首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
MAPK信号转导通路对炎证反应的调控   总被引:26,自引:2,他引:24  
Jiang Y  Gong XW 《生理学报》2000,52(4):267-271
丝裂原活化蛋白激酶(mitohen-actevatcd protein kinasa,MAPK)是生物体内重要的信号转导系统之一,参与介导生长、发育、化裂、分化、死亡以及细胞间的功能同步等多种细胞过程,在哺乳动物细胞中已发现和克隆了ERK、JNK/SAPK、p38/RK、ERK5/BMK1四个MAPK亚族。这些MAPK能被多种炎性刺激所激活,并对炎症的发生、发展起生重要调控作用。研究感染和炎症反应  相似文献   

2.
细胞表面受体到核的信号通路是现代生物学研究的主题之一。细胞外各种刺激通过和膜受体偶联的G蛋白和酪氨酸激酶介导了一系列丝氨酸/苏氨酸激酶介导的级联反应,即分裂原激活蛋白激酶(MAPK)级联反应。MAPK级联反应把细胞外信号传递到核,并汇总了各种信号通路来的传息,因此研究细胞内MAPK的信号通路是十分重要的.本文简要介绍了ERK,JNK和p38三种MAPK途径,着重叙述了p38MAPK信号途径的性质和功能以及在免疫细胞中的作用和某些疾病的临床关系。  相似文献   

3.
参与细胞凋亡的丝裂原活化蛋白激酶及其作用机制   总被引:4,自引:0,他引:4  
Zheng M  Han QD 《生理科学进展》2000,31(2):157-160
丝裂原活化蛋白激酶家族(MAPKs)参与细胞调亡的信号转导过程。在多数细胞中,JNK/SAPKs和p38诱导细胞调亡,ERK促进细胞增殖;但在另一些细胞中则情况相反。MAPKs途径与死亡受体途径之间存在一定的联系,它们间的交互作用尚待一步研究。  相似文献   

4.
酵母HOG途径与甘油合成   总被引:2,自引:0,他引:2  
MAPKs(MitogenactivatedProteinKinases)及其上游调节激酶共同组成一个功能单位,作为上游输入信号与多种输出信号间连接的桥梁。MAPK激酶或MEK(即MAPK/ERK激酶)是MAPK所具有的一个调节激酶,为MAPK的活...  相似文献   

5.
应激活化的蛋白激酶在神经酰胺介导细胞凋亡中的作用   总被引:1,自引:0,他引:1  
第二信使神经酰胺激活SAP/JNK,活化的SAPK/JNK导致AP-1转录因子磷酸化,AP-1刺激自身表达,增强自身活性,介导细胞凋亡,神经酰胺及其代谢产物鞘氨醇和鞘氨醇-1磷酸酯分别激活JNK-p38路径和ERK路径,调节细胞增殖,分化或凋亡。  相似文献   

6.
巨噬细胞免疫调变信号:Raf—1,MAPKp44,MAPKp42和p38MAPK的研究   总被引:1,自引:0,他引:1  
为了了解巨噬细胞免疫调变机理,我们应用LPS和PMA处理小鼠抑制性巨噬细胞,观察到Ras下游信号分子AF-1,分裂原激活蛋白激酶MAPKp44,MAPKp42和p38MAPK均被活化,发现forskolin能增强p38MAPK的活性,进一步提示PKC和PAK途径增强了p38MAPK的磷酸化效应,为我们了解LPS如何激活p38MAPK信号通路提供了一个新的机会/  相似文献   

7.
RSK2偶联丝裂素活化蛋白激酶(MAPK)转导基因表达信号MAPK途径是介导多种生长因子引起细胞增殖分化的共同通路。当生长因子携带的信息传入细胞膜后,经一系列的磷酸化反应,激活MAPK,活化的MAPK依次从胞浆转位入细胞核,激活(磷酸化)转录因子EL...  相似文献   

8.
细胞信号转导分子在TNF—α诱导c—jun基因表达中的作用   总被引:2,自引:0,他引:2  
前期研究表明p38丝裂原活化蛋白激酶(MAPK)通过磷酸化心肌细胞增强因子2(myocyte enhancer factor2,MEF2)转录因子家族成员调节c-Jun蛋白表达。c-jun的启动子区存在MEF2位点,MEF2转录因子家族成员以同源或异源二聚体形式与其结合。研究了p38和BMK1(big MAP kinase1)在TNF-α诱导c-jun基因表达中的调控作用。p38上调MEF2A的转  相似文献   

