首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孙文佳  俞霄  曹梦洁  林隆慧 《生态学报》2012,32(18):5924-5929
研究了赤链蛇(Dinodon rufozonatum)在孵化过程中卵的生长、孵化期、胚胎代谢和孵出幼体行为表现的热依赖性。结果显示:孵化温度对孵化期、卵增重、孵化过程中消耗的总能量和孵出幼体的运动表现有显著影响,但不影响胚胎代谢率、孵化成功率和幼体吐信频次。孵化期随着孵化温度的升高而缩短,孵化过程中,24℃终末卵重和胚胎代谢率显著大于30℃,而27℃与其他两个温度没有差异;27℃孵出幼体游速较24℃快,30℃孵出幼体与其他两个温度孵出幼体的游速无显著差异。上述结果显示:24—30℃是赤链蛇适合的孵化温度范围,与赤链蛇所处的生境温度相近。  相似文献   

2.
孵化水热环境对渔异色蛇孵化卵和孵出幼体的影响   总被引:10,自引:6,他引:4  
渔异色蛇卵孵化时能从环境中吸收水分导致质量增加,卵质量的增加与初始卵质量和孵化基质湿度有关。较大幅度的孵化基质湿度变化对孵化期、孵化成功率、胚胎动用孵内物质和能量、孵出幼体的性比、大小和质量无显著影响。孵化期随温度升高而缩短,并显示极强的窝间差异。温度对孵出幼体的性别无影响,但显著影响孵化成功率、胚胎对卵内物质和能量的动用、幼体的大小和质量、躯干和剩余卵黄的质量。孵出幼体总长的两性差异不显著,但雌体体长大于雄体而尾长小于雄体。32℃不适于孵化渔异色蛇卵,该温度下孵出的幼体躯干发育不良,剩余孵黄较多,尾部均呈畸形,孵化过程中能量转化率较低。24℃和26℃中孵出的幼体躯干发育良好,孵化过程中能量转化率较高,各项被测定的幼体特征指标均极相似。  相似文献   

3.
We incubated eggs of Calotes versicolor at four constant temperatures ranging from 24 degrees C to 33 degrees C to assess the effects of incubation temperature on hatching success, embryonic use of energy, and hatchling phenotypes that are likely to affect fitness. All viable eggs increased in mass throughout incubation due to absorption of water, and mass gain during incubation was dependent on initial egg mass and incubation temperature. The average duration of incubation at 24 degrees C, 27 degrees C, 30 degrees C, and 33 degrees C was 82.1 days, 60.5 days, 51.4 days, and 50.3 days, respectively. Incubation temperature affected hatching success, energy expenditure for embryonic development, and several hatchling traits examined, but it did not affect the sex ratio of hatchlings. Hatching success was lowest (3.4%) at 33 degrees C, but a higher incidence of deformed embryos was recorded from eggs incubated at this temperature compared to eggs incubated at lower temperatures. Most of the deformed embryos died at the last stage of incubation. Energy expenditure for embryonic development was, however, higher in eggs incubated at 33 degrees C than those similarly incubated at lower temperatures. A prolonged exposure of eggs of C. versicolor at 33 degrees C appears to have an adverse and presumably lethal effect on embryonic development. Hatching success at 24 degrees C was also low (43.3%), but hatchlings incubated at 24 degrees C did not differ in any of the examined traits from those incubated at two intermediate temperatures (27 degrees C and 30 degrees C). Hatchlings incubated at 33 degrees C were smaller (snout-vent length, SVL) than those incubated at lower incubation temperatures and had larger mass residuals (from the regression on SVL) as well as shorter head length, hindlimb length, tympanum diameter, and eye diameter relative to SVL. Hatchlings from 33 degrees C had significantly lower scores on the first axis of a principal component analysis representing mainly SVL-free head size (length and width) and fore- and hindlimb lengths, but they had significantly higher scores on the second axis mainly representing SVL-free wet body mass. Variation in the level of fluctuating asymmetry in eye diameter associated with incubation temperatures was quite high, and it was clearly consistent with the prediction that environmental stress associated with the highest incubation temperatures might produce the highest level of asymmetry. Newly emerged hatchlings exhibited sexual dimorphism in head width, with male hatchlings having larger head width than females.  相似文献   

