首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We incubated eggs of Calotes versicolor at four constant temperatures ranging from 24 degrees C to 33 degrees C to assess the effects of incubation temperature on hatching success, embryonic use of energy, and hatchling phenotypes that are likely to affect fitness. All viable eggs increased in mass throughout incubation due to absorption of water, and mass gain during incubation was dependent on initial egg mass and incubation temperature. The average duration of incubation at 24 degrees C, 27 degrees C, 30 degrees C, and 33 degrees C was 82.1 days, 60.5 days, 51.4 days, and 50.3 days, respectively. Incubation temperature affected hatching success, energy expenditure for embryonic development, and several hatchling traits examined, but it did not affect the sex ratio of hatchlings. Hatching success was lowest (3.4%) at 33 degrees C, but a higher incidence of deformed embryos was recorded from eggs incubated at this temperature compared to eggs incubated at lower temperatures. Most of the deformed embryos died at the last stage of incubation. Energy expenditure for embryonic development was, however, higher in eggs incubated at 33 degrees C than those similarly incubated at lower temperatures. A prolonged exposure of eggs of C. versicolor at 33 degrees C appears to have an adverse and presumably lethal effect on embryonic development. Hatching success at 24 degrees C was also low (43.3%), but hatchlings incubated at 24 degrees C did not differ in any of the examined traits from those incubated at two intermediate temperatures (27 degrees C and 30 degrees C). Hatchlings incubated at 33 degrees C were smaller (snout-vent length, SVL) than those incubated at lower incubation temperatures and had larger mass residuals (from the regression on SVL) as well as shorter head length, hindlimb length, tympanum diameter, and eye diameter relative to SVL. Hatchlings from 33 degrees C had significantly lower scores on the first axis of a principal component analysis representing mainly SVL-free head size (length and width) and fore- and hindlimb lengths, but they had significantly higher scores on the second axis mainly representing SVL-free wet body mass. Variation in the level of fluctuating asymmetry in eye diameter associated with incubation temperatures was quite high, and it was clearly consistent with the prediction that environmental stress associated with the highest incubation temperatures might produce the highest level of asymmetry. Newly emerged hatchlings exhibited sexual dimorphism in head width, with male hatchlings having larger head width than females.  相似文献   

2.
We examined the effects of thermal and hydric environments on hatching success, the embryonic use of energy and hatchling traits in a colubrid snake, Elaphe carinata. The eggs were incubated at four temperatures ranging from 24 to 32 degrees C on substrates with water potentials of 0 and -220 kPa using a 4x2 factorial design. Both thermal and hydric environments affected the water exchange between eggs and their surroundings. Eggs incubated in wetter substrates gained mass throughout the course of incubation, whereas eggs in drier substrates gained mass during the first half of incubation and lost mass thereafter. Hatching success was noticeably higher at 26 and 30 degrees C than at 24 and 32 degrees C, but among treatments, differences in hatching success were not significant. Temperature significantly affected the duration of incubation and most hatchling traits examined. Deformed hatchlings were found in all temperature treatments, with more deformities observed at 32 degrees C. Hatchlings from eggs incubated at different temperatures differed in wet body mass, but the differences stemmed mainly from variation in water contents. Embryos at different temperatures completed development at nearly the same expenditure of energy and catabolized nearly the same amount of lipids, but hatchlings from different temperatures differed in the development condition of carcass at hatching. Hatchlings from eggs incubated at 26 degrees C were larger in SVL than those from other higher or lower incubation temperatures, characteristically having larger carcasses; hatchlings from 32 degrees C eggs were smaller in SVL and had smaller carcasses but larger residual yolks than those from lower incubation temperatures. Hatchlings from eggs incubated at 24 degrees C were shorter in tail length but greater in size (SVL)-specific body wet mass than those from higher incubation temperatures. Within the range from -220 to 0 kPa, the substrate water potential did not affect hatching success, the embryonic use of energy and all hatchling traits examined, and the effects of temperature were independent of the effects of substrate water potential. Therefore, our data add evidence showing that embryonic development in reptiles with pliable-shelled eggs is relatively insensitive to variation in hydric environments during incubation.  相似文献   

