首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
In many mammalian species, females compete with each other for food and space to raise offspring, while males compete with each other for access to females. Few studies have examined the factors which limit male range sizes or the degree of overlap between male ranges. We deduced four possible responses of the range -sizes of non-territorial male small mammals to increasing population density and/or levels of forage abundance. These were: (1) male range sizes might remain the same irrespective of population density; (2) at high population densities males may become territorial, and their ranges small and non-overlapping; (3) at high forage abundance/population densities, males' ranges may become smaller but remain intra-sexually overlapping; (4) at high forage abundance, male range sizes may increase. We examined the relationship between population density, range lengths and range overlaps and body weights of both sexes in a comparative study of three populations of water voles Arvicola terrestris . Male range sizes were smaller at higher population densities, but their ranges remained both inter- and intra-sexually overlapping. Heavier males had larger ranges than did lighter males at all sites. These results comply with what would be expected if male range sizes were at least partially restricted by the number of ranges of other individuals with which they overlapped. Although we could not discount the hypothesis that forage abundance may also have had a direct effect on male range sizes, our results implied that male range sizes were at least partially determined by social factors.  相似文献   

2.
Christine L. Dalton 《Oikos》2000,90(1):153-159
I conducted an experiment with gray-tailed voles, Microtus canicaudus , to test the hypothesis proposed by Charnov and Finerty that populations of voles comprised of female kin groups would grow more rapidly and reach higher densities more quickly than populations in which female kin groups were disrupted. The experiment was conducted in 0.2-ha semi-natural enclosures planted with mixed grasses. In four enclosures, females were unmanipulated (control) and in four enclosures all newly caught females were removed from their natal enclosures and replaced with females of comparable age from another enclosure, such that juvenile females did not settle near their siblings or parents (treatment). I found no significant differences in survival, reproduction, juvenile recruitment, population growth rates, or population size between control and treatment populations. The only difference was the time to sexual maturation for young females, which was 3.1 weeks for control enclosures compared with 4.2 weeks for treatment enclosures. I could not measure reproductive success for individual females, but my results did not support the hypothesis that the presence or absence of kin groups resulted in any biologically meaningful population-level effects. Female voles that have nesting territories adjacent to relatives may accrue some individual benefits, but these benefits are unlikely to contribute to population regulation in gray-tailed voles.  相似文献   

3.
局部环境增温对根田鼠冬季种群的影响   总被引:5,自引:3,他引:2  
通过建立开顶式增温小室模拟全球变暖的实验, 对海北高寒草甸地区实验增温样地及其对照样地内根田鼠的冬季种群进行调查, 旨在研究局部增温对根田鼠冬季种群的可能影响。结果表明, 在冬季, 实验增温草甸样地和灌丛样地内根田鼠的种群密度均显著高于其对照( P < 0.05) ; 实验增温灌丛样地与对照间性比的差异不显著( P > 0.05) ; 增温样地和对照之间、不同植被类型的增温样地之间、对照样地之间, 根田鼠留存率、平均体重及年龄结构的差异均不显著( P > 0.05) ; 有从对照样地向增温样地单方向迁移的记录。总之, 局部环境增温导致实验样地内根田鼠的冬季种群密度明显上升, 而其性比、存活率、种群平均体重以及年龄结构无明显变化; 在冬季, 根田鼠有从对照样地向增温样地扩散或迁移的趋势。  相似文献   

4.
本项研究在野外围栏条件下,采用析因实验设计,测定食物可利用性和捕食对根田鼠(Microtusoeconomus)种群空间行为的作用模式。检验的特定假设为,高质量食物较大的可利用性能降低田鼠的攻击行为和活动;捕食能减少田鼠的活动。研究结果表明,食物可利用性能间接地和直接地影响根田鼠的空间行为。附加食物种群具有较高的密度和较小的巢区,且在诱捕期间具有较少的长距离活动和较低的攻击水平。捕食者的存在不直接影响攻击行为,但能影响诱捕期间的长距离活动,此为根田鼠对捕食者存在作出的直接反应。在阐明田鼠种群动态时,应仔细考虑上述因子相互作用的效应。  相似文献   