4.
孵化温度所驱动的爬行动物的表型变异是生理生态学研究的热点。本研究以王锦蛇(Elaphe carinata)为实验动物,检验了24℃和28℃孵化温度对王锦蛇胚胎代谢速率、孵化过程中的卵重量、孵出幼体代谢和行为的影响。研究结果显示:卵重和胚胎的呼吸代谢均与孵化时间呈正相关;28℃下胚胎代谢速率大于24℃;幼蛇孵出15 d内体重随着生长时间的延长而减小,24℃孵出幼体的代谢速率大于28℃孵出幼体,两温度下孵出幼体的呼吸代谢速率和生长时间无显著关系;28℃孵出幼体的疾游速和吐信频次均大于24℃;两孵化温度孵出幼体的选择体温无显著差异,但在消耗完体内的剩余卵黄后28℃孵出幼体有60%的个体摄食,而24℃孵出幼体无摄食个体。总体而言,王锦蛇28℃孵出幼体适合度优于24℃孵出幼体。  相似文献   

5.
温度、湿度对黄喉拟水龟胚胎发育的影响   总被引:1,自引:0,他引:1  
在9种不同温湿度组合条件(25 ℃和-12 kPa、29 ℃和-12 kPa、33 ℃和-12 kPa、25 ℃和-150 kPa、29 ℃和-150 kPa、33 ℃和-150 kPa、25 ℃和-300 kPa、29 ℃和-300 kPa、33 ℃和-300 kPa)下孵化了黄喉拟水龟卵,研究了温度对黄喉拟水龟卵孵出幼体特征的影响及其与湿度的相互作用对孵化期、孵化成功率和孵出幼体特征的影响.结果表明:黄喉拟水龟卵的初始质量、孵化温度、湿度及温湿度相互作用均显著影响孵化过程中卵质量的增加;同一温度下,孵化湿度越高,卵的终末质量越大;而孵化卵的终末质量与孵化温度并不呈线性相关;孵化温度显著影响黄喉拟水龟卵的孵化期,温度越高、孵化期越短,孵化湿度及温湿度相互作用对孵化期的影响不显著;孵化温度和湿度显著影响孵化成功率和卵壳龟裂率;25 ℃和33 ℃处理组孵出幼体中发现畸形个体,而29 ℃处理组中未发现;孵化温度显著影响孵出幼体的质量、背甲长和宽、腹甲长和宽、体高和尾长;孵化湿度只对孵出幼体的背甲长有影响,对其他被检测的幼体特征无显著影响;温湿度的相互作用对所有被检测的孵出幼体特征无叠加或减弱的显著影响.  相似文献   

6.
中国石龙子雌体繁殖特征和卵孵化的地理变异   总被引:12,自引:0,他引:12  
浙江丽水和广东韶关中国石龙子均年产单窝卵,窝卵数,窝卵重和卵重均与雌体SVL呈正相关,雌体头部形态,繁殖特征,产卵起始时间和孵孵化的热依赖性等有显著的地理变异;韶关石龙子产卵起始时间为5月中旬,比丽水经子约早两周,韶关石龙子窝卵数较大,卵较小,窝卵重与丽水石龙子无显著差异。韶关石龙子特定SVL的窝卵数比丽水石龙子多2.8枚卵,中国经子卵数量和大小之间有种群间权衡,无种数内权衡,同一种群内卵数量与卵大小无关,孵化温度影响石龙子孵出幼体的一些特征,24℃孵出细幼体比32℃孵出幼体大,躯干发育好,剩余卵黄少,韶关24℃孵出幼体的体重,躯干干重小于丽水幼体,韶关32℃孵出幼体的SVL小于丽水幼体,剩余卵黄大于丽水幼体,表明适宜卵孵化温度范围有地理变异。丽水石龙子卵对极端高温和低温的耐受性较强,适宜卵孵化温度范围较宽。  相似文献   