3.
孵化水热环境对渔异色蛇孵化卵和孵出幼体的影响   总被引:10,自引:6,他引:4  
渔异色蛇卵孵化时能从环境中吸收水分导致质量增加,卵质量的增加与初始卵质量和孵化基质湿度有关。较大幅度的孵化基质湿度变化对孵化期、孵化成功率、胚胎动用孵内物质和能量、孵出幼体的性比、大小和质量无显著影响。孵化期随温度升高而缩短,并显示极强的窝间差异。温度对孵出幼体的性别无影响,但显著影响孵化成功率、胚胎对卵内物质和能量的动用、幼体的大小和质量、躯干和剩余卵黄的质量。孵出幼体总长的两性差异不显著,但雌体体长大于雄体而尾长小于雄体。32℃不适于孵化渔异色蛇卵,该温度下孵出的幼体躯干发育不良,剩余孵黄较多,尾部均呈畸形,孵化过程中能量转化率较低。24℃和26℃中孵出的幼体躯干发育良好,孵化过程中能量转化率较高,各项被测定的幼体特征指标均极相似。  相似文献   

4.
It has been documented in some reptiles that fluctuating incubation temperatures influence hatchling traits differently than constant temperatures even when the means are the same between treatments; yet whether the observed effects result from the thermal variance, temperature extremes or both is largely unknown. We incubated eggs of the checkered keelback snake Xenochrophis piscator under one fluctuating (Ft) and three constant (24, 27 and 30 °C) temperatures to examine whether the variance of incubation temperatures plays an important role in influencing the phenotype of hatchlings. The thermal conditions under which eggs were incubated affected a number of hatchling traits (wet mass, SVL, tail length, carcass dry mass, fatbody dry mass and residual yolk dry mass) but not hatching success and the sex ratio of hatchlings. Body sizes were larger in hatchlings from incubation temperatures of 24 and 27 °C compared with the other two treatments. Hatchlings from the four treatments could be divided into two groups: one included hatchlings from the 24 and 27 °C treatments, and the other included hatchlings from the 30 °C and Ft treatments. In the Ft treatment, the thermal variance was not a significant predictor of all examined hatchling traits, and incubation length was not correlated with the thermal variance when holding the thermal mean constant. The results of this study show that the mean rather than the variance of incubation temperatures affects the phenotype of hatchlings.  相似文献   

5.
We studied sexual dimorphism, female reproduction and egg incubation of the oriental leaf-toed gecko (Hemidactylus bowringii) from a population in southern China. The largest male and female in our sample were 60 and 57 mm snout-vent length (SVL), respectively. Males are the larger sex; sexual dimorphism in head size and tail length (TL) is evident in juveniles and adults, with males having larger heads as well as longer tails than females. Oviposition occurred between late May and late July. Females switched from laying two eggs early in the breeding season to 1-2 eggs later in the season. Clutch mass and egg mass were both independent of female SVL, whereas relative clutch mass was negatively correlated with female SVL. The previous conclusion that female H. bowringii lay a single clutch of eggs per breeding season is unlikely to be true. Thermal environments experienced by H. bowringii eggs affect incubation length as well as morphological and locomotor phenotypes of hatchlings. Hatchlings from eggs incubated at 30 degrees C were larger (SVL, tail length and body mass) and performed better in the racetrack than their counterparts from eggs incubated at 24 degrees C. Temperatures suitable for embryonic development are relatively high in H. bowringii, primarily as a consequence of the adaptive response to warm environments in southern China.  相似文献   

6.
孙文佳  俞霄  曹梦洁  林隆慧 《生态学报》2012,32(18):5924-5929
研究了赤链蛇(Dinodon rufozonatum)在孵化过程中卵的生长、孵化期、胚胎代谢和孵出幼体行为表现的热依赖性。结果显示:孵化温度对孵化期、卵增重、孵化过程中消耗的总能量和孵出幼体的运动表现有显著影响,但不影响胚胎代谢率、孵化成功率和幼体吐信频次。孵化期随着孵化温度的升高而缩短,孵化过程中,24℃终末卵重和胚胎代谢率显著大于30℃,而27℃与其他两个温度没有差异;27℃孵出幼体游速较24℃快,30℃孵出幼体与其他两个温度孵出幼体的游速无显著差异。上述结果显示:24—30℃是赤链蛇适合的孵化温度范围,与赤链蛇所处的生境温度相近。  相似文献   