5.
Although competition and predation are considered to be among the most important biotic processes influencing the distribution and abundance of species in space and time, the relative and interactive roles of these processes in communities comprised of cyclically fluctuating populations of small mammals are not well known. We examined these processes in and among populations of field voles, sibling voles, bank voles and common shrews in western Finland, using spatially replicated trapping data collected four times a year during two vole cycles (1987–1990 and 1997–1999). Populations of the four species exhibited relatively strong interspecific temporal synchrony in their multiannual fluctuations. During peak phases, we observed slight deviations from close temporal synchrony: field vole densities peaked at least two months earlier than those of either sibling voles or bank voles, while densities of common shrews peaked even earlier. The growth rates of all four coexisting small mammal species were best explained by their own current densities. The growth rate of bank vole populations was negatively related to increasing densities of field voles in the increase phase of the vole cycle. Apart from this, no negative effects of interspecific density, direct or delayed, were observed among the vole species. The growth rates of common shrew populations were negatively related to increasing total rodent (including water voles and harvest mice) densities in the peak phase of the vole cycle. Sibling voles appeared not to be competitively superior to field voles on a population level, as neither of these Microtus voles increased disproportionately in abundance as total rodent density increased. We suggest that interspecific competition among the vole species may occur, but only briefly, during the autumn of peak years, when the total available amount of rodent habitat becomes markedly reduced following agricultural practices. Our results nonetheless indicate that interspecific competition is not a strong determinant of the structure of communities comprised of species exhibiting cyclic dynamics. We suggest that external factors, namely predation and shortage of food, limit densities of vole populations below levels where interspecific competition occurs. Common shrews, however, appear to suffer from asymmetric space competition with rodents at peak densities of voles; this may be viewed as a synchronizing effect.  相似文献   

6.
The abundance of greater white-fronted geese (Anser albifrons frontalis) on the Arctic Coastal Plain (ACP) of northern Alaska, USA, has more than tripled since the late 1990s; however, recent rate of annual population growth has declined as population size increased, which may indicate white-fronted geese on the ACP are approaching carrying capacity. We examined rates of gosling growth in greater white-fronted geese at 3 sites on the ACP during 2012–2014 to assist with predictions of future population trends and assess evidence for density-dependent constraints on recruitment. We marked goslings at hatch with individually coded webtags and conducted brood drives during early August to capture, measure, and weigh goslings. Annual estimates of gosling mass at 32 days old (range = 1,190–1,685) indicate that goslings had obtained >60% of asymptotic size. This rate of growth corresponds with that of other goose species and populations with access to high-quality forage and no limitations on forage availability, and is consistent with the overall increase in abundance of white-fronted geese at the ACP scale. Contrary to most previous investigations, age-adjusted mass of goslings did not decline with hatch date. Goslings grew faster in coastal areas than at inland freshwater sites. Taken together, these findings suggest forage was not limiting gosling growth rates in either ecosystem, but forage was of greater quality in coastal areas where goose foraging habitat is expanding because of permafrost subsidence. Spatial patterns of gosling growth corresponded with local-scale patterns of population density and population change; the areas with greatest rates of gosling growth were those with the greatest population density and rates of population increase. We found little evidence to suggest forage during brood rearing was limiting population increase of white-fronted geese on the ACP. Factors responsible for the apparent slowing of ACP-wide population growth are likely those that occur in stages of the annual cycle outside of the breeding grounds. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