7.
Evolutionary origins of viviparity among the squamate reptiles are strongly associated with cold climates, and cold environmental temperatures are thought to be an important selective force behind the transition from egg-laying to live-bearing. In particular, the low nest temperatures associated with cold climate habitats are thought to be detrimental to the developing embryos or hatchlings of oviparous squamates, providing a selective advantage for the retention of developing eggs in utero, where the mother can provide warmer incubation temperatures for her eggs (by actively thermoregulating) than they would experience in a nest. However, it is not entirely clear what detrimental effects cold incubation temperatures may have on eggs and hatchlings, and what role these effects may play in favouring the evolution of viviparity. Previous workers have suggested that viviparity may be favoured in cold climates because cold incubation temperatures slow cmbryogenesis and delay hatching of the eggs, or because cold nest temperatures are lethal to developing eggs and reduce hatching success. However, incubation temperature has also been shown to have other, potentially long-term, effects on hatchling phcnotypcs, suggesting that cold climates may favour viviparity because cold incubation temperatures produce offspring of poor quality or low fitness. We experimentally incubated eggs of the oviparous phrynosomatid lizard, Sceloporus virgatus, at temperatures simulating nests in a warm (low elevation) habitat, as is typical for this species, and nests in a colder (high elevation) habitat, to determine the effects of cold incubation temperatures on embryonic development and hatchling phenotypes. Incubation at cold nest temperatures slowed embryonic development and reduced hatching success, but also affected many aspects of the hatchlings' phenotypes. Overall, the directions of these plastic responses indicated that cold-incubated hatchlings did indeed exhibit poorer quality phenotypes; they were smaller at hatching (in body length) and at 20 days of age (in length and mass), grew more slowly (in length and mass), had lower survival rates, and showed greater fluctuating asymmetry than their conspecifics that were incubated at warmer temperatures. Our findings suggest that cold nest temperatures are detrimental to S. virgatus, by delaying hatching of their eggs, reducing their hatching success, and by producing poorer quality offspring. These negative effects would likely provide a selective advantage for any mechanism through which these lizards could maintain warmer incubation temperatures in cold climates, including the evolution of prolonged egg retention and viviparity.  相似文献   

8.
郝琦蕾  刘红霞  计翔 《动物学报》2006,52(6):1049-1057
作者以丽斑麻蜥(Eremias argus)为模型动物研究恒定和波动孵化温度对孵化成功率和孵出幼体表型的影响。卵在四个恒定[24 ,27 ,30 and 33 (±0·3)℃]、一个波动温度下孵化。不同温度处理下的孵化成功率相同,但孵出幼体表型不同。孵化期随孵化温度升高呈指数式缩短;在相同平均温度下,波动温度孵化卵的孵化期比恒温孵化卵长。在所有被检表型特征中,幼体的干重、剩余卵黄干重和运动表现更易受孵化温度影响。总体而言,低温(24℃、27℃)孵出幼体运动表现最佳,高温(33℃)孵出幼体最差、温和温度(30℃和波动温度)孵出幼体居中。本文研究数据显示: (1)丽斑麻蜥卵每日短期暴露于潜在致死的极端温度下对孵化成功率和孵出幼体形态特征无明显的不利效应; (2)温度波动对孵出幼体运动表现无促进作用,对孵化期的影响则不同于平均值相同的恒定温度。  相似文献   

9.
林炽贤  杜宇  邱清波  计翔 《动物学报》2007,53(3):437-445
作者用蜡皮蜥(Leiolepis reevesii)为模型动物,检验产卵于温暖且热稳定巢内的蜥蜴应有相对较高但较窄的孵化温度的假设。卵在三个恒定温度(27、30和33℃)、一个波动温度处理下孵化。温度的平均值而非方差影响孵化期,27、30和33℃的平均孵化期分别为101.1、69.6和55.3d。幼体性别不受孵化温度影响。不同处理孵出的幼体仅有稍许形态差异,但运动表现差异显著。27℃孵出幼体在跑道上的表现比其它处理孵出幼体差。卵能在27℃和33℃下孵化,但这两个孵化温度并不适宜。蜡皮蜥适宜的孵化温度范围可能处于最频繁的巢温变化范围(28℃-32℃)内。与其它在低温生境或温暖生境但产卵于浅巢的有鳞类爬行动物相比较,蜡皮蜥有相对较高但较窄适宜的卵孵化温度。因此,作者的数据支持上述假设。  相似文献   

10.
Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized.  相似文献   

11.
研究了山地麻蜥和丽斑麻蜥实验条件下的卵及孵出幼体的特征.山地麻蜥产卵雌体的体长大于丽斑麻蜥,窝卵重小于丽斑麻蜥,但平均卵重和相对窝卵重与丽斑麻蜥相似.两种蜥蜴均通过增加卵长径和卵短径来增加卵重,但卵的外形不同,山地麻蜥卵较长.两种蜥蜴卵孵化过程中均吸水增重.相似孵化条件(波动温度、-12 kPa)下,山地麻蜥的孵化期明显比丽斑麻蜥长.山地麻蜥幼体的尾、头部大于丽斑麻蜥,但体重和SVL相似.  相似文献   

