首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Predation impacts by introduced predators are predicted to be most intense in island ecosystems, and also variable depending on environmental conditions, but large-scale experimental field testing is rare. In this study we examine the factors that determine the distribution and abundance of vole metapopulations preyed upon by feral American mink Mustela vison in the outer Finnish archipelago of the Baltic Sea. Specifically, we follow the dynamics of field voles Microtus agrestis and bank voles Clethrionomys glareolus on 40 small islands under variable rainfall as part of a large-scale mink removal experiment. For both vole species occupancy rates were negatively influenced by island isolation, as were extinction events for field voles. High summer rainfall in 1998 corresponded to large vole populations where mink were absent, populations that then crashed in 1999 and 2000 when below average rains fell during the summer breeding season. Where mink were present however, vole abundance remained more constant between years with no boom-bust apparent. We conclude that weather and predation may drive vole abundance whereas habitat patchiness and metapopulation processes more strongly drive vole distributions. There may also be potential for interaction between these factors: because feral mink prevent rapid vole population growth after good summer rains, and vole dispersal is influenced by population size, feral mink may be changing vole dispersal patterns to disrupt the natural metapopulation dynamic. Hence this indirect impact of mink could lead to gradual erosion of vole populations in the outer archipelago by reducing recolonisation processes.  相似文献   

2.
1. Nonlethal predation effects may have stronger impacts on prey populations than direct predation impacts, and this should also apply to intraguild predation. The consequences of such interactions become especially important if invasive, and potentially destructive alien predators act as intraguild prey. 2. We studied the predation-risk impacts of a re-colonizing native top predator, Haliaeetus albicilla (white-tailed sea eagle), on the movements of Mustela vison (American mink), an alien predator in Europe. We radiocollared 20 mink in two study areas in the outer archipelago of the Baltic Sea, South-west Finland, during 2004 and 2005. In the archipelago, mink home ranges incorporate many islands, and mink are most predisposed to eagle predation while swimming between islands. Observed swimming distances of mink were compared to distances expected at random, and deviations from random swimming were explained by mink distance from nearest eagle nest, number of eagle observations near mink location, and mink home-range size. 3. Mink reduced their swimming distances with increasing sea eagle predation risk: for females, the reduction was 10% for an increase of 10 eagle observations, and 5% for each kilometre towards an eagle nest. Conclusions for males were restricted by their small sample size. 4. Our results suggest that female mink modify their behaviour according to eagle predation risk, which may reduce their population growth and have long-term cascading effects on lower trophic levels including bird, mammal and amphibian populations in the archipelago. Ecosystem restoration by bringing back the top predators may be one way of mitigating alien predator effects on native biota.  相似文献   

3.
洞庭湖区东方田鼠的食物组成调查   总被引:22,自引:5,他引:17  
吴林  张美文 《兽类学报》1998,18(4):282-291
采用胃内容物显微组织学鉴定法,定量调查了洞庭湖区东方田鼠(Microtusfortiscalamo-rum)的食物组成。该鼠的主要食物,在苔草地是苔草和水田碎米荠,在芦荻场是碎米荠、苦草、荻和镜子苔,在稻田区是水稻和双穗雀稗,在岗地是三毛草、一年蓬、千金子和水稻。植物叶片是其主要利用对象,在绿色食物资源不足的情况下,也取食植物种子。其食物组成的变化表明,该鼠能依不同栖息地的植被结构调整摄食对象,因而能适应湖区生活环境的灾变性变化。  相似文献   

4.
Alien predators have been recognised as one possible cause for amphibian declines around the world, but little is known of habitat-mediated predation impacts especially on adult amphibians. We studied common frog Rana temporaria under American mink Mustela vison predation in the outer archipelago of the Baltic Sea, south-western Finland. Using egg batches as an index of breeding frog female numbers we compared frog numbers and densities between a large, long-term mink-removal area and a comparable control area. Frog numbers in the removal area were at least 2.7-fold higher than those in the control area. In the presence of mink, frog densities increased with the amount of vegetation cover on the islands, indicating that mink predation affected frog densities especially on less-vegetated islands. An opposite trend appeared to be true for frogs in the mink-removal area, where other predators like snakes could induce a decline of frog densities on more vegetated islands. Shrub or grass vegetation seems to provide frogs shelter against alien mink predation. Our result highlights the importance of landscape-level habitat management as a conservation tool for amphibian populations.  相似文献   