9.
神经酰胺:细胞凋亡信号转号的第二信使分子   总被引:2,自引:0,他引:2  
神经酰胺是细胞凋亡信号调控中的一个第二信使因子,许多应激刺激能激活神经鞘磷脂循环产生神经酰胺诱导多种细胞体系发生凋亡。神经酰胺介导细胞凋亡的机理尚未完全明了,可能是通过多个下游靶分子包括CAPK,CAKK,PKC,SAPK/JNK,CPP32,Bcl-2以及Ras-RaclJNK/p38-K→GADD153信号传导链等作用于不同的信号转导途径而诱导细胞凋亡的。  相似文献   

10.
MKP—1在血管紧张素Ⅱ导致心肌肥大反应中的调控作用   总被引:2,自引:0,他引:2  
Liu PQ  Lu W  Wang TH  Pan JY 《生理学报》2000,52(5):365-370
本研究主要从丝裂原活化蛋白激酶磷酸酶-1(MKP-1)角度,研究丝裂原活化蛋白激酶(MAPK)信号途径在血管紧张素Ⅱ介导的新生大鼠心肌细胞肥大反应中的作用及调控机制。实验以心肌细胞蛋白合成速率、蛋白含量及细胞表面积作为心肌肥大反应的指标,以凝胶内MBP原位磷酸化测定MAPK活性,以免疫印迹法(Western boltting)分别测定MKP-1及磷酸化p44MAPK、p42MAPK蛋白表达。结果发  相似文献   

11.
The kidney medulla is exposed to very high interstitial osmolarity leading to the activation of mitogen-activated protein kinases (MAPK). However, the respective roles of increased intracellular osmolality and of cell shrinkage in MAPK activation are not known. Similarly, the participation of MAPK in the regulatory volume increase (RVI) following cell shrinkage remains to be investigated. In the rat medullary thick ascending limb of Henle (MTAL), extracellular hypertonicity produced by addition of NaCl or sucrose increased the phosphorylation level of extracellular signal-regulated kinase (ERK) and p38 kinase and to a lesser extent c-Jun NH(2)-terminal kinase with sucrose only. Both hypertonic solutions decreased the MTAL cellular volume in a dose- and time-dependent manner. In contrast, hypertonic urea had no effect. The extent of MAPK activation was correlated with the extent of MTAL cellular volume decrease. Increasing intracellular osmolality without modifying cellular volume did not activate MAPK, whereas cell shrinkage without variation in osmolality activated both ERK and p38. In the presence of 600 mosmol/liter NaCl, the maximal cell shrinkage was observed after 10 min at 37 degrees C and the MTAL cellular volume was reduced to 70% of its initial value. Then, RVI occurred and the cellular volume progressively recovered to reach about 90% of its initial value after 30 min. SB203580, a specific inhibitor of p38, almost completely inhibited the cellular volume recovery, whereas inhibition of ERK did not alter RVI. In conclusion, in rat MTAL: 1) cell shrinkage, but not intracellular hyperosmolality, triggers the activation of both ERK and p38 kinase in response to extracellular hypertonicity; and 2) RVI is dependent on p38 kinase activation.  相似文献   

12.
13.
The p38 mitogen-activated protein kinase (MAPK) cascade transduces multiple extracellular signals from cell surface to nucleus and is employed in cellular responses to cellular stresses and apoptotic regulation. The involvement of the p38 MAPK cascade in opioid- and opioid receptor-like receptor-1 (ORL1) receptor-mediated signal transduction was examined in NG108-15 neuroblastoma x glioma hybrid cells. Stimulation of endogenous delta-opioid receptor (DOR) or ORL1 resulted in activation of p38 MAPK. It also induced the activation of extracellular signal-regulated kinases (ERKs), another member of the MAPK family, with slower kinetics. Activation of p38 MAPK was abolished by selective antagonists of DOR or ORL1, pretreatment with pertussis toxin, or SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK had no significant effect on opioid-induced ERK activation, indicating that p38 MAPK activity was not required for ERK activation, though its stimulation preceded ERK activation. Inhibition of protein kinase A (PKA) strongly diminished p38 activation mediated by DOR or ORL1 but had no significant effect on ERK activation, and protein kinase C (PKC) inhibitors potentiated stimulation of p38 while inhibiting activation of ERKs. Taken together, our results provide the first evidence for coupling of DOR and ORL1 to the p38 MAPK cascade and clearly demonstrate that receptor-mediated activation of p38 MAPK both involves PKA and is negatively regulated by PKC.  相似文献   

