首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
醛是一类具有高度反应活性的毒性物质,在生物体中主要由膜脂过氧化,氨基酸氧化和蛋白质的糖基化产生.醛脱氢酶(aldehyde dehydrogenase,ALDH)是一类以多种醛类为底物的酶类,醛脱氢酶基因是一类编码将醛脱氢氧化为相应羧基酸的基因,在植物,动物和微生物中均有发现.通过RT-PCR方法从丹波黑大豆根中扩增出基因GmALDH3-1.构建原核表达载体pGEX-4T-1-ALDH3-1,在E.coli BL21中表达,并研究不同浓度IPTG、时间和温度对ALDH3-1蛋白表达的影响,结果表明28℃下诱导6h ALDH蛋白表达量最大,而IPTG浓度对ALDH3-1的表达量影响不大.在添加有不同浓度Al、Cu和Cd的液体LB培养基中培养转化菌和对照菌,检测转化菌和对照菌的生长曲线,生长曲线实验结果表明ALDH3-1转化工程菌对上述金属离子具有一定的耐受性.这些结果为进一步研究其结构和生物学功能奠定了基础.  相似文献   

2.
千年桐SAD基因克隆与分析及其丝状真菌表达载体构建   总被引:4,自引:0,他引:4  
以发育中的千年桐种子总RNA为模板,通过RT-PCR方法扩增得到硬脂酰脱饱和酶基因SAD的cDNA序列。该序列长度为1 191 bp,编码396个氨基酸。推测的分子量为45 541.01 u,等电点pI为6.05。BLAST分析表明,该cDNA序列与其它已登录的SAD基因cDNA序列一致性最高可达93.1%;编码的氨基酸蛋白序列性一致最高为89%。同时,构建了由构巢曲霉3-磷酸甘油醛脱氢酶基因的gpdA启动子驱动的丝状真菌表达载体,通过冻融法转入农杆菌中,PCR鉴定表明,pBAR-SAD已转入农杆菌EHA105中,成功构建了农杆菌工程菌株。  相似文献   

3.
该研究基于大豆基因组数据库,根据拟南芥ABI4蛋白的氨基酸序列,经比对分析,获得了大豆中的2个GmABI4基因,分别命名为GmABI4-1(GenBank登录号为XM_014766551.1)和GmABI4-2(GenBank登录号为NM_001249003)。TMHMM软件和系统进化转录分析表明,这2个基因编码的蛋白均不具有信号肽,二级结构主要以无规则卷曲和延伸链为主;进化树分析表明,大豆GmABI4和野生大豆亲缘关系较近。荧光定量PCR分析表明,GmABI4-1与GmABI4-2基因在大豆种子与豆荚中的表达量均高于根、茎、叶、花等其他组织,推测可能与调控大豆种子生命活动相关。  相似文献   

4.
甘油-3-磷酸酰基转移酶是植物生物合成储存油脂过程中的关键酶,对油料作物种子含油量具有重要的限制作用。本研究以植物甘油-3-磷酸酰基转移酶同源基因的保守区域序列为基础,设计简并引物,结合RACE技术,从能源植物小桐子种子中克隆获得JcGPAT基因的cDNA全长序列(GenBank登录号HQ395225)。JcGPAT cDNA核苷酸序列长度为1672bp,开放阅读框为1125bp,编码375个氨基酸。该基因具有明显的GPAT基因结构域,其编码的氨基酸序列与油桐、蓖麻等植物具有很高的同源性。RT-PCR表达分析表明,该基因在小桐子发育的种子、叶、根尖等多个组织表达。  相似文献   

5.
该研究利用RT-PCR技术,从油葵(Helianthus annuus L.)种子中克隆了甘油-3-磷酸酰基转移酶(GPAT)基因(HaGPAT1),对其进行生物信息学分析,并通过实时荧光定量PCR技术(qRT-PCR)检测该基因在不同组织、种子不同发育时期以及不同胁迫条件下的表达特征。结果表明:HaGPAT1基因全长为1 656bp,编码551个氨基酸,相对分子量为62.132kD,等电点为8.84。系统进化树分析表明,HaGPAT1蛋白与高等植物莴苣的GPAT1亲缘关系最近。qRT-PCR分析表明,HaGPAT1基因在油葵花蕊中的表达水平最高,开花后17d的种子中次之;在干旱和盐胁迫条件下,HaGPAT1基因的表达水平均显著上调。研究推测,HaGAT1基因可能在油葵花器官发育中发挥重要作用,并且参与了油葵对干旱和高盐的抗性调节。  相似文献   