7.
Changes of the components of reproduction were analyzed quantitatively in a two-year cyclic population (which has two peaks in alternate years during a five-year census) of the red-backed vole, Clethrionomys rufocanus bedfordiae, with reference to its regulatory mechanism: (1) Variation in sex ratios was not associated with population phase or density, although a higher percentage of females in mature individuals was observed in the increase phase. (2) Females attained to sexual maturity at younger age and at lighter body weight than did males. All the youngest mature individuals were found in the low and the increase phases. Age and size at maturity became older and larger as the population went toward the peak phase. (3) Maturation rate was strongly associated with population phase and density; this component is an important and good parameter to predict population trend. Maturation rates were in the order, the low phase>the increase phase>the peak phase>the decline phase; the differences in the rates among these phases were significant. Maturation rate was somewhat depressed when the population density exceeded about 40 individuals/ha. Changes in age at maturity and in maturation rate are interpreted as derivative phenomena related to the population density and the capacity of the number of mature voles per unit area. (4) The maximum number of mature individuals were 26 males/ha and 29 females/ha; there was almost no increase of the number of mature voles at higher population densities over about 40 individuals/ha. The number of exclusive home ranges per hectare calculated from the observed range lengths did not differ much from the maximum number of mature voles of either sex. (5) Length of breeding period was shorter in the high-density years than in the low-density years; the breeding started earlier and ended earlier in the former than that in the latter. In the increase phase a few voles reproduced in winter. (6) The percentage of pregnant females was significantly lower in the peak phase than those in the other phases.  相似文献   

8.
Fey K  Banks PB  Korpimäki E 《Oecologia》2008,157(3):419-428
Ecosystems of three trophic levels may be bottom-up (by food-plant availability) and/or top-down (by predators) limited. Top-down control might be of greater consequence when the predation impact comes from an alien predator. We conducted a replicated two-factor experiment with field voles (Microtus agrestis) during 2004-2005 on small islands of the outer archipelago of the Baltic Sea, south-west Finland, manipulating both predation impact by introduced American mink (Mustela vison) and winter food supply. In autumn 2004, we live-trapped voles on five islands from which mink had been consistently removed, and on four islands where mink were present, and provided half of these islands with 1.8 kg oats per vole. Body mass of female voles increased as a response to supplementary food, whereas both food supplementation and mink removal increased the body mass of male voles in subsequent spring. During winter, there was a positive effect of supplementary food, but in the subsequent summer, possible positive long-term impacts of food supplementation on field voles were not detected. Mink removal appeared not to affect density estimates of field voles during the winter and summer immediately after food addition. Trapping data from 2004 to 2005 and 2007 suggested, however, that in two out of three summers densities of voles were significantly higher in the absence than in the presence of mink. We conclude that vole populations on small islands in the archipelago of the Baltic Sea are mainly bottom-up limited during winter (outside the growing season of food plants), when food availability is low, and limited by mink predation during summer which slows population growth during the reproductive season of voles.  相似文献   

9.
1.  The ratio of successive population censuses is often assumed to reflect population growth rates. We identify three simple potential sources of bias in the estimation of population growth rates that relate to either the total number of censused individuals or the spatial areas over which censuses are conducted.
2.  The commonly used method of adding a constant to time series data to avoid problems caused by division by zero can lead to underestimation of growth rates at low densities in increasing populations.
3.  Variances associated with density estimates can lead to positive bias in estimation of growth rates when populations are distributed in ephemeral patches. The spatial variance and spatio-temporal covariance in bank vole census data suggest that this bias could be severe when small trapping grids are used. Use of logged estimators of growth rate avoids this problem.
4.  Using census data from non-randomly placed trapping grids that are smaller than twice the maximum range of natal dispersal to estimate population growth rates can lead to negatively biased estimates, particularly at low population densities.
5.  These three sources of bias are evaluated as explanations for scale-dependent changes in the estimates of growth rates identified in populations of snowshoe hare ( Lepus americanus ), bank voles ( Clethrionomys glareolus ) and lemmings ( Lemmus lemmus ).  相似文献   