12.
Parker SL  Andrews RM 《Oecologia》2007,151(2):218-231
Cold environmental temperature is detrimental to reproduction by oviparous squamate reptiles by prolonging incubation period, negatively affecting embryonic developmental processes, and by killing embryos in eggs directly. Because low soil temperature may prevent successful development of embryos in eggs in nests, the geographic distributions of oviparous species may be influenced by the thermal requirements of embryos. In the present study, we tested the hypothesis that low incubation temperature determines the northern distributional limit of the oviparous lizard Sceloporus undulatus. To compare the effects of incubation temperature on incubation length, egg and hatchling survival, and hatchling phenotypic traits, we incubated eggs of S. undulatus under temperature treatments that simulated the thermal environment that eggs would experience if located in nests within their geographic range at 37°N and north of the species’ present geographic range at latitudes of 44 and 42°N. After hatching, snout–vent length (SVL), mass, tail length, body condition (SVL relative to mass), locomotor performance, and growth rate were measured for each hatchling. Hatchlings were released at a field site to evaluate growth and survival under natural conditions. Incubation at temperatures simulating those of nests at 44°N prolonged incubation and resulted in hatchlings with shorter SVL relative to mass, shorter tails, shorter hind limb span, slower growth, and lower survival than hatchlings from eggs incubated at temperatures simulating those of nests at 37 and 42°N. We also evaluated the association between environmental temperature and the northern distribution of S. undulatus. We predicted that the northernmost distributional limit of S. undulatus would be associated with locations that provide the minimum heat sum (∼495 degree-days) required to complete embryonic development. Based on air and soil temperatures, the predicted northern latitudinal limit of S. undulatus would lie at ∼40.5–41.5°N. Our predicted value closely corresponds to the observed latitudinal limit in the eastern United States of ∼40°N. Our results suggest that soil temperatures at northern latitudes are not warm enough for a sufficient length of time to permit successful incubation of S. undulatus embryos. These results are consistent with the hypothesis that incubation temperature is an important factor limiting the geographic distributions of oviparous reptile species at high latitudes and elevations.  相似文献   

13.
We studied sexual dimorphism, female reproduction and egg incubation of the oriental leaf-toed gecko (Hemidactylus bowringii) from a population in southern China. The largest male and female in our sample were 60 and 57 mm snout-vent length (SVL), respectively. Males are the larger sex; sexual dimorphism in head size and tail length (TL) is evident in juveniles and adults, with males having larger heads as well as longer tails than females. Oviposition occurred between late May and late July. Females switched from laying two eggs early in the breeding season to 1-2 eggs later in the season. Clutch mass and egg mass were both independent of female SVL, whereas relative clutch mass was negatively correlated with female SVL. The previous conclusion that female H. bowringii lay a single clutch of eggs per breeding season is unlikely to be true. Thermal environments experienced by H. bowringii eggs affect incubation length as well as morphological and locomotor phenotypes of hatchlings. Hatchlings from eggs incubated at 30 degrees C were larger (SVL, tail length and body mass) and performed better in the racetrack than their counterparts from eggs incubated at 24 degrees C. Temperatures suitable for embryonic development are relatively high in H. bowringii, primarily as a consequence of the adaptive response to warm environments in southern China.  相似文献   

14.
Ji X  Gao JF  Han J 《Zoological science》2007,24(4):384-390
Most studies on egg incubation in reptiles have relied on constant temperature incubation in the laboratory rather than on simulations of thermal regimes in natural nests. The thermal effects on embryos in constant-temperature studies often do not realistically reflect what occurs in nature. Recent studies have increasingly recognized the importance of simulating natural nest temperatures rather than applying constant-temperature regimes. We incubated Bungarus multicintus eggs under three constant and one fluctuating-temperature regimes to evaluate the effects of constant versus fluctuating incubation temperatures on hatching success and hatchling phenotypes. Hatching success did not differ among the four treatments, and incubation temperature did not affect the sexual phenotype of hatchlings. Incubation length decreased as incubation temperature increased, but eggs incubated at fluctuating temperatures did not differ from eggs incubated at constant temperatures with approximately the same mean in incubation length. Of the hatchling phenotypes examined, residual yolk, fat bodies and locomotor performance were more likely affected by incubation temperature. The maximal locomotor speed was fastest in the fluctuating-temperature and 30 degrees C treatments and slowest in the 24 degrees C treatment, with the 27 degrees C treatment in between. The maximal locomotor length was longest in the fluctuating-temperature treatment and shortest in the 24 degrees C and 27 degrees C treatments, with the 30 degrees C treatment in between. Our results show that fluctuating incubation temperatures do not influence hatching success and hatchling size and morphology any differently than constant temperatures with approximately the same mean, but have a positive effect on locomotor performance of hatchlings.  相似文献   