14.
Apoptosis was induced in human glioma cell lines by exposure to 100 nM calphostin C, a specific inhibitor of protein kinase C. Calphostin C-induced apoptosis was associated with synchronous down-regulation of Bcl-2 and Bcl-xL as well as activation of caspase-3 but not caspase-1. The exposure to calphostin C led to activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) and p38 kinase and concurrent inhibition of extracellular signal-regulated kinase (ERK). Upstream of ERK, Shc was shown to be activated, but its downstream Raf1 and ERK were inhibited. The pretreatment with acetyl-Tyr-Val-Ala-Asp-aldehyde, a relatively selective inhibitor of caspase-3, or benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD.fmk), a broad spectrum caspase inhibitor, similarly inhibited calphostin C-induced activation of SAPK/JNK and p38 kinase as well as apoptotic nuclear damages (chromatin condensation and DNA fragmentation) and cell shrinkage, suggesting that caspase-3 functions upstream of SAPK/JNK and p38 kinase, but did not block calphostin C-induced surface blebbing and cell death. On the other hand, the inhibition of SAPK/JNK by transfection of dominant negative SAPK/JNK and that of p38 kinase by SB203580 induced similar effects on the calphostin C-induced apoptotic phenotypes and cell death as did z-VAD.fmk and acetyl-Tyr-Val-Ala-Asp-aldehyde, but the calphostin C-induced PARP cleavage was not changed, suggesting that SAPK/JNK and p38 kinase are involved in the DNA fragmentation pathway downstream of caspase-3. The present findings suggest, therefore, that the activation of SAPK/JNK and p38 kinase is dispensable for calphostin C-mediated and z-VAD.fmk-resistant cell death.  相似文献   

15.
Mature spermatozoa acquire progressive motility only after ejaculation. Their journey in the female reproductive tract also includes suppression of progressive motility, reactivation, capacitation, and hyperactivation of motility (whiplash), the mechanisms of which are obscure. MAPKs are key regulatory enzymes in cell signaling, participating in diverse cellular functions such as growth, differentiation, stress, and apoptosis. Here we report that ERK1/2 and p38 MAPK are primarily localized to the tail of mature human spermatozoa. Surprisingly, c-Jun N-terminal kinase 1/2, which is thought to be ubiquitously expressed, could not be detected in mature human spermatozoa. ERK1/2 stimulation is downstream to protein kinase C (PKC) activation, which is also present in the human sperm tail (PKCbetaI and PKCepsilon). ERK1/2 stimulates and p38 inhibits forward and hyperactivated motility, respectively. Both ERK1/2 and p38 MAPK are involved in the acrosome reaction. Using a proteomic approach, we identified ARHGAP6, a RhoGAP, as an ERK substrate in PMA-stimulated human spermatozoa. Inverse correlation was obtained between the relative expression level of ERK1 or the relative activation level of p38 and sperm motility, forward progression motility, sperm morphology, and viability. Therefore, increased expression of ERK1 and activated p38 can predict poor human sperm quality.  相似文献   

16.
Cell growth arrest is an important mechanism in maintaining genomic stability and integrity in response to environmental stress. Using the human lung alveolar epithelial cancer cell line A549, we investigated the role of reactive oxygen species (ROS), extracellular signal-regulated protein kinase (ERK), and p38 protein kinase in vanadate-induced cell growth arrest. Exposure of cells to vanadate led to cell growth arrest at the G(2)/M phase and caused upregulation of p21 and phospho-cdc2 and degradation of cdc25C in a time- and dose-dependent manner. Vanadate stimulated mitogen-activated protein kinases (MAPKs) family members, as determined by the phosphorylation of ERK and p38. PD98059, an inhibitor of ERK, and SB202190, an inhibitor of p38, inhibited vanadate-induced cell growth arrest, upregulation of p21 and cdc2, and degradation of cdc25C. In addition to hydroxyl radical ((*)OH) formation, cellular reduction of vanadate generated superoxide radical (O(2)(*)(-)) and hydrogen peroxide (H(2)O(2)), as determined by confocal microscopy using specific dyes. Generation of O(2)(*)(-) and H(2)O(2) was inhibited by specific antioxidant enzymes, superoxide dismutase (SOD) and catalase, respectively. ROS activate ERK and p38, which in turn upregulate p21 and cdc2 and cause degradation of cdc25C, leading to cell growth arrest at the G(2)/M phase. Specific ROS affect different MAPK family members and cell growth regulatory proteins with different potencies.  相似文献   

17.
Osteoclasts are multinucleated cells that differentiate from hematopoietic cells and possess characteristics responsible for bone resorption. To study the involvement of mitogen-activated protein kinases (MAPKs) in osteoclastogenesis of the murine monocytic cell line RAW264.7, which can differentiate into osteoclast-like cells in the presence of the receptor activator of nuclear factor kappa B ligand (RANKL), we treated the cells with specific inhibitors of p38 MAPK, PD169316 and SB203580, and specific inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK), U0126 and PD98059. Each inhibitor blocked differentiation into osteoclast-like cells when the cells were plated at the standard cell density (2000-4000 cells per well (96-well)). However, the effect of MEK inhibitors on osteoclastogenesis varied according to the initial cell density during culture, because cell growth was clearly inhibited by them. When the cells were plated at more than 8000 cells per well, marked enhancement and acceleration of the differentiation were observed. In addition, immunoblot analysis revealed that phosphorylation of ERK was increased by treatment with the p38 inhibitors, whereas the MEK inhibitors increased phosphorylation of p38, which implies a seesaw-like balance between ERK and p38 phosphorylation. We suggest that osteoclastogenesis is regulated under a balance between ERK and p38 pathways and that the MEK/ERK pathway negatively regulates osteoclastogenesis while the p38 pathway does so positively. This is the first report that an inhibitor of signal transduction enhanced osteoclastogenesis.  相似文献   