5.
Diet composition of a generalist predator, the red fox (Vulpes vulpes) in relation to season (winter or summer) and abundance of multi-annually cyclic voles was studied in western Finland from 1983 to 1995. The proportion of scats (PS; a total of 58 scats) including each food category was calculated for each prey group. Microtus voles (the field vole M. agrestis and the sibling vole M. rossiaemeridionalis) were the main prey group of foxes (PS = 0.55) and they frequently occurred in the scats both in the winter and summer (PSs 0.50 and 0.62, respectively). There was a positive correlation between the PSs of Microtus voles in the winter diet of foxes and the density indices of these voles in the previous autumn. Other microtine rodents (the bank vole Clethrionomys glareolus, the water vole Arvicola terrestris and the muskrat Ondatra zibethicus) were consumed more in winter than in summer. The unusually high small mustelid predation by red foxes (PS = approx. 0.10) in our study area gives qualitative support for the hypothesis on the limiting impact of mammalian predators on least weasel and stoat populations. None of the important prey groups was preyed upon more at low than at high densities of main prey (Microtus voles). This is consistent with the notion that red foxes are generalist predators that tend to opportunistically subsist on many prey groups. Among these prey groups, particularly hares and birds (including grouse), were frequently used as food by foxes.  相似文献   

6.
Changes in carnivore abundance can alter the distribution and abundance of plants on a community wide basis, an effect known as a trophic cascade. Because alien predators can have a disproportionate impact, compared to native predators, on herbivore populations, they may induce stronger trophic cascades in plant communities than native predators. We studied the indirect effects of the removal of an alien predator, the American mink Mustela vison on plant communities on small islands in the Baltic Sea, SW Finland. Mink had been removed from a group of islands for 12 yr, while another group of islands with mink presence served as a control area. Field voles Microtus agrestis and bank voles Myodes glareolus exert strong grazing pressure on the island vegetation and are an important part of mink diet. On nine islands of the mink removal area and five islands of the control area we studied the vegetation in ten randomly chosen plots; five in herbaceous and five in woody (i.e. dwarf shrub) vegetation. We studied the cascading impacts of mink predation on grassy and woody vegetation using the Shannon diversity and equitability indices and comparing abundances of different species between mink removal and control islands. Diversity and equitability of plant communities were higher on mink removal islands. In grassy patches, abundances of several species differed between mink removal and control islands. Our results demonstrate, for the first time, that alien predator removal may induce a trophic cascade on small islands.  相似文献   

7.
Vole–vegetation interactions in a predation‐free taiga environment of northern Fennoscandia were studied by transferring vegetation from natural Microtus habitats into a greenhouse, where three habitat islands of about 30 m2 were created. The ‘islands’ were subjected to simulated summer conditions and a paired female field vole, Microtusagrestis, was introduced to each ‘island’. The development of the female and her young was followed by recurrent live trapping. The development of the vegetation was followed by recurrent marking and censusing of plant shoots at intervals of five days. In the next growing season, two ‘islands’ were subjected to a new grazing treatment to study the impacts of repeated grazing on the vegetation and on the growth and reproduction of voles. Plant biomasses were harvested at the end of each trial. In all trials, the biomasses of graminoids and non‐toxic herbs other than ferns, fireweeds and rosaceous plants were profoundly decimated. Even the biomass of a toxic herb Aconitum lycoctonum decreased largely at pace with the palatable herbs. The least preferred plant categories maintained their biomasses at control levels. Their neutral collective response was created by opposite species‐level trends. Species typical for moist and nutrient‐rich forests suffered from vole grazing, whereas the biomass of species adapted to disturbed habitats increased. In spite of the dramatic changes in the vegetation, the introduced female voles survived throughout the trials and reproduced normally. The young of their first litters survived well and reached the final weights typical for individuals starting to winter as immatures. We conclude that most of the plant biomass found on productive boreal forest floors is potential food for field voles and remains palatable for them even when subjected to recurrent, severe grazing. If nothing else than summer resources were limiting the growth of the field vole populations, the plants currently dominating moist and nutrient‐rich taiga floors could not survive in this habitat.  相似文献   