15.
Eggs of wall lizards (Podarcis muralis) were incubated at three temperatures approaching the upper limit of viability for embryonic development in this species (26, 29, and 32 degrees C) to assess the influence of temperature on various aspects of hatchling phenotype likely affecting fitness. The thermal environment affected size and several morphometric characteristics of hatchling lizards. Hatchlings from eggs incubated at 32 degrees C were smaller (snout-vent length, SVL) than those from 26 and 29 degrees C and had smaller mass residuals (from the regression on SVL) as well as shorter tail, head, and femur relative to SVL. Variation in the level of fluctuating asymmetry in meristic and morphometric traits associated with incubation temperatures was quite high but not clearly consistent with the prediction that environmental stress associated with the highest incubation temperatures might produce the highest level of asymmetry. When tested for locomotor capacity in trials developed at body temperatures of 32 and 35 degrees C, hatchlings from the 32 degrees C incubation treatment exhibited the worst performance in any aspect considered (burst speed, maximal length, and number of stops in the complete run). Repeated measures ANCOVAs (with initial egg mass as covariate) of snout-vent length and mass of lizards at days 0 and 20 revealed significant effects of incubation temperature only for mass, being again the hatchlings from eggs incubated at 32 degrees C those exhibiting the smallest final size. All together, our results evidenced a pervasive effect of thermal regime during incubation (and hence of nest site selection) on hatchling phenotypes. However, incubation temperature does not affect hatchling phenotypes in a continuous way; for most of the analysed traits a critical threshold seems to exist between 29 and 32 degrees C, so that hatchlings incubated at 32 degrees C exhibited major detrimental effects. J. Exp. Zool. 286:422-433, 2000.  相似文献   

16.
Incubation is an energetically demanding process during which birds apply heat to their eggs to ensure embryonic development. Parent behaviours such as egg turning and exchanging the outer and central eggs in the nest cup affect the amount of heat lost to the environment from individual eggs. Little is known, however, about whether and how egg surface temperature and cooling rates vary among the different areas of an egg and how the arrangement of eggs within the clutch influences heat loss. We performed laboratory (using Japanese quail eggs) and field (with northern lapwing eggs) experiments using infrared imaging to assess the temperature and cooling patterns of heated eggs and clutches. We found that (i) the sharp poles of individual quail eggs warmed to a higher egg surface temperature than did the blunt poles, resulting in faster cooling at the sharp poles compared to the blunt poles; (ii) both quail and lapwing clutches with the sharp poles oriented towards the clutch centre (arranged clutches) maintained higher temperatures over the central part of the clutch than occurred in those clutches where most of the sharp egg poles were oriented towards the exterior (scattered clutches); and (iii) the arranged clutches of both quail and lapwing showed slower cooling rates at both the inner and outer clutch positions than did the respective parts of scattered clutches. Our results demonstrate that egg surface temperature and cooling rates differ between the sharp and blunt poles of the egg and that the orientation of individual eggs within the nest cup can significantly affect cooling of the clutch as a whole. We suggest that birds can arrange their eggs within the nest cup to optimise thermoregulation of the clutch.  相似文献   

