conditions used for the comet assay in this study. Further studies considering effects of high exposure should be performed on chronically exposed people using this assay.  相似文献   

10.
Ionizing radiation is known to produce a variety of cellular and sub cellular damage in both prokaryotic and eukaryotic cells. Present studies were undertaken to assess gamma ray induced DNA damage in different organs of the chick embryo using alkaline comet assay and peripheral blood micronucleus test. Further the suitability of chick embryo, as an alternative model for genotoxicity evaluation of environmental agents was assessed. Fertilized eggs of Rhode island red strain were exposed to 0.5, 1 and 2 Gy of gamma rays delivered at a dose rate of 0.316 Gy/min using a 60Co teletherapy machine. Peripheral blood smears were prepared from 8- to 11-day-old chick embryos for micronucleus test. Alkaline comet assay was performed on 11-day-old chick embryos in different organs such as the heart, liver, lung, blood, bone marrow, brain and kidney.Analysis of the data revealed a significant increase in the frequency of micronucleated polychromatic erythrocytes, micronucleated normochromatic erythrocytes and total micronucleated erythrocytes in the peripheral blood of gamma irradiated chick embryos at all the doses tested as compared to the respective controls. The polychromatic to normochromatic erythrocytes ratio which is an indicator of proliferation rate of hematopoetic tissue, decreased in the irradiated groups as compared to the controls. Data obtained from comet assay, clearly demonstrated a significant increase in DNA strand breaks in all the organs of irradiated chick embryos as compared to the respective controls. However, maximum damage was observed in the heart tissue on all the doses tested, followed by kidney, brain, lung, blood and liver. The lowest damage was observed in the bone marrow tissue. Both micronucleus test and comet assay were found to be suitable biomarkers for the evaluation of genotoxicity of gamma radiation in the chick embryo.  相似文献   

11.
Ionising radiation has the ability to induce DNA damage. While the effects of high doses of radiation of short duration have been well documented, the biological effects of long-term exposure to low doses are poorly understood. This study evaluated the clastogenic effects of low dose ionising radiation on a population of bats (Chiroptera) residing in an abandoned monazite mine. Bats were sampled from two chambers in the mine, where external radiation levels measured around 20 microSv/h (low dose) and 100 microSv/h (higher dose), respectively. A control group of bats was sampled from a cave with no detectable radiation above normal background levels. The micronucleus assay was used to evaluate residual radiation damage in binucleated lymphocytes and showed that the micronucleus frequency per 500 binucleated lymphocytes was increased in the lower radiation-exposed group (17.7) and the higher radiation-exposed group (27.1) compared to the control group (5.3). This study also showed that bats exposed to radiation presented with an increased number of micronuclei per one thousand reticulocytes (2.88 and 10.75 in the lower and high radiation-exposed groups respectively) when compared to the control group (1.7). The single-cell gel electrophoresis (comet) assay was used as a means of evaluating clastogenecity of exposure to radiation at the level of individual cells. Bats exposed to radiation demonstrated increased DNA damage as shown by the length of the comet tails and showed an increase in cumulative damage. The results of the micronucleus and the comet assays indicated not only a statistically significant difference between test and control groups (P<0.001), but also a dose-dependent increase in DNA damage (P<0.001). These assays may thus be useful in evaluating the potential clastogenecity of exposure to continuous low doses of ionising radiation.  相似文献   

12.
The comet assay is one of the most versatile and popular tools for evaluating DNA damage. Its sensitivity to low dose radiation has been tested in vitro, but there are limited data showing its application and sensitivity in chronic exposure situations. The influence of the internal contamination caused by the Chernobyl accident on the level of DNA damage was evaluated by the comet assay on lymphocytes of 56 Ukrainian children. The study was performed during 2003 on children with demonstrable 137Cs internal contamination caused by food consumption. The children were selected for the study immediately after a 137Cs whole body counter measurement of internal contamination. The minimal detectable amount of 137Cs was 75 Bq. The control group included 29 children without detectable internal contamination, while in the exposed group 27 children with measured activity between 80 and 4037 Bq and committed effective dose between 54 and 3155 μSv were included. Blood samples were taken by a finger prick. The alkaline version of the comet assay was used, in combination with silver stained comets and arbitrary units (AU), for comet measurement. Factors such as disease, medical treatment, surface contamination of children's living location, etc., were considered in the study. Non-significant differences (p > 0.05) in DNA damage in control (9.0 ± 5.7 AU) versus exposed (8.5 ± 4.8 AU) groups were found. These results suggest that low doses of 137Cs internal contamination are not able to produce detectable DNA damage under the conditions used for the comet assay in this study. Further studies considering effects of high exposure should be performed on chronically exposed people using this assay.  相似文献   