8.
Interspecific competition is usually understood as different species competing directly with each other for limited resources. However, predators can alter such competitive interactions substantially. Predation can promote the coexistence of species in a situation where it would otherwise be impossible, for example if a tradeoff between the competitive abilities and predation resistance of the prey species exists. The field vole Microtus agrestis and the sibling vole M. rossiaemeridionalis are sympatric grassland species, which compete for the same resources. At the population level sibling voles are suggested to be superior competitors to field voles, yet more vulnerable to predation. We tested the effects of predation on the two species in 0.5 ha outdoor enclosures by exposing vole populations to radio-collared freely-hunting least weasels Mustela nivalis nivalis for three weeks. Lethal and non-lethal impacts of predation limited population densities of both species during and after the experimental period, but the effect was more pronounced in sibling voles in which population densities decreased markedly during the treatment period and even after that. Field vole population densities remained stable under weasel predation, while densities increased in controls. Survival in both species was lower in treatment populations compared to controls, but the effect tended to be more pronounced in sibling voles and in females of both species. The average mass of adults in both species declined in the treatment populations. These results suggest that predation by least weasels can limit vole populations locally, even during favourable summer conditions, and have extended negative effects on the dynamics of vole populations. In addition, predation alleviated interspecific competition between the vole species and is, therefore, a potential factor enabling the coexistence of them.  相似文献   

9.
Three mechanisms have been proposed to induce spatial synchrony in fluctuations of small mammal populations: climate‐related environmental effects, predation and dispersal. We conducted a field experiment in western Finland to evaluate the relative roles of these mechanisms in inducing spatial synchrony among cyclic populations of field voles Microtus agrestis. The study was conducted during the increase and peak phases of a vole population cycle on four agricultural field sites situated 1.5–7.0 km apart. Each field contained two 0.5‐ha fenced enclosures and one 1‐ha unfenced control area. One enclosure per field allowed access by small mustelid predators and the other by avian predators; all enclosures prevented the dispersal of voles. The unfenced control areas allowed access by all predators as well as dispersal by voles. Enclosed vole populations were in a treatment‐wise asynchronous phase before the predator access treatments were applied. The growth rates of all enclosed populations were tightly synchronized during the course of the experiment. Conversely, synchrony both among the unfenced populations and between the fenced and unfenced populations was practically non‐existent. During winter, in the increase phase of the cycle, vole populations in all treatments declined to low densities due to a seasonal effect of winter food depletion. During summer, in the peak year of the vole cycle, all populations fluctuated in synchrony. At this time, both small mustelids and birds of prey appeared to be abundant enough to induce synchrony. Dispersal was identified as a potential contributor to synchronization, but the magnitude of its effects could not be reliably discerned. Our results indicate that no single mechanism can account for the observed patterns of spatial synchrony among cyclic northern vole populations. Rather, spatial synchronization is induced by different mechanisms, namely seasonality and predation, acting successively during different seasons and phases of the vole cycle.  相似文献   

10.
Pronounced population cycles are characteristic of many herbivorous small mammals in northern latitudes. Although delayed density-dependent effects of predation and food shortage are often proposed as factors driving population cycles, firm evidence for causality is rare because sufficiently replicated, large-scale field experiments are lacking. We conducted two experiments on Microtus voles in four large predator-proof enclosures and four unfenced control areas in western Finland. Predator exclusion induced rapid population growth and increased the peak abundance of voles over 20-fold until the enclosed populations crashed during the second winter due to food shortage. Thereafter, voles introduced to enclosures which had suffered heavy grazing increased to higher densities than voles in previously ungrazed control areas which were exposed to predators. We concluded that predation inhibits an increase in vole populations until predation pressure declines, thus maintaining the low phase of the cycle, but also that population cycles in voles are not primarily driven by plant-herbivore interactions.  相似文献   