17.
We examined the effects of thermal and hydric environments on hatching success, the embryonic use of energy and hatchling traits in a colubrid snake, Elaphe carinata. The eggs were incubated at four temperatures ranging from 24 to 32 degrees C on substrates with water potentials of 0 and -220 kPa using a 4x2 factorial design. Both thermal and hydric environments affected the water exchange between eggs and their surroundings. Eggs incubated in wetter substrates gained mass throughout the course of incubation, whereas eggs in drier substrates gained mass during the first half of incubation and lost mass thereafter. Hatching success was noticeably higher at 26 and 30 degrees C than at 24 and 32 degrees C, but among treatments, differences in hatching success were not significant. Temperature significantly affected the duration of incubation and most hatchling traits examined. Deformed hatchlings were found in all temperature treatments, with more deformities observed at 32 degrees C. Hatchlings from eggs incubated at different temperatures differed in wet body mass, but the differences stemmed mainly from variation in water contents. Embryos at different temperatures completed development at nearly the same expenditure of energy and catabolized nearly the same amount of lipids, but hatchlings from different temperatures differed in the development condition of carcass at hatching. Hatchlings from eggs incubated at 26 degrees C were larger in SVL than those from other higher or lower incubation temperatures, characteristically having larger carcasses; hatchlings from 32 degrees C eggs were smaller in SVL and had smaller carcasses but larger residual yolks than those from lower incubation temperatures. Hatchlings from eggs incubated at 24 degrees C were shorter in tail length but greater in size (SVL)-specific body wet mass than those from higher incubation temperatures. Within the range from -220 to 0 kPa, the substrate water potential did not affect hatching success, the embryonic use of energy and all hatchling traits examined, and the effects of temperature were independent of the effects of substrate water potential. Therefore, our data add evidence showing that embryonic development in reptiles with pliable-shelled eggs is relatively insensitive to variation in hydric environments during incubation.  相似文献   

18.
We used eggs of Deinagkistrodon acutus to study the effects of incubation temperature on hatching success, embryonic expenditure of energy and hatchling phenotypes. One egg from each of the 15 fertile clutches was dissected for determination of egg composition, and a total of 164 eggs were incubated at five constant temperatures. Embryonic mortality increased dramatically at 30 °C, and none of eggs incubated at 32 °C hatched. Within the range from 24 to 30 °C, temperature affected incubation length and most hatchling traits examined. The mean incubation length at 24, 26, 28 and 30 °C was 36.4, 28.7, 21.8 and 15.7 days, respectively. Embryos developing at higher temperatures (28 and 30 °C) consumed more energy but produced less developed (and hence smaller) hatchlings, which characteristically had larger residual yolks but smaller carcasses. A principal component analysis resolved two components (with eigenvalues ⩾1) from ten size (initial egg mass)-free hatchling variables, accounting for 79.3% of variation in the original data. The first component (43.8% variance explained) had high positive loading for size-free values of dry mass, lipid mass, energy contents and ash mass of hatchlings, and the second component (35.5% variance explained) had high positive loading for size-free values of SVL, carcass dry mass and fatbody dry mass. Hatchlings from different incubation temperatures did not differ in scores on the first axis of the principal component analysis, whereas hatchlings from higher incubation temperatures (28 and 30 °C) had significantly lower scores on the second axis than did those from lower incubation temperatures (24 and 26 °C). As the second axis mainly represents traits relating to the developmental condition at hatching, the analysis therefore provided further evidence that eggs incubated at higher temperatures produced less developed hatchlings. Taken together, our data show that the optimal temperatures for embryonic development are relatively low in D. acutus largely due to its use of relatively cool habitats.  相似文献   

19.
Ashmore GM  Janzen FJ 《Oecologia》2003,134(2):182-188
Temperatures experienced during embryonic development elicit well-documented phenotypic variation in embryonic and neonatal animals. Most research, however, has only considered the effects of constant temperatures, even though developmental temperatures in natural settings fluctuate considerably on a daily and seasonal basis. A laboratory study of 15 clutches of smooth softshell turtles (Apalone mutica) was conducted to explicitly examine the influence of thermal variance on phenotypic variation. Holding mean temperature constant and eliminating substrate moisture effects permitted a clear assessment of the impact of thermal variance on hatching success, incubation length, hatchling body size, swimming speed, and righting time. Incubation length and swimming speed varied significantly among temperature treatments. Both traits tended to increase with increasing thermal variance during embryonic development. Clutch significantly affected all traits examined, except righting time, even after accounting for the effects of initial egg mass. These results highlight the importance of accounting for the impact of both thermal mean and variance on phenotypic variation. The findings also strengthen the increasing recognition of maternal clutch effects as critical factors influencing phenotypic variation in neonatal animals.  相似文献   

20.
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 °C, 26 °C, 28 °C and 31 °C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 °C and 28 °C had wider heads than hatchlings incubated at 24 °C and 31 °C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 °C than at 26 °C, 28 °C and 31 °C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass. Accepted: 18 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号