7.
We used eggs of Deinagkistrodon acutus to study the effects of incubation temperature on hatching success, embryonic expenditure of energy and hatchling phenotypes. One egg from each of the 15 fertile clutches was dissected for determination of egg composition, and a total of 164 eggs were incubated at five constant temperatures. Embryonic mortality increased dramatically at 30 °C, and none of eggs incubated at 32 °C hatched. Within the range from 24 to 30 °C, temperature affected incubation length and most hatchling traits examined. The mean incubation length at 24, 26, 28 and 30 °C was 36.4, 28.7, 21.8 and 15.7 days, respectively. Embryos developing at higher temperatures (28 and 30 °C) consumed more energy but produced less developed (and hence smaller) hatchlings, which characteristically had larger residual yolks but smaller carcasses. A principal component analysis resolved two components (with eigenvalues ⩾1) from ten size (initial egg mass)-free hatchling variables, accounting for 79.3% of variation in the original data. The first component (43.8% variance explained) had high positive loading for size-free values of dry mass, lipid mass, energy contents and ash mass of hatchlings, and the second component (35.5% variance explained) had high positive loading for size-free values of SVL, carcass dry mass and fatbody dry mass. Hatchlings from different incubation temperatures did not differ in scores on the first axis of the principal component analysis, whereas hatchlings from higher incubation temperatures (28 and 30 °C) had significantly lower scores on the second axis than did those from lower incubation temperatures (24 and 26 °C). As the second axis mainly represents traits relating to the developmental condition at hatching, the analysis therefore provided further evidence that eggs incubated at higher temperatures produced less developed hatchlings. Taken together, our data show that the optimal temperatures for embryonic development are relatively low in D. acutus largely due to its use of relatively cool habitats.  相似文献   

8.
中国石龙子雌体繁殖特征和卵孵化的地理变异   总被引:12,自引:0,他引:12  
浙江丽水和广东韶关中国石龙子均年产单窝卵,窝卵数,窝卵重和卵重均与雌体SVL呈正相关,雌体头部形态,繁殖特征,产卵起始时间和孵孵化的热依赖性等有显著的地理变异;韶关石龙子产卵起始时间为5月中旬,比丽水经子约早两周,韶关石龙子窝卵数较大,卵较小,窝卵重与丽水石龙子无显著差异。韶关石龙子特定SVL的窝卵数比丽水石龙子多2.8枚卵,中国经子卵数量和大小之间有种群间权衡,无种数内权衡,同一种群内卵数量与卵大小无关,孵化温度影响石龙子孵出幼体的一些特征,24℃孵出细幼体比32℃孵出幼体大,躯干发育好,剩余卵黄少,韶关24℃孵出幼体的体重,躯干干重小于丽水幼体,韶关32℃孵出幼体的SVL小于丽水幼体,剩余卵黄大于丽水幼体,表明适宜卵孵化温度范围有地理变异。丽水石龙子卵对极端高温和低温的耐受性较强,适宜卵孵化温度范围较宽。  相似文献   

9.
研究了山地麻蜥和丽斑麻蜥实验条件下的卵及孵出幼体的特征.山地麻蜥产卵雌体的体长大于丽斑麻蜥,窝卵重小于丽斑麻蜥,但平均卵重和相对窝卵重与丽斑麻蜥相似.两种蜥蜴均通过增加卵长径和卵短径来增加卵重,但卵的外形不同,山地麻蜥卵较长.两种蜥蜴卵孵化过程中均吸水增重.相似孵化条件(波动温度、-12 kPa)下,山地麻蜥的孵化期明显比丽斑麻蜥长.山地麻蜥幼体的尾、头部大于丽斑麻蜥,但体重和SVL相似.  相似文献   

10.
Ji X  Gao JF  Han J 《Zoological science》2007,24(4):384-390
Most studies on egg incubation in reptiles have relied on constant temperature incubation in the laboratory rather than on simulations of thermal regimes in natural nests. The thermal effects on embryos in constant-temperature studies often do not realistically reflect what occurs in nature. Recent studies have increasingly recognized the importance of simulating natural nest temperatures rather than applying constant-temperature regimes. We incubated Bungarus multicintus eggs under three constant and one fluctuating-temperature regimes to evaluate the effects of constant versus fluctuating incubation temperatures on hatching success and hatchling phenotypes. Hatching success did not differ among the four treatments, and incubation temperature did not affect the sexual phenotype of hatchlings. Incubation length decreased as incubation temperature increased, but eggs incubated at fluctuating temperatures did not differ from eggs incubated at constant temperatures with approximately the same mean in incubation length. Of the hatchling phenotypes examined, residual yolk, fat bodies and locomotor performance were more likely affected by incubation temperature. The maximal locomotor speed was fastest in the fluctuating-temperature and 30 degrees C treatments and slowest in the 24 degrees C treatment, with the 27 degrees C treatment in between. The maximal locomotor length was longest in the fluctuating-temperature treatment and shortest in the 24 degrees C and 27 degrees C treatments, with the 30 degrees C treatment in between. Our results show that fluctuating incubation temperatures do not influence hatching success and hatchling size and morphology any differently than constant temperatures with approximately the same mean, but have a positive effect on locomotor performance of hatchlings.  相似文献   