11.
We studied the indirect effects of vertebrate predator exclusion on plant communities in boreal grassland in western Finland to find out whether the removal of the top trophic level would result in a trophic cascade. Predators were excluded from 1996 to 2000 by eight predator-proof fences (each 0.5 ha) constructed on old fields. Despite a major increase in vole densities, the expected trophic cascade attenuated rapidly so that the indirect effects of predator exclusion were restricted to a few plant species. The cause for the rapid attenuation of the trophic cascade appeared to be strong seasonality, as peak densities of voles were attained at the end of the growing season of vegetation, and vole populations declined before the next growing season so that the herbivory pressure during the growing season remained low or moderate. Accordingly, most plants escaped the heaviest grazing pressure either in time (plants completed their reproduction and withered before winter) or in space (living parts hidden under frozen ground and ice). However, heavy winter herbivory reduced the biomass of available vegetation and killed woody species (willows) at vole peaks, which implies that predator exclusion may have a strong effect on secondary succession. During summer, voles reduced the coverage of only a few preferred food plants ( Elymus repens , Phleum pratense , Vicia cracca ). Voles also maintained annual and biennial species in the community by creating gaps in the closed vegetation. We conclude that abiotic factors (harsh winter conditions) limited peak numbers of herbivores below a threshold density where herbivores could have caused a community-level decline in the biomass of herbaceous plants during summer.  相似文献   

12.
Eccard JA  Fey K  Caspers BA  Ylönen H 《Oecologia》2011,167(3):623-633
Indirect resource competition and interference are widely occurring mechanisms of interspecific interactions. We have studied the seasonal expression of these two interaction types within a two-species, boreal small mammal system. Seasons differ by resource availability, individual breeding state and intraspecific social system. Live-trapping methods were used to monitor space use and reproduction in 14 experimental populations of bank voles Myodes glareolus in large outdoor enclosures with and without a dominant competitor, the field vole Microtus agrestis. We further compared vole behaviour using staged dyadic encounters in neutral arenas in both seasons. Survival of the non-breeding overwintering bank voles was not affected by competition. In the spring, the numbers of male bank voles, but not of females, were reduced significantly in the competition populations. Bank vole home ranges expanded with vole density in the presence of competitors, indicating food limitation. A comparison of behaviour between seasons based on an analysis of similarity revealed an avoidance of costly aggression against opponents, independent of species. Interactions were more aggressive during the summer than during the winter, and heterospecific encounters were more aggressive than conspecific encounters. Based on these results, we suggest that interaction types and their respective mechanisms are not either-or categories and may change over the seasons. During the winter, energy constraints and thermoregulatory needs decrease direct aggression, but food constraints increase indirect resource competition. Direct interference appears in the summer, probably triggered by each individual's reproductive and hormonal state and the defence of offspring against conspecific and heterospecific intruders. Both interaction forms overlap in the spring, possibly contributing to spring declines in the numbers of subordinate species.  相似文献   

13.
The cyclic population dynamics of vole and predator communities is a key phenomenon in northern ecosystems, and it appears to be influenced by climate change. Reports of collapsing rodent cycles have attributed the changes to warmer winters, which weaken the interaction between voles and their specialist subnivean predators. Using population data collected throughout Finland during 1986–2011, we analyse the spatio-temporal variation in the interactions between populations of voles and specialist, generalist and avian predators, and investigate by simulations the roles of the different predators in the vole cycle. We test the hypothesis that vole population cyclicity is dependent on predator–prey interactions during winter. Our results support the importance of the small mustelids for the vole cycle. However, weakening specialist predation during winters, or an increase in generalist predation, was not associated with the loss of cyclicity. Strengthening of delayed density dependence coincided with strengthening small mustelid influence on the summer population growth rates of voles. In conclusion, a strong impact of small mustelids during summers appears highly influential to vole population dynamics, and deteriorating winter conditions are not a viable explanation for collapsing small mammal population cycles.  相似文献   

14.
The grey-sided vole (Clethrionomys rufocanus) is distributed over the entire island of Hokkaido, Japan, across which it exhibits multi-annual density cycles in only parts of the island (the north-eastern part); in the remaining part of the island, only seasonal density changes occur. Using annual sampling of 189 grey-sided vole populations, we deduced the geographical structure in their second-order density dependence. Building upon our earlier suggestion, we deduce the seasonal density-dependent structure for these populations. Strong direct and delayed density dependence is found to occur during winter, whereas no density dependence is seen during the summer period. The direct density dependence during winter may be seen as a result of food being limited during that season: the delayed density dependence during the winter is consistent with vole-specialized predators (e.g. the least weasel) responding to vole densities so as to have a negative effect on the net growth rate of voles in the following year. We conclude that the observed geographical structure of the population dynamics may be properly seen as a result of the length of the summer in interaction with the differential seasonal density-dependent structure. Altogether, this indicates that the geographical pattern in multi-annual density dynamics in the grey-sided vole may be a result of seasonal forcing.  相似文献   