18.
Stem cell factor (SCF) can be considered a cardinal cytokine in mast cell biology as it affects mast cell differentiation, survival, and migration. The objective of this study was to investigate the role of two mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) and p38, in SCF-induced cell migration. This was examined in mouse mast cells by using PD 098059 and SB203580, which are specific inhibitors of mitogen-induced extracellular kinase (MEK) and p38 MAP kinase, respectively. SCF induced a rapid and transient activation of ERK and p38 in a dose-dependent manner. Inhibition of p38 activity by SB203580 was paralleled with a marked reduction of migration toward SCF, whereas the effect of the MEK inhibitor was less pronounced. This is the first report of a physiological function of SCF-dependent activation of p38. Whether p38-mediated mast cell migration is a possible target for suppression of mast cell hyperplasia remains to be determined.  相似文献   

19.
The members of p90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of MAPK/ERK pathway that regulate diverse cellular processes including cell growth, proliferation and survival. In carcinogenesis, RSKs are thought to modulate cell motility, invasion and metastasis. Herein, we have studied an involvement of RSKs in FGF2/FGFR2-driven behaviours of mammary epithelial and breast cancer cells. We found that both silencing and inhibiting of FGFR2 attenuated phosphorylation of RSKs, whereas FGFR2 overexpression and/or its stimulation with FGF2 enhanced RSKs activity. Moreover, treatment with ERK, Src and p38 inhibitors revealed that p38 kinase acts as an upstream RSK2 regulator. We demonstrate for the first time that in FGF2/FGFR2 signalling, p38 but not MEK/ERK, indirectly activated RSK2 at Tyr529, which facilitated phosphorylation of its other residues (Thr359/Ser363, Thr573 and Ser380). In contrast to FGF2-triggered signalling, inhibition of p38 in the EGF pathway affected only RSK2-Tyr529, without any impact on the remaining RSK phosphorylation sites. p38-mediated phosphorylation of RSK2-Tyr529 was crucial for the transactivation of residues located at kinase C-terminal domain and linker-region, specifically, in the FGF2/FGFR2 signalling pathway. Furthermore, we show that FGF2 promoted anchorage-independent cell proliferation, formation of focal adhesions and cell migration, which was effectively abolished by treatment with RSKs inhibitor (FMK). These indicate that RSK2 activity is indispensable for FGF2/FGFR2-mediated cellular effects. Our findings identified a new FGF2/FGFR2-p38-RSK2 pathway, which may play a significant role in the pathogenesis and progression of breast cancer and, hence, may present a novel therapeutic target in the treatment of FGFR2-expressing tumours.  相似文献   

20.
Our previous studies have shown that 5-hydroxytryptamine (5-HT) induces cellular hyperplasia/hypertrophy through protein tyrosine phosphorylation, rapid formation of superoxide (O(2)(-)), and extracellular signal-regulated kinase (ERK)1/ERK2 mitogen-activated protein (MAP) kinase activation. Intracellularly released O(2)(-) is rapidly dismuted by superoxide dismutase (SOD) to H(2)O(2), another possible cellular growth mediator. In the present study, we assessed whether H(2)O(2) participates in 5-HT-induced mitogenic signaling. Inactivation of cellular Cu/Zn SOD by copper-chelating agents inhibited 5-HT-induced DNA synthesis of bovine pulmonary artery smooth muscle cells (BPASMCs). Infection of BPASMCs with an adenovirus containing catalase inhibited both ERK1/ERK2 MAP kinase activation and DNA synthesis induced by 5-HT. Although we could not find evidence of p38 MAP kinase activation by 5-HT, SB-203580 and SB-202190, reported inhibitors of p38 MAP kinase, inhibited the 5-HT-induced growth of BPASMCs. However, these inhibitors also inhibited 5-HT-induced O(2)(-) release. Thus quenching of O(2)(-) may be their mechanism for inhibition of cellular growth unrelated to p38 MAP kinase inhibition. These data indicate that generation of O(2)(-) in BPASMCs in response to 5-HT is followed by an increase in intracellular H(2)O(2) that mediates 5-HT-induced mitogenesis through activation of ERK1/ERK2 but not of p38 MAP kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号