11.
朱灵君  杜卫国  孙波  张永普 《生态学报》2010,30(18):4848-4854
在围栏条件下,比较升温和对照处理北草蜥(Takydromus septentrionalis)繁殖、卵孵化及幼体特征的差异,以揭示升温对其繁殖生活史特征的作用。升温处理对北草蜥母体体温有显著影响,但并不影响其繁殖输出。升温显著影响卵孵化期和幼体的运动能力,但不影响幼体大小等形态特征。升温条件下孵出的幼体运动能力较弱。结果表明,北草蜥母体能耐受短期的环境增温,维持相对恒定的繁殖输出;升温能影响幼体的功能表现,进而可能改变后代适合度。  相似文献   

12.
Evolutionary origins of viviparity among the squamate reptiles are strongly associated with cold climates, and cold environmental temperatures are thought to be an important selective force behind the transition from egg-laying to live-bearing. In particular, the low nest temperatures associated with cold climate habitats are thought to be detrimental to the developing embryos or hatchlings of oviparous squamates, providing a selective advantage for the retention of developing eggs in utero, where the mother can provide warmer incubation temperatures for her eggs (by actively thermoregulating) than they would experience in a nest. However, it is not entirely clear what detrimental effects cold incubation temperatures may have on eggs and hatchlings, and what role these effects may play in favouring the evolution of viviparity. Previous workers have suggested that viviparity may be favoured in cold climates because cold incubation temperatures slow cmbryogenesis and delay hatching of the eggs, or because cold nest temperatures are lethal to developing eggs and reduce hatching success. However, incubation temperature has also been shown to have other, potentially long-term, effects on hatchling phcnotypcs, suggesting that cold climates may favour viviparity because cold incubation temperatures produce offspring of poor quality or low fitness. We experimentally incubated eggs of the oviparous phrynosomatid lizard, Sceloporus virgatus, at temperatures simulating nests in a warm (low elevation) habitat, as is typical for this species, and nests in a colder (high elevation) habitat, to determine the effects of cold incubation temperatures on embryonic development and hatchling phenotypes. Incubation at cold nest temperatures slowed embryonic development and reduced hatching success, but also affected many aspects of the hatchlings' phenotypes. Overall, the directions of these plastic responses indicated that cold-incubated hatchlings did indeed exhibit poorer quality phenotypes; they were smaller at hatching (in body length) and at 20 days of age (in length and mass), grew more slowly (in length and mass), had lower survival rates, and showed greater fluctuating asymmetry than their conspecifics that were incubated at warmer temperatures. Our findings suggest that cold nest temperatures are detrimental to S. virgatus, by delaying hatching of their eggs, reducing their hatching success, and by producing poorer quality offspring. These negative effects would likely provide a selective advantage for any mechanism through which these lizards could maintain warmer incubation temperatures in cold climates, including the evolution of prolonged egg retention and viviparity.  相似文献   

13.
To understand how nest temperatures influence phenotypic traits of reptilian hatchlings, the effects of fluctuating temperature on hatchling traits must be known. Most investigations, however, have only considered the effects of constant temperatures. We incubated eggs of Takydromus septentrionalis (Lacertidae) at constant (24 degrees C, 27 degrees C, 30 degrees C and 33 degrees C) and fluctuating temperatures to determine the effects of these thermal regimes on incubation duration, hatching success and hatchling traits (morphology and locomotor performance). Hatching success at 24 degrees C and 27 degrees C was higher, and hatchlings derived from these two temperatures were larger and performed better than their counterparts from 30 degrees C and 33 degrees C. Eggs incubated at fluctuating temperatures exhibited surprisingly high hatching success and also produced large and well-performed hatchlings in spite of the extremely wide range of temperatures (11.6-36.2 degrees C) they experienced. This means that exposure of eggs to adversely low or high temperatures for short periods does not increase embryonic mortality. The variance of fluctuating temperatures affected hatchling morphology and locomotor performance more evidently than did the mean of the temperatures in this case. The head size and sprint speed of the hatchlings increased with increasing variances of fluctuating temperatures. These results suggest that thermal variances significantly affect embryonic development and phenotypic traits of hatchling reptiles and are therefore ecologically meaningful.  相似文献   