15.
Summary In northern Fennoscandia, microtine rodent populations fluctuate cyclically. The environment of an individual vole can be considered to be predictable when the risks of predation and intra- and interspecific competition change with the cycle, such that both are high during the population highs of voles. The risk of predation is also high during the vole crash. After the crash, the vole population is characterized by low intra- and interspecific competition and low predation pressure. The main predators affecting voles during the crash are the small mustelids, least weasel and stoat. The density of these specialist predators declines drastically during the winter after the vole crash. We studied experimentally the impact of the perceived presence of stoats on the breeding and mating behaviour of voles. In a series of breeding experiments with bank voles,Clethrionomys glareolus, both old and young females suppressed breeding when exposed to the odour of stoats,Mustela erminea. The weights of females decreased in both experimental and control groups, but more among the voles under odour exposition. It seems that females actively avoided copulations under high predation risk and that breeding suppression is mediated by a change in female mating behaviour. There was no change in male behaviour or physical condition between the experimental and control treatments. An alternative mechanism for the observed breeding suppression could be the one caused by decreased feeding in females mediated with low energy intake which does not allow breeding. Regardless of its mechanism, delay of breeding should increase the probability of non-breeding females to survive to the next breeding season. The females surviving the crash should gain a strong selective advantage in a predator-free environment of the subsequent breeding season, which could explain the adaptive function of this antipredatory strategy.  相似文献   

16.
Fox predation on cyclic field vole populations in Britain   总被引:3,自引:0,他引:3  
The diet of the red fox Vulpes vulpes L. was studied during three winter periods in spruce pklantations in Britain, during which time the cyclic field vole Microtus agrestis L. populations varied in abundance. Field voles and roe deer Capreolus capreolus L. were the two main prey species in the diet of the red fox. The contribution of lagomorphs to fox diet never exceeded 35% and species of small mammal other than field voles were of minor importance. The contribution of field voles was dependent on vole density. The non-linear density dependent relationship with a rather abrupt increase of field voles in fox did when vole density exceeded ca 100 voles ha−1 was consistent with a prey-switching response. The contribution of field voles to fox diet during the low phase of population cycles was lower in Kielder Forest than in other ecosystems with cyclic vole populations. The number of foxes killed annually by forestry rangers was consistent with the evidence from other studies that foxes preying on cyclic small rodents might show a delayed numerical response to changes in vole abundance. Estimates of the maximum predation rate of the fox alone (200–290 voles ha−1 of vole habitat year−1) was well above a previously predicted value for the whole generalist predator community in Kielder Forest. Our data on the functional response of red foxes and estimates of their predation rates suggest that foxes should have a strong stabilising impact on vole populations, yet voles show characteristic 3-4 yr cycles.  相似文献   

17.
Theoretical models predict that a delayed density-dependent mortality factor with a time lag of ca 9 months is able to drive 3–5-yr population cycles of northern voles. We studied numerical responses of predators in western Finland during 1986–92, in an area with 3-yr population cycles of voles. Abundances of small mammals were monitored in several farmland areas (each 3 km2) by snap-trapping in April, June, August, and October (only in 1986–90), and the abundances of avian, mammalian, and reptilian predators by visual censuses during trapping occasions. The 3-yr cycle studied was a cycle of Microtus voles (field vole M. agrestis and sibling vole M. rossiaemeridionalis ) and their small-sized predators (small mustelids and vole-eating birds of prey). The numerical responses of both migratory avian predators and small mustelids to changes in vole densities were more alike than different. In late summer (August), the time lag in the numerical response of all main predators was short (0–4 months), whereas longer time lags prevailed from spring to early summer. The length of the time lag in spring appeared to be related to the length of the winter, which indicates that strong seasonality may create longer time lags to the numerical response of predators at northern latitudes than at more southern latitudes. Our results suggest that, from spring to early summer, predation by migratory avian predators may act in concordance with mustelid predation to produce the long time lag necessary to drive the 3-yr cycle of voles, whereas almost direct density-dependent predation by all major predators in late summer may dampen spatial variation in prey densities.  相似文献   