13.
Aoyama K  Iwahori K  Miyata N 《Mutation research》2003,538(1-2):155-162
Alkaline single-cell gel electrophoresis (comet assay) enables sensitive detection of DNA damage in eukaryotic cells induced by genotoxic agents. We performed a comet assay of unicellular green alga Euglena gracilis that was exposed to genotoxic chemicals, 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), benzo[a]pyrene (BAP), mitomycin C (MMC) and actinomycin D (AMD). Tail length and tail moment in migrated DNA were measured as indications of DNA damage. MNNG and BAP were found to cause concentration-dependent increases in DNA damage. The responses were more sensitive than those of human lymphocytes under the same treatment conditions. MMC and AMD showed no positive response, as reported elsewhere. The comet assays performed at specified times after treatment revealed that the DNA damaged by MNNG and gamma-ray irradiation was repaired during the initial 1h. The results clearly show that the comet assay is useful for evaluating chemically-induced DNA damage and repair in E. gracilis. Given the ease of culturing and handling E. gracilis as well as its sensitivity, the comet assay of this alga would undoubtedly prove to be a useful tool for testing the genotoxicity of chemicals and monitoring of environmental pollution.  相似文献   

14.
Several recent studies have reported that whole-body exposure of rodents to power frequency magnetic fields (MFs) can result in DNA single- and double-strand breaks in the brains of these animals. The current study was undertaken to investigate whether an acute 2h exposure of a 1 mT, 60 Hz MF could elicit DNA damage, and subsequently apoptosis, in the brains of immature (10-day-old) mice. DNA damage was quantitated at 0, 2, 4, and 24h after exposure using the alkaline comet assay. Apoptosis was quantitated in the external granule cell layer (EGCL) of the immature mouse cerebellum at 0 and 24h after exposure to MF by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. Four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. While increased DNA damage was detected by tail ratio at 2h after MF exposure, no supporting evidence of increased DNA damage was detected by the other parameters. In addition, no similar differences were observed using these parameters at any of the other post-exposure times. No increase in apoptosis was observed in the EGCL of MF-exposed mice, when compared to sham mice. Taken together, these results do not support the hypothesis that acute MF exposure causes DNA damage in the cerebellums of immature mice.  相似文献   

15.
Petroleum refinery workers are potentially exposed to a wide range of petroleum-derived hydrocarbons and chemical substances used in the manufacturing of petroleum derivatives. Benzene, toluene and xylene (BTX) are produced by distillation in the aromatics units and used as raw materials for petrol and petrochemical products. The aim of this study was to evaluate the genotoxic effects of occupational exposure to BTX in a petroleum refinery in the North of Portugal. The exposed group consisted of 48 workers from the aromatics plant and the control group consisted of 30 persons matched for various confounding factors. Chromosome aberrations (CA), micronuclei (MN), and DNA damage (evaluated by means of the comet assay) were measured in peripheral blood leukocytes. t,t-Muconic acid (t,t-MA), hippuric acid (HA) and methylhippuric acid (MHA) concentrations were measured in urine samples collected at the end of the workshift. The results suggest that occupational exposure to toluene and xylene is very low. A statistically significant increase in t,t-MA excretion was found in the exposed group although t,t-MA levels were found to be lower than the biological exposure index (BEI). Significant increases were found for CA, MN and comet tail length (TL) in the exposed group (p<0.05). No association was found between tobacco smoking and the effect biomarkers analysed. A positive association was found between CA and MN with age in the control group (p<0.05).  相似文献   

16.
Hexavalent chromium (Cr[VI]) is a genotoxic carcinogen that has been associated with an increased risk of nasal and respiratory tract cancers following occupational exposure. Although the precise mechanism(s) remain to be elucidated, there is evidence for a role of oxidative DNA damage in the genotoxicity of Cr(VI). In the current study, human white blood cells were treated in vitro with non-cytotoxic concentrations of sodium dichromate (1-100 microM) for 1 h. Analysis by immunocytochemistry indicated the presence of elevated levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine at concentrations of sodium dichromate greater than 10 microM. In contrast, the lowest concentration of dichromate that resulted in a statistically significant increase in levels of formamidopyrimidine DNA glycosylase (FPG)-dependent DNA strand breaks was 100 nM (p<0.05). In addition, levels of both control and dichromate-induced FPG-dependent strand breaks from blood samples taken from the same individuals over 10 months proved remarkably reproducible in the individuals studied. The coefficients of variation over three different times of the year in control and dichromate-induced oxidative DNA damage for the four individuals were 54, 1, 37 and 4, and 45, 6, 21 and 18%, respectively. In summary, these results indicate that physiologically relevant, nanomolar concentrations of sodium dichromate cause DNA base oxidation in human white blood cells in vitro as assessed by the FPG-modified comet assay. Furthermore, comet assay data from an individual are reproducible over an extended period. This consistency is sufficient to suggest that the modified comet assay might prove to be a useful and sensitive biomonitoring tool for individuals occupationally exposed to hexavalent chromium.  相似文献   