14.
Parker SL  Andrews RM 《Oecologia》2007,151(2):218-231
Cold environmental temperature is detrimental to reproduction by oviparous squamate reptiles by prolonging incubation period, negatively affecting embryonic developmental processes, and by killing embryos in eggs directly. Because low soil temperature may prevent successful development of embryos in eggs in nests, the geographic distributions of oviparous species may be influenced by the thermal requirements of embryos. In the present study, we tested the hypothesis that low incubation temperature determines the northern distributional limit of the oviparous lizard Sceloporus undulatus. To compare the effects of incubation temperature on incubation length, egg and hatchling survival, and hatchling phenotypic traits, we incubated eggs of S. undulatus under temperature treatments that simulated the thermal environment that eggs would experience if located in nests within their geographic range at 37°N and north of the species’ present geographic range at latitudes of 44 and 42°N. After hatching, snout–vent length (SVL), mass, tail length, body condition (SVL relative to mass), locomotor performance, and growth rate were measured for each hatchling. Hatchlings were released at a field site to evaluate growth and survival under natural conditions. Incubation at temperatures simulating those of nests at 44°N prolonged incubation and resulted in hatchlings with shorter SVL relative to mass, shorter tails, shorter hind limb span, slower growth, and lower survival than hatchlings from eggs incubated at temperatures simulating those of nests at 37 and 42°N. We also evaluated the association between environmental temperature and the northern distribution of S. undulatus. We predicted that the northernmost distributional limit of S. undulatus would be associated with locations that provide the minimum heat sum (∼495 degree-days) required to complete embryonic development. Based on air and soil temperatures, the predicted northern latitudinal limit of S. undulatus would lie at ∼40.5–41.5°N. Our predicted value closely corresponds to the observed latitudinal limit in the eastern United States of ∼40°N. Our results suggest that soil temperatures at northern latitudes are not warm enough for a sufficient length of time to permit successful incubation of S. undulatus embryos. These results are consistent with the hypothesis that incubation temperature is an important factor limiting the geographic distributions of oviparous reptile species at high latitudes and elevations.  相似文献   

15.
Recent studies have shown that incubation temperatures can profoundly affect the phenotypes of hatchling lizards, but the effects of hydric incubation environments remain controversial. We examined incubation-induced phenotypic variation in Bassiana duperreyi (Gray, 1938; Sauria: Scincidae), an oviparous montane lizard from south-eastern Australia. We incubated eggs from this species in four laboratory treatments, mimicking cool and moist, cool and dry, warm and moist, and warm and dry natural nest-sites, and assessed several morphological and behavioural traits of lizards after hatching. Incubation temperature influenced a lizard's hatching success, incubation period, tail length and antipredator behaviour, whereas variation in hydric conditions did not engender significant phenotypic variation for most traits. However, moisture affected incubation period slightly differently in males and females, and for a given snout-vent length moisture interacted weakly with temperature to affect lizard body mass. Although incubation conditions can substantially affect phenotypic variation among hatchling lizards, the absence of strong hydric effects suggests that hatchling lizards react less plastically to variation in moisture levels than they do to thermal conditions. Thus, our data do not support the generalization that water availability during embryogenesis is more important than temperature in determining the phenotypes of hatchling reptiles.  相似文献   

16.
用3个恒定温度(27、30、33℃)和波动温度(14.0~37.5℃)孵化山地麻蜥(Eremias brenchleyi)卵。结果表明,各温度处理下卵孵化成功率差异不显著,但温度对孵化期、孵出幼体表型特征及疾跑速度有显著影响;27、30℃和波动温度下孵出幼体的SVL、重量及躯干干重比33℃的要大,33℃孵出幼体的运动能力比其他3个温度处理弱。波动温度处理下山地麻蜥卵虽短期经历潜在致死的极端温度,但对孵化成功率、孵出幼体表型特征和运动表现均无负效应。  相似文献   