10.
Resident natural enemies can impact invasive species by causing Allee effects, leading to a reduction in establishment success of small founder populations, or by regulating or merely suppressing the abundance of established populations. Epiphyas postvittana, the Light Brown Apple Moth, an invasive leafroller in California, has been found to be attacked by a large assemblage of resident parasitoids that cause relatively high rates of parasitism. Over a 4-year period, we measured the abundance and per capita growth rates of four E. postvittana populations in California and determined parasitism rates. We found that at two of the sites, parasitism caused a component Allee effect, a reduction in individual survivorship at lower E. postvittana population densities, although it did not translate into a demographic Allee effect, an impact on per capita population growth rates at low densities. Instead, E. postvittana populations at all four sites exhibited strong compensatory density feedback throughout the entire range of densities observed at each site. As we found no evidence for a negative relationship between per capita population growth rates and parasitism rates, we concluded that resident parasitoids were unable to regulate E. postvittana populations in California. Despite a lack of evidence for regulation or a demographic Allee effect, the impact of resident parasitoids on E. postvittana populations is substantial and demonstrates significant biotic resistance against this new invader.  相似文献   

11.
Environmental factors influence the dynamics and regulation of biological populations through their influences on demographic variables, but demographic mechanisms of population regulation have received little attention. We investigated the demographic basis of regulation of Columbian ground squirrel (Spermophilus columbianus) populations under natural and experimentally food-supplemented conditions. Food supplementation caused substantial increases in population density, and population densities returned to pretreatment levels when the supplementation ended. Control (untreated) populations remained relatively stable throughout the study period (1981-1986). Because food resources regulated the size of the ground squirrel populations, we used life-table response experiment (LTRE) analyses to examine the demographic basis of changes in population growth rate and thus also demographic influences on population regulation. LTRE analyses of two food-manipulated populations revealed that changes in age at maturity and fertility rate of females generally made the largest contributions to observed changes in population growth rate. Thus, our results suggested that abundance of food resources regulated the size of our study populations through the effects of food resources on age at maturity and fertility rates. Our results also indicated that different demographic mechanisms can underlie population regulation under different environmental conditions, because lower juvenile survival substantially contributed to population decline, but in only one of the populations. Demographic analyses of experimental data, such as those presented here, offer a rigorous and unambiguous means to elucidate the demographic basis of population regulation and to help identify environmental factors that underlie dynamics and regulation of biological populations.  相似文献   

12.
Population density affects dispersal success because residents can hinder or facilitate immigration into a new site, via a “social fence effect” or “social attraction” (or “conspecific attraction”), respectively. These mechanisms can affect the dynamics of fragmented populations and the success of translocations. However, information on the settlement behaviour of dispersers is rare. We conducted a manipulative field experiment using wild water voles, which exist in metapopulations along waterways in Scotland. We translocated 17 young of dispersal age into either an occupied site or a vacant site containing good habitat, which had recently become extinct due to a feral predator (American mink) moving through. We monitored the movements of translocated voles using radio telemetry. Translocated voles were less likely to settle in occupied sites with higher densities of residents, suggesting a possible social fence effect at high density. There was evidence of a social attraction mechanism, because voles never remained at new sites unless another individual arrived soon after translocation, and they were more likely to settle in occupied or colonised sites than vacant ones. Voles remained in the transient phase of dispersal for many days, and often followed a “stepping stone” trajectory, stopping for several days at successive sites. We suggest that trajectories followed by dispersing water voles, the time scale and long dispersal distances found in this species are conducive to locating conspecifics at low density and colonising vacant habitat. These results are encouraging for prospects of metapopulation persistence and future translocation success.  相似文献   