18.
Howe HF 《Oecologia》2008,157(2):279-286
It is not clear how plant species preferred as forage by rodents persist in prairie vegetation. To test permanence of suppression of wet-mesic prairie vegetation by vole (Microtus pennsylvanicus) herbivory in synthetic experimental communities, access treatments were reversed after 9 years of vole exclusion or access. Between 1996 and 2004, rye grass Elymus virginicus (Poaceae) and tick-trefoil Desmodium canadense (Fabaceae) achieved mean cover of up to 30 and 25%, respectively, in plots where voles were excluded, but disappeared from plots where voles had access. To determine whether these species remained vulnerable to vole herbivory as established adults, and to determine whether the species could recover if vole herbivory were removed, access treatments were reversed at the end of the 2004 growing season and monitored through 2007. Repeated measures ANOVA demonstrated dramatic vole suppression of established E. virginicus, but not D. canadense, indicating continuing vulnerability of the grass but not of the adult legume. Release from vole herbivory resulted in re-growth of rye, but not tick-trefoil, which was apparently suppressed by established vegetation. Two additional common planted species did not respond to treatment reversal, nor did 11 much less common planted species that comprised a minor portion of the vegetation. Dominant perennial black-eyed Susan Rudbeckia subtomentosa (Asteraceae) did not change in plant numbers by year or treatment, but expanded or contracted in stems per plant and cover as E. virginicus was suppressed or released by vole herbivory or its absence. Results indicate that preferred food plants may persist through capacity to quickly recover during periods of relative vole scarcity, or reach a refuge in maturity.  相似文献   

19.
We studied the predation rate and prey selection of the least weasel ( Mustela nivalis nivalis ) on its two most common prey species in boreal environments, the bank vole ( Clethrionomys glareolus ) and the field vole ( Microtus agrestis ), in large outdoor enclosures. We also studied the response of weasels to odours of the two species in the laboratory. The enclosure experiment was conducted using constant vole densities (16 voles/ha) but with varying relative abundance of the two species. Weasels showed higher predation rates on bank voles, and males had higher predation rate than females. Females killed disproportionately more of the more abundant prey species, but they preferred bank voles to field voles when both were equally available. Overall, the predation rate also increased with increasing abundance of bank voles. Therefore our results are in agreement with earlier laboratory results showing preference for bank voles, even if no intrinsic preference for odours of either species was observed in our laboratory study. We suggest that the least weasel hunts according to prey availability, prey aggregation and suitability of hunting habitat, and that this causes the observed dependence of least weasels on field voles and emphasises the role of the field vole in the vole-weasel interaction in cyclic vole populations. Furthermore, our results suggest that predation by weasels may facilitate the coexistence of the two vole species via predator switching, and that it may cause the observed synchrony in dynamics between vole species.  相似文献   

20.
In the U.K. the impact of introduced American mink Mustela vison , on water voles Arvicola terrestris , may be exacerbated by habitat loss and fragmentation. Pristine wetlands in Belarus, which American mink invaded in the early 1990s, provide a three-pronged opportunity to test this hypothesis. First, we examine the evidence that, even in the unmanaged wetlands of our Belarussian study site, American mink have reduced water vole populations. Second, we ask whether habitat size, type and isolation mitigate the impact of American mink predation. Thirdly, we explore whether water voles are at greater risk of predation from American than European mink because of their patterns of habitat use. Following the invasion of American mink, water voles were most abundant in small, still-water sites, far from river banks, while American mink were most active in large, running-water sites. Small mammal remains were found in a higher percentage of American than European mink scats, and of these, more were water vole in American mink scats. The occurrence of water voles in scats of both mink species declined after the American mink invaded and established. Our results provide at least circumstantial evidence that American mink limit water vole populations even in unmanaged wetland eco-systems, and that they have a greater impact than their European congener at least partly because they make greater use of isolated marshes. Although by no means providing complete protection, the configuration and dispersion of available habitat mitigated the impact of American mink on water voles. This raises the possibility that habitat restoration, especially through the establishment of isolated enclaves, could help reduce the effect of American mink in the U.K. These observations are of broader interest in the context of assessing the effect of multiple pressures on vulnerable species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号