6.
蒺藜苜蓿DGAT1基因的克隆和功能鉴定   总被引:1,自引:0,他引:1  
该研究采用RT-PCR与电子克隆的方法,从蒺藜苜蓿cDNA中克隆得到2个编码二脂酰甘油酰基转移酶(diacylglycerol acyltransferase,DGAT)的基因MtDGAT1-1和MtDGAT1-2。MtDGAT1-1长1 620bp,编码539个氨基酸;MtDGAT1-2长1 524bp,编码507个氨基酸。多序列比对显示,MtDGAT1-1和MtDGAT1-2编码蛋白具有典型的植物DGAT1结构域。表达分析显示,MtDGAT1-1和MtDGAT1-2在根、茎、叶、花、种子中都有表达,在种子发育中高表达,且MtDGAT1-1于种子发育的中前期高表达,而MtDGAT1-2于种子发育的中后期高表达。酵母互补实验证实,MtDGAT1-2编码蛋白具有DGAT酶活性,能够恢复H1246的TAG合成和油体形成;而MtDGAT1-1编码蛋白不能恢复H1246的TAG合成和油体形成。  相似文献   

7.
MADS-box转录因子在多种植物的发育过程、特别是花器官的发育过程中发挥着重要的作用。为研究MADS-box转录因子在芒果花器官发育中的作用,利用RT-PCR和RACE技术分离到1个芒果的SOC1基因,命名为MSOC1(GenBank登录号为KP404094)。MSOC1编码区为733bp,编码223个氨基酸,蛋白质相对分子质量为25.6kD,理论等电点为8.96。序列比对和系统进化树分析表明,MSOC1具有保守的MADS-box及半保守的K区,属于MADS-box家族SOC1/TM3亚家族。组织特异性表达分析表明,MSOC1基因在芒果各个组织部位均有表达,但在茎、叶和花芽中表达量高,而在根和花中表达量低。  相似文献   

8.
二氢黄酮醇4-还原酶(dihydroflavonol 4-reduetase,DFR)是花色素苷合成途径中的一个关键酶。该研究利用RT-PCR和RACE技术从朵丽蝶兰‘满天红’深红色花瓣中克隆获得一个DFR基因,命名为DtpsDFR。该cDNA序列全长1 286 bp,编码378个氨基酸。氨基酸序列分析表明,DtpsDFR编码的蛋白与Bromheadia fi nlaysoniana、文心兰、大花蕙兰、石斛兰等兰科植物的DFR蛋白同源性均在76%以上,含有1个FR_SDR_e特征结构域,存在NADPH结合基序和底物特异性结合基序,属于NADB_Rossmann超家族;系统进化树显示,DtpsDFR与Bromheadia fi nlaysoniana的DFR蛋白亲缘关系最近。实时荧光定量PCR分析结果显示,DtpsDFR基因的表达量随着花的发育逐渐降低,凋谢期微量表达;在花瓣、萼片中的表达量高于唇瓣,在叶片和根中微量表达。  相似文献   

9.
脂肪酸脱氢酶2(fatty acid desaturase,FAD2)催化油酸生成亚油酸,是植物体内生成多不饱和脂肪酸的关键酶。根据已报道的向日葵(Helianthus annuus L.)FAD2基因序列,设计引物进行RT-PCR,克隆得到油葵FAD2-2基因全长cDNA,命名为HaFAD2-2。该基因开放阅读框为1 152bp,编码383个氨基酸,相对分子质量43.96kD,等电点为8.56。对基因组进行内含子调查发现,该基因在编码区内没有内含子。多序列比对和系统进化分析发现,FAD2-2基因编码蛋白与金盏菊(Calendula officinalis)、斑鸠菊(Vernonia galamensis)等菊科植物具有较近的亲缘关系。qRT-PCR分析表明,HaFAD2-2基因在根、茎、叶、花、子叶和未成熟种子中均有表达,且以叶中的表达量最高,未成熟种子中的表达量最低;低温(5℃、15℃)胁迫处理能显著促进该基因在根中的表达,抑制其在叶中的表达;盐胁迫(300 mmol/L NaCl)处理对其表达也具有抑制作用。该研究结果可为进一步探讨HaFAD2-2基因的功能奠定基础。  相似文献   

10.
该研究以春兰(Cymbidium goeringii)正常花及其2枚侧瓣突变成唇瓣样的花瓣(简称:蝶花)为实验材料,采用RT-PCR结合RACE技术从春兰中分离出AGL6-3基因。序列分析表明,AGL6-3基因在春兰正常花和蝶花中序列相同,该基因含有1个720bp长的开放阅读框(ORF),共编码239个氨基酸。系统进化树进行分析表明,该基因属于MADS-box基因中AP1/AGL9组的AGL6同源基因,命名为CgAGL6-3(基因登录号为KU058679)。实时荧光定量表达分析表明,CgAGL6-3在春兰正常花和蝶花各花器官中表达存在差异。在正常春兰中CgAGL6-3基因在唇瓣中强烈表达,在主萼、侧萼及蕊柱中表达量较低,在侧瓣中则微乎其微;而在蝶花中CgAGL6-3基因在唇瓣中强表达,侧瓣中的表达量次之,在主萼、侧萼和蕊柱中的表达量相近且均较低。研究说明,CgAGL6-3基因可能在春兰蝶花侧瓣唇瓣化的过程中扮演重要角色。  相似文献   