13.
SUMMARY. We describe a model of zooplankton population dynamics that accounts for differences in mortality and physiology among animals of different ages or sizes. The model follows changes in numbers of individuals and changes in individual and egg biomass through time and it expresses mortality and net assimilation as functions of animal size.
We investigated the effect of egg size, age at first reproduction, and size at first reproduction on the per capita growth rates of populations growing under different conditions. In the absence of predation or when exposed to vertebrate predators that prefer large prey, populations achieve maximum growth rates when animals hatch from small eggs and reach maturity quickly at small sizes. Populations exposed to invertebrate predators that concentrate on small animals may increase r in two different ways. One way is for animals to increase juvenile survivorship by hatching from large eggs and by shortening the juvenile period. An alternative strategy is for animals to hatch from small eggs and to postpone maturity until they grow beyond the range of sizes available to their predators. Certain life history strategies maximize r if animals continue to grow after they reach maturity. By growing larger, non-primiparous females are able to hatch larger clutches and thereby increase the overall rate of population growth.
The model analysis shows how to assess age-dependent mortality rates from field data. The net rate of population increase and the age distribution of eggs together provide specific, quantitative information about mortality.  相似文献   

14.
1 We investigated the effects of grazing by black brant geese on Carex subspathacea lawns on the Yukon-Kuskokwim delta, Alaska.
2 We compared variation in growth and forage quality in both grazed and temporarily exclosed sites to determine responses of C. subspathacea to grazing at landscape scales within two nesting colonies that had experienced different population dynamics over recent decades.
3 Landscapes differed in forage quality, grazing patterns, and in the effect grazing had on C. subspathacea forage characteristics. We found no effect of grazing on net above-ground primary productivity ( NAPP ) over a wide range of natural grazing intensities at the landscape scale.
4 No differences in forage quality, NAPP , or response of C. subspathacea growth rates to grazing pressures could be detected between colonies. This suggests that goose grazing does not have deleterious effects on C. subspathacea in this ecosystem.
5 It has been suggested that gosling growth rates are sensitive to seasonal declines in forage availability and quality. Spatial variation in forage quality and availability per sampled area exceeded seasonal variation in these characteristics and is likely to have dramatic effects on gosling growth and recruitment rates.  相似文献   

15.
In order to gain a better understanding of the consequences of population density cycles and landscape structure for the genetic composition in time and space of vole populations, we analyzed the multiannual genetic structure of the two numerically dominant, sympatric small rodent species of northernmost Fennoscandia. Red voles Myodes rutilus and grey-sided voles M. rufocanus were trapped in the subarctic birch forest along three fjords over five years. Along each fjord, there were four or five altitudinal transects each with five trapping stations. Spring and fall population densities were estimated from mark–recapture data. Grey-sided voles exhibited higher amplitude density fluctuations than red voles. Polymorphism at eight or nine microsatellite loci, determined in 1228 voles, was used to estimate local genetic diversity and differentiation among samples. Genetic diversity was higher in grey-sided voles than in red voles. Spring densities had no effect on local genetic diversity or on differentiation. The amplitude of density fluctuations and the extent of favorable habitat (sub-arctic birch forest) surrounding each site had a positive effect on genetic diversity, and the amplitude of density fluctuations had a negative effect on differentiation in red voles, for which fluctuating populations were compared with more stable populations. The harmonic mean of densities, reflecting average population sizes, had a negative effect on genetic diversity in red voles, but a positive effect in grey-sided voles, for which only fluctuating populations were compared. No other effects were significant for grey-sided voles. A temporal assignment test showed that the spatial structure was more stable in time for populations with more stable population dynamics. Altogether our results suggest that high amplitude density fluctuations lead to more gene flow and higher genetic diversity in vole populations.  相似文献   

16.
17.
本研究在野外围栏条件下采用析因实验设计,测定营养、捕食及空间行为对根田鼠(Mi-crotusoeconomus)种群统计特征的影响。本文旨在检验下述特定假设:高质量食物可利用性和捕食对限制小型啮齿动物种群密度具有独立的和累加的效应。3年期间,4种野外实验处理6个重复的研究结果表明,附加食物并预防捕食者处理的种群具有最高密度;未附加食物及不预防捕食者处理(对照)的种群密度最低;而单一处理的种群,其密度居中。不同处理条件下,新生个体在种群的补充模式以及种群瞬时增长率的变化均与种群密度的变动相应一致。双因素ANOVA的结果证明,附加高质量食物能明显地提高根田鼠的种群密度,而对种群补充量的作用则较弱,仅接近显著水平;预防捕食者不仅能显著地作用于种群密度,更能强烈地影响种群补充量。高质量食物和捕食者的作用具有累加的性质,两者的交互作用对种群密度和补充量均无显著影响。  相似文献   