17.
除草剂乐草隆对红鲫的遗传毒性研究   总被引:15,自引:2,他引:13  
目的 探讨除草剂乐草隆对红鲫的遗传毒性。方法 用单细胞凝胶电泳检测不同浓度的乐草隆对红鲫外周血淋巴细胞DNA的损伤作用。结果 乐草隆致毒红鲫的淋巴细胞DNA的迁移度均较阴性对照组高 (P<0 0 5 ) ,在一定浓度范围内 (0~ 7 0 0mg L)DNA损伤程度与浓度呈正相关 (r=0 982 ,P <0 0 1)。在 12h、2 4h、4 8h、96h、10d实验组DNA损伤程度均有增强的趋势。结论 乐草隆对红鲫具有一定的遗传毒性  相似文献   

18.
The induction of DNA damage by four known promutagens (cyclophosphamide (CP), benzo(a)pyrene (BP), dimethylbenz(a)anthracene and 2-acetylaminofluorene (2AAF) was investigated on Hep G2 using the alkaline single cell electroporesis (SCGE) test, most often referred as the "comet assay". After a 3-day incubation, lysed cells embedded in agarose were electrophoresed under alkaline conditions, dyed with a SYBRgold fluorogen and analysed by the Komet software. Among the comet parameters provided by the image analysis program, statistical analysis did not identify any in particular that could best represent the DNA damages. All promutagens, when compared with the control, caused a statistically significant increase in DNA migration as determined by different parameters such as Olive tail moment, tail extent moment, tail/head or tail length. The data demonstrated the ability and the sensitivity of the comet assay when performed on Hep G2 in the detection of DNA damage induced by promutagens, and its suitability in mutagenicity testing in in vitro short-term assays.  相似文献   

19.
The objective of the present study was to evaluate DNA damage level in blood leukocytes from diabetic and non-diabetic female Wistar rats exposed to air or to cigarette smoke, and to correlate the findings with levels of DNA damage detected in blood leukocyte samples from their fetuses. A total of 20 rats were distributed into four experimental groups: non-diabetic (control; G1) and diabetic exposed to filtered air (G2); non-diabetic (G3) and diabetic (G4) exposed to cigarette smoke. Rats placed into whole-body exposure chambers were exposed for 30min to filtered air (control) or to tobacco smoke generated from 10 cigarettes, twice a day, for 2 months. Diabetes was induced by a pancreatic beta-cytotoxic agent, streptozotocin (40mg/kgb.w.). At day 21 of pregnancy, each rat was anesthetized and humanely killed to obtain maternal and fetal blood samples for genotoxicity analysis using the alkaline comet assay. G2, G3 and G4 dams presented higher DNA damage values in tail moment and tail length as compared to G1 group. There was a significant positive correlation between DNA damage levels in blood leukocyte samples from G2 and G3 groups (tail moment); G3 and G4 groups (tail length) and G3 group (tail intensity) and their fetuses. Thus, this study showed the association of severe diabetes and tobacco cigarette smoke exposure did not exacerbate levels of maternal and fetal DNA damages related with only diabetes or cigarette smoke exposure. Based on the results obtained and taking into account other published data, maternal diabetes requires rigid clinical control and public health and education campaigns should be increased to encourage individuals, especially pregnant women, to stop smoking.  相似文献   

20.
Zhang M  Li X  Lu Y  Fang X  Chen Q  Xing M  He J 《Mutation research》2011,720(1-2):62-66
The aim of the present study was to evaluate the genotoxic effects induced by native and active bentonite particles (BPs) on human B lymphoblast cells using comet assay and cytokinesis-block micronucleus (CBMN) assay in vitro. The cells were exposed to BPs at the concentrations of 30, 60, 120 and 240μg/ml for 24, 48 and 72h, respectively. The quartz contents of native and active BPs were 6.80±0.20 and 6.50±0.10%, respectively. Gypsum and DQ-12 quartz served as negative and positive controls. The results of comet assay showed that DNA damage induced by native and active BPs was significantly higher than that induced by gypsum control (P<0.05 or <0.01), and increased with exposure concentration and duration. When the cells were exposed to BPs at the doses of 120 and 240μg/ml for 72h, DNA damage induced by active BPs and native BPs was significantly higher than that induced by DQ-12 quartz (P<0.01), and DNA damage induced by active BPs enhanced significantly, as compared with native BPs (P<0.01). The results of CBMN assay demonstrated that both native BPs and active BPs could induce significant micronuclei, as compared with gypsum control (P<0.05 or <0.01). However, there was no significant difference of micronucleus frequency (MNF) among native BPs, active BPs and DQ-12 quartz. The water-soluble fractions from two kinds of BPs did not induce significant DNA damage and micronuclei. These findings indicated that the genotoxicity induced by active BPs and native BPs could be detected in comet assay and CBMN assay in vitro, the insoluble particle fractions from BPs may play a main role in the genotoxic effects induced by BPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号