17.
Fluctuating temperatures (FTs) influence hatchling phenotypes differently from constant temperatures (CTs) in some reptiles, but not in others. This inconsistency raises a question of whether thermal fluctuations during incubation always play an important role in shaping the phenotype of hatchlings. To answer this question, we incubated eggs of Naja atra under one CT (28 °C, CT), two temperature-shift [cold first (CF) and hot first (HF) in which eggs were first incubated at 24 or 32 °C and then at the other, each for 20 days, and finally at 28 °C until hatching], and one FT thermal regimes. Female hatchlings were larger in snout–vent length but smaller in tail length, head size than male hatchlings from the same-sized egg; female hatchlings had more ventral scales than did male hatchlings. The FT and HF treatments resulted in shorter incubation lengths. Tail length was greatest in the CT treatment and smallest in the FT treatment, with the CF and HF treatments in between; head width was greater in the CT treatment than in the other three treatments. Other examined hatchling traits did not differ among treatments. The observed morphological modifications cannot be attributed to the effect of thermal fluctuations but to the effect of temperatures close to the upper and lower viable limits for the species. Our results therefore support the hypothesis that hatchling phenotype is not altered by thermal fluctuation in species with no phenotypic response to incubation temperature within some thresholds.  相似文献   

18.
Wang L  Du W G  Shen J W  Zhu L J 《农业工程》2010,30(2):81-84
Freshly-laid eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) from captive cohorts in Hunan, Shanghai and Jiangxi were incubated at four constant temperatures of 24, 26, 28 and 30 °C to assess the effects of incubation temperature and cohort origin on incubation duration and hatchling phenotypes. Eggs from the three cohorts differed in size and shape. Egg mass and width were greatest in the Hunan cohort, smallest in the Jiangxi cohort, with the Shanghai cohort in between. Incubation duration decreased with increasing temperature and differed among the cohorts, with longer incubation duration for eggs from the Jiangxi cohort than those from the Hunan or Shanghai cohorts. Incubation temperatures significantly affected hatchling size and hatchlings from 30 °C were smaller than those from the lower temperatures in terms of carapace size and body mass. When incubated at a common temperature, hatchlings from the Hunan and Shanghai cohorts were larger than those from the Jiangxi cohort. The swimming capacity of hatchlings was affected by incubation temperature, but did not differ among the cohorts. The characteristics of eggs and hatchlings were similar among the Hunan and Shanghai cohorts, but they differed significantly from the Jiangxi cohort.  相似文献   

19.
Freshly-laid eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) from captive cohorts in Hunan, Shanghai and Jiangxi were incubated at four constant temperatures of 24, 26, 28 and 30 °C to assess the effects of incubation temperature and cohort origin on incubation duration and hatchling phenotypes. Eggs from the three cohorts differed in size and shape. Egg mass and width were greatest in the Hunan cohort, smallest in the Jiangxi cohort, with the Shanghai cohort in between. Incubation duration decreased with increasing temperature and differed among the cohorts, with longer incubation duration for eggs from the Jiangxi cohort than those from the Hunan or Shanghai cohorts. Incubation temperatures significantly affected hatchling size and hatchlings from 30 °C were smaller than those from the lower temperatures in terms of carapace size and body mass. When incubated at a common temperature, hatchlings from the Hunan and Shanghai cohorts were larger than those from the Jiangxi cohort. The swimming capacity of hatchlings was affected by incubation temperature, but did not differ among the cohorts. The characteristics of eggs and hatchlings were similar among the Hunan and Shanghai cohorts, but they differed significantly from the Jiangxi cohort.  相似文献   

20.
郝琦蕾  刘红霞  计翔 《动物学报》2006,52(6):1049-1057
作者以丽斑麻蜥(Eremias argus)为模型动物研究恒定和波动孵化温度对孵化成功率和孵出幼体表型的影响。卵在四个恒定[24 ,27 ,30 and 33 (±0·3)℃]、一个波动温度下孵化。不同温度处理下的孵化成功率相同,但孵出幼体表型不同。孵化期随孵化温度升高呈指数式缩短;在相同平均温度下,波动温度孵化卵的孵化期比恒温孵化卵长。在所有被检表型特征中,幼体的干重、剩余卵黄干重和运动表现更易受孵化温度影响。总体而言,低温(24℃、27℃)孵出幼体运动表现最佳,高温(33℃)孵出幼体最差、温和温度(30℃和波动温度)孵出幼体居中。本文研究数据显示: (1)丽斑麻蜥卵每日短期暴露于潜在致死的极端温度下对孵化成功率和孵出幼体形态特征无明显的不利效应; (2)温度波动对孵出幼体运动表现无促进作用,对孵化期的影响则不同于平均值相同的恒定温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号