18.
Ian R.  Swingland  Malcolm  Coe 《Journal of Zoology》1978,186(3):285-309
A two-year reproduction study of three isolated populations of different densities of the Aldabra Giant tortoise ( Geochelone gigantea Schweigger) showed dissimilarity in gonadal parameters; (i) as population density increased age at sexual maturity was delayed in males and females; (ii) although the mean number of mature follicles was similar in all populations, preovulatory follicular atresia was only found in the high density population; (iii) annual variation in preovulatory follicular atresia was dependent on rainfall and food availability; (iv) the number of clutches laid/♀/year decreased with increasing population density as did clutch size; in the high density population (and depending on rainfall) only 30–80% of the mature females bred. The discussion considered the importance of movement in determining survival/reproduction.  相似文献   

19.
A 3-yr project was initiated in 1993 to examine the effects of insecticides and sustained whitefly, Bemisia argentifolii Bellows & Perring [aka. B tabaci Gennadius (Strain B)], feeding on alfalfa plant growth and vigor in greenhouse cage studies, and to determine the impact of natural Bemisia whitefly populations on alfalfa forage yields and quality in a large-plot field experiment. Alfalfa plant growth and vigor after exposure to imidacloprid and a mixture of fenpropathrin and acephate insecticides did not differ from untreated plants in the greenhouse. Consequently, foliar and soil applied insecticides were used to manipulate whitefly densities on alfalfa plants to measure whitefly feeding effects on plant growth and forage yield. Heavy whitefly densities on untreated alfalfa plants in the greenhouse resulted in significant reductions in relative growth rates and net assimilation rates as compared with imidacloprid-treated plants that were maintained relatively whitefly-free. Reductions in alfalfa plant growth measured between infested and treated plants were proportional to whitefly densities. Field plot results derived from three crop seasons were relatively consistent with our greenhouse trials. Both experimental approaches clearly showed that alfalfa plants exposed to high densities of whitefly immatures and adults grew at a significantly slower rate and produced less foliage. As a result of reduced growth rates, alfalfa maturity in the naturally infested plots was estimated to be approximately 7-10 d behind managed plots. Delays in maturity resulted in significant reductions in forage yields of 13-18% during August-September harvests when whitefly populations reached peak abundance. Whitefly feeding stresses also effected hay quality through the reduction of crude protein content and contamination of foliage with honeydew and sooty mold. The status of the Bemisia whiteflies as an economic pest to alfalfa is clearly evident from these studies, but the damage potential of whiteflies in the southwestern United States appears to be restricted to one or two harvest periods during the summer coinciding with peak adult populations and their dispersal from alternate host crops.  相似文献   

20.
Understanding the factors that drive species population dynamics is fundamental to biology. Cyclic populations of microtine rodents have been the most intensively studied to date, yet there remains great uncertainty over the mechanisms determining the dynamics of most of these populations. For one such population, we present preliminary evidence for a novel mechanism by which herbivore-induced reductions in plant quality alter herbivore life-history parameters and subsequent population growth. We tested the effect of high silica levels on the population growth and individual performance of voles (Microtus agrestis) reared on their winter food plant (Deschampsia caespitosa). In sites where the vole population density was high, silica levels in D. caespitosa leaves collected several months later were also high and vole populations subsequently declined; in sites where the vole densities were low, levels of silica were low and population density increased. High silica levels in their food reduced vole body mass by 0.5% a day. We argue that silica-based defences in grasses may play a key role in driving vole population cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号