11.
Flower color of soybean is primarily controlled by genes W1, W3, W4, Wm, and Wp. In addition, the soybean gene symbol W2, w2 produces purple-blue flower in combination with W1. This study was conducted to determine the genetic control of purple-blue flower of cultivar (cv). Nezumisaya. F(1) plants derived from a cross between Nezumisaya and purple flower cv. Harosoy had purple flowers. Segregation of the F(2) plants fitted a ratio of 3 purple:1 purple-blue. F(3) lines derived from F(2) plants with purple-blue flowers were fixed for purple-blue flowers, whereas those from F(2) plants with purple flowers fitted a ratio of 1 fixed for purple flower:2 segregating for flower color. These results indicated that the flower color of Nezumisaya is controlled by a single gene whose recessive allele is responsible for purple-blue flower. Complementation analysis revealed that flower color of Nezumisaya is controlled by W2. Linkage mapping revealed that W2 is located in molecular linkage group B2. Sap obtained from banner petals of cvs. with purple flower had a pH value of 5.73-5.77, whereas that of cvs. with purple-blue flower had a value of 6.07-6.10. Our results suggested that W2 is responsible for vacuolar acidification of flower petals.  相似文献   

12.
13.
14.
The interest in developing tissue culture-independent genetic transformation methods for plants has been growth. The pollen-tube pathway transformation technique is one method; however, this method is controversial because it is difficult to duplicate and produces insufficient molecular evidence to confirm transformation. Our objective was to evaluate the robustness of the soybean pollen-tube pathway technique (Glycine max L. Merr.). Solutions of purified DNA constructs carrying abar marker gene and agus reporter gene or a gene of interest (npk1) were applied to severed styles of flowers 6–8 h after self-pollination. The experiment was repeated 3 summers in the field, in which 4 DNA constructs and 7 soybean genotypes were tested. A total of 4793 progeny seeds were harvested from 5590 individually treated soybean flowers. All seeds were germinated and screened for transformants with herbicide spray, histochemical GUS assay, and Southern blot analysis. Although 2% of progenies showed partial resistance to the herbicide, no positive plants were identified from GUS assay and Southern analysis. Our results indicate that soybean pollen-tube pathway transformation is not reproducible.  相似文献   

15.
16.
Virus‐induced gene silencing (VIGS) is a powerful reverse genetics tool in plant science. In this study, we investigated the temporal and spatial silencing patterns achieved by Bean pod mottle virus (BPMV)‐based VIGS in soybean using virus constructs targeting green fluorescence protein (GFP). Silencing GFP enabled an in‐depth analysis of silencing in soybean tissues over time in a transgenic line constitutively expressing GFP. We discovered evidence for variable GFP silencing based on insert orientation and targeted region in the coding sequence. A 3′ sequence in reverse orientation produced the strongest silencing phenotypes. Furthermore, we documented that BPMV VIGS can achieve widespread silencing in a broad range of tissues, including leaves, stems, flowers and roots. Near‐complete silencing was attained in leaves and flowers. Although weaker than in shoots, the observed gene silencing in soybean roots will also allow reverse genetics studies in this tissue. When GFP fluorescence was assayed in cross‐sections of stems and leaf petioles, near‐complete and uniform silencing was observed in all cell types. Silencing was observed from as early as 2 weeks post‐virus inoculation in leaves to 7 weeks post‐virus inoculation in flowers, suggesting that this system can induce and maintain silencing for significant durations.  相似文献   

17.
Members of the plant-specific IQ67-domain (IQD) protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum), Brachypodium distachyon and rice (Oryza sativa), systematic analysis and expression profiling of this gene family in soybean (Glycine max) have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD167) was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I–IV) based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1–3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.  相似文献   

18.
赵艳  翟莹  宫国强  王曼  赵阳 《广西植物》2016,36(10):1220-1224
以大豆叶片总RNA为模板,采用RT-PCR法从吉豆2号品种中克隆获得大豆种子成熟蛋白( PM34)基因序列,利用生物信息学方法对大豆PM34基因编码的蛋白进行预测。结果表明:该基因编码蛋白理论分子量为31.7 kDa,等电点为6.60,为亲水性蛋白;该蛋白中无跨膜结构;该蛋白中不存在信号肽。 PM34基因编码蛋白的二级结构中α螺旋占12.97%,无规则卷曲占41.30%,β折叠占45.73%。 PM34基因编码蛋白的三级结构预测表明,同源模建的模板是3ijr.1.A,是一种短链脱氢酶/还原酶,与该蛋白的同源性为54.65%。在进化关系上,与绿豆、苜蓿的亲缘关系相对较近。采用实时定量PCR方法( qRT-PCR),检测大豆PM34基因在大豆各器官中的表达方式,结果表明该基因在大豆根、茎、叶、花中的表达活性低,而在种子中,尤其是成熟种子中的相对表达活性很高。该研究结果为大豆PM34基因结构和功能的进一步研究奠定了基础。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号