首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Factors Affecting Shedding of Flowers in Soybean (Glycine max (L.) Merrill)   总被引:1,自引:0,他引:1  
Flower shedding in soybean, Glycine max (L.) Merrill, was studiedusing cultivar ‘Clark’, isoline E1t, which has relativelylong racemes for convenient identification and observation ofindividual flowers. On each raceme studied, pod set was greatestat the proximal (basal) positions, whereas shedding was greatestat the most distal positions. When proximal flowers were removedas they reached anthesis, pod set increased at the more distalpositions. Pod set was increased in some instances by applicationof water directly to the ovaries as a drop in the calyx cup.Peroxidase activity changed in parallel with ovary development,increasing rapidly in growing pods but not in shedding flowers.Increases in flower peroxidase was mainly in ovary walls. Flowerstaken at or near anthesis from positions with high percent podset could be grown in vitro with especially good ovary enlargement,whereas ovaries in flowers taken from positions of low pod setdid not enlarge in culture. Unidentified substances were extracted from young pods which,when incorporated into lanolin and tested in an in situ bioassay,could mimic the effect of proximal flowers in inducing sheddingof distal flowers. Indole-3-acetic acid resembled the extractedmaterials in inducing shedding, but differed by eliciting side-effectsthat extracts did not. The growth substances abscisic acid,gibberellic acid, and benzyladenine did not promote sheddingin the in situ test. The evidence was taken to indicate that soybean flower sheddingis induced in distal flowers by substances from the more proximal,fertilized ovaries, and that this is possibly due to interferencewith some of the intense metabolic changes that follow pollinationand fertilization.  相似文献   

2.
Exogenous application of cytokinin to raceme tissues of soybean(Glycine max(L.) Merr.) has been shown to stimulate flower productionand to prevent flower abortion. The effects of these hormoneapplications have been ascertained for treated tissues, butthe effects of cytokinins on total seed yields in treated plantshave not been evaluated. Our objectives were to examine theeffects of systemic cytokinin applications on soybean yieldsusing an experimental line of soybeans, SD-87001, that has beenshown to be highly sensitive to exogenous cytokinin application.Soybeans were grown hydroponically or in pots in the greenhouse,and 6-benzylaminopurine (BA) was introduced into the xylem streamthrough a cotton wick for 2 weeks during anthesis. After theplants had matured, the number of pods, seeds per pod, and thetotal seed weight per plant were measured. In the greenhouse,application of 3.4 x 10-7 moles of BA resulted in a 79% increasein seed yield compared with controls. Results of field trialsshowed much greater variability within treatments, with consistent,but non-significant increases in seed number and total yieldsof about 3%. Data suggest that cytokinin levels play a significantrole in determining total yield in soybeans, and that increasingcytokinin concentrations in certain environments may resultin increased total seed production. Copyright 2001 Annals ofBotany Company Glycine max, soybean, flower abortion, cytokinin, 6-benzylaminopurine, hydroponic, seed yield, wicking  相似文献   

3.
Staswick PE 《Plant physiology》1989,90(4):1252-1255
A temporary vegetative storage protein, composed of similar 25 kilodalton and 27 kilodalton subunits, was found to be abundant in soybean (Glycine max (L.) Herr. var Hobbit) leaves, stems, pods, flower petals, germinated cotyledons, and less abundant in roots, nodules and seeds. Total pod protein was highest at 3 weeks after flowering and declined by 37% within 3 weeks during seed development. During this time the vegetative storage protein declined from 18% to 1.5% of the total pod protein and accounted for 45% of the protein lost from pods. This indicates that the vegetative storage protein makes a significant contribution to the pool of nutrients mobilized from pods for transport to developing seeds.  相似文献   

4.
A Flower and Pod Staging System for Soybean   总被引:1,自引:1,他引:0  
Flower and pod abscission limit soybean yield. A system forquantifying flower and pod development based on the morphologicalappearance of the flower prior to and following anthesis hasbeen developed to aid in studies of pod abscission. Changesin the appearance of the corolla, primarily the banner petal,are used to distinguish the different stages of the system.External pistil dimensions have been correlated with internalfeatures for each stage of development. From anthesis to podset, pistil length and weight increase almost two- and fivefold,respectively, and ovule development progresses from unfertilizedegg cells to embryos surrounded by cellular endosperm. Pod determinedare correlated with ovule length and width and embryo cell number.Flower and pod stages can be determined in situ, thus permittingnon-destructive observation and experimental manipulation offlowers or pods without necessarily impeding their development.Stages have been identified that indicate precisely when podset occurs and when young pods cease growing and ultimatelyabscise. This system of flower and pod staging is useful instudies designed to assess effects of abiotic or biotic stressand genetic factors on pod set and abortion. Abscission, anthesis, Glycine max (L.) Merr, embryo development, pod set  相似文献   

5.
Gomes, M. A. F. and Sodek, L. 1987. Reproductive developmentand nitrogen fixation in soybean (Glycine max (L.) Merril).—J.exp. Bot. 38: 1982–1987. Nitrogenase activity (acetylene reduction) was measured duringthe growth cycle of soybean plants induced to flower at twodifferent ages. The decline in nitrogenase activity towardsthe end of the cycle was clearly associated with pod-fillingfor both flowering dates when plants were cultivated under lowerlight and temperature conditions (out of season). Under higherlight and temperature conditions (normal growing season) thedecline was independent of the flowering date. Furthermore,the timing of the decline was not altered when plants were maintainedunder long-day (vegetative) conditions nor when flowers wereremoved. It is suggested that under more favourable growth conditionsthe diversion of assimilates by the fruits is not the primarycause of the decline in nodule activity, but competition bythe fruits may be important when the production of photo-assimilatesis more limited. Key words: Glycine max, nitrogenase, source-sink  相似文献   

6.
李秀菊  孟繁静 《植物学报》1999,16(4):464-467
大豆开花结荚期,不同发育阶段的幼蕾与花荚的脱落率不同,其中以花后5d内的幼荚脱落最严重。与败育花荚相比,正常花荚中的干物质积累量均较高。细胞分裂素(DHZRs,ZRs,iPA)含量也较高,花后3~5d的幼荚中表现更明显。脱落酸(ABA)则是以败育幼蕾及花后3~5d的幼荚中含量较高。不同发育阶段的大豆生殖器官中,正常开放花中的玉米赤霉烯酮(ZEN)含量最高。  相似文献   

7.
大豆花荚败育期间的植物激素变化   总被引:8,自引:0,他引:8  
大豆开花结荚期,不同发育阶段的幼蕾与花荚的脱落率不同,其中以花后5d内的幼荚脱落最严重。与败育花荚相比,正常花荚中的干物质积累量均较高。细胞分裂素(DHZRs,ZRs,iPA)含量也较高,花后3~5d的幼荚中表现更明显。脱落酸(ABA)则是以败育幼蕾及花后3~5d的幼荚中含量较高。不同发育阶段的大豆生殖器官中,正常开放花中的玉米赤霉烯酮(ZEN)含量最高  相似文献   

8.
Soybeans [Glycine max (L.) Merr. cv. Ransom] grown at a constant25 °C were placed in a 12-h inductive photoperiod at twoweeks of age. Subgroups were shoot-chilled for one week at aconstant 10 °C during each of the first four weeks of floralinduction. Controls were photoinduced but not chilled. Chillingduring the first week of photoinduction inhibited productionof floral primordia, but did not increase the abscission rateof flowers and pods. Chilling during the second week did notaffect primordium production or abscission rate, but did causea significant increase in numbers of fused and malformed pods.Chilling during the third week caused loss of 77 per cent ofearly flowers and pods by abscission, while fourth week chillingcaused less severe losses by abscission. Inhibition of vegetativegrowth may have been responsible for primordium loss in first-weekplants, while disturbances in the development of flowers wereresponsible for the losses in the other chilling weeks. Althoughchilling during the first and third photoinduction weeks causeda significant reduction in early pod numbers, plants harvestedat 16 weeks of age showed no significant loss in seed yield.Low abscission rates late in pod filling and increased weightof individual seeds compensated for early losses of pods. Thesecompensatory responses to a chilling-induced loss of pods aresimilar to those reported for mechanically depodded soybeans. Glycine max (L.) Merr., soybean, temperature, chilling, floral initiation, anthesis, abscission, yield, compensation  相似文献   

9.
Soybean (Glycine max) plants accumulate a vacuolar glycoprotein in the parenchymal cells of leaves, petioles, stems, seed pods, and germinating cotyledons that acts in temporary nitrogen storage during vegetative growth. In situ immunolocalization of this vegetative storage protein (VSP) revealed that it accumulates in those parenchymal cells in close proximity to existing and developing vasculature, as well as in epidermal and cortical cells. The protein was more prevalent in younger, nitrogen-importing tissues before pod and seed development. Removal of actively growing seed pods greatly enhanced VSP accumulation, primarily in bundle sheath and paraveinal mesophyll cells. In situ hybridization of a VSP RNA probe to mRNA in leaf sections demonstrated that cell-specific mRNA accumulation corresponded with the pattern of protein localization. Treatment of leaf explants with 50 micromolar methyl jasmonate resulted in accumulation of VSP mRNA and protein in all cell types.  相似文献   

10.
Non-dormant flower initials are laid down in the axils of successiveleaf initials as they are formed by the apical meristem of Pisumsativum L. In cultivars with a maximum capability of two flowersper raceme, the undeveloped flower meristem divides into twoportions. One forms the first flower and the other either developsinto a small protrusion on one side of the first flower or becomesthe second flower, depending on the prevailing environment.Flower development in conditions favouring single-flowered racemeswas advanced by one plastochron. Variation in the number offlowers per raceme occurs between cultivars and between environments.The number of double flowers formed was favoured by higher lightintensity (120 Js–1 m–2) and carbon dioxide concentration(330 µ11) and lower temperature (15°C). Incultivars producing more than two flowers per raceme, lowerlight intensity (60 Js–1 m–2) plus higher temperature(20°C) increased the mean number of flowers per raceme.Soluble sugar levels in all varieties were higher (36.05 mgeq glucose g–1 fresh weight) in the low temperature/highlight environment than the high temperature/low light environment(14.80 mg eq glucose g–1 fresh weight). The flowering potential and stability of 13 cultivars have beenassessed in controlled environment and in sowing date trialsin the field. A stable variety, which consistently producedtwo flowers per raceme, was identified in controlled environmentand its stability was maintained in field trials. A linear regressionof stability of flower number in the field on stability in controlledenvironment accounted for 89.6 per cent of the variance (P<5per cent), but the flowering potential in a sowing date experimentwas not related to temperature or radiation intensity.  相似文献   

11.
On palo verde trees, nearly 80% of potential offspring were lost during flower bud development. Flower buds at the base of racemes developed earliest and were more likely to survive depredations of gelechiid larvae or abortion from putative limited resources. Herbivory accounted for greater cumulative losses than putative resources; however, an herbivore exclusion experiment suggested that buds damaged by herbivores would have aborted anyway without damage. In a natural experiment, plants that received water runoff had significantly higher densities of racemes, with only slight increases in numbers of buds, flowers, or pods per raceme. Similarly, thinning racemes experimentally to assess limited resources among potentially competing racemes increased the number of viable flower buds per raceme only slightly, with negligible herbivore damage. The production of more racemes rather than more reproductive structures per raceme may be a mechanism to allocate limited resources more efficiently. Alternatively, in studies with animals, similar patterns in the production of broods are thought to be mechanisms to avoid nest predation. Thus, while putative limited resources and resource allocation patterns reduced the proximate effects of larvae, herbivory must be considered as a possible ultimate factor in the patterns observed here because limited resources may be allocated in ways to reduce herbivory.  相似文献   

12.
1. The effect of various patterns of flower removal on pod settingwas investigated in Lupinus luteus L. Four-fifths, three-fifths,or two-fifths of the flowers of the main inflorescence wereremoved according to ten different patterns. 2. All flowers could produce pods but later ones were less efficientin doing so. Developing pods had an abscission-inducing effecton later flowers, which became increasingly effective towardsthe apical part of the inflorescence. More pods were retained when flowers on each consecutive whorlwere arranged in a spiral than when the same number was arrangedvertically. Pod setting was incomplete when the number of flowers per inflorescencewas reduced well below the total number of pods normally present. 3. The number of ovules in consecutive flowers gradually decreasedfrom an average of 5.7 at the base to 4.3 at the top of theinflorescence. The ratio of seeds to ovules fluctuated irregularlybetween 65 and 94 per cent, and did not indicate a general trendin embryo abortion. 4. The growth-rate of pods at the top of the inflorescence wasmuch slower than at the bottom. Vascular differentiation wasalmost absent at the top of the inflorescence when the flowerswere fertilized, and further vascular tissue was produced onlywhen flowers produced pods.  相似文献   

13.
Flowers at distal nodes on soybean racemes usually fail to setpods and subsequently abscise. Physiological and histologicalstudies were performed to determine the influence of 6-benzylaminopurine(BAP) on distal pod development. The pedicels of fully openedflowers on terminal racemes of field-grown IX93-100 soybeanplants were treated three times with 200 mg kg-1 BAP in lanolinover a 6-d period. Racemes were then excised and 32P uptakewas recorded for each flower position within a raceme; histologicalfeatures of pedicels and ovules also were determined. Applicationof BAP increased pod and ovule length, width and weight at allfour distal nodes (D, D-1, D-2, D-3) relative to controls treatedwith lanolin. Length and width of parietal endosperm cells weresmaller in BAP-treated ovules at the most proximal node beingstudied (D-3), and greater numbers of parietal endosperm cellswere observed at D-1 and D-3 nodes when compared to lanolincontrols. Smaller amounts of starch were found in suspensorcells, endosperm, and integuments of lanolin-treated ovules,and starch depletion over time was observed within starch sheathsof pedicels from lanolin-treated pods when compared to BAP-treatedtissues. BAP-treated racemes had more 32P uptake at the fourmost distal nodes. A higher rate of uptake (cpm mg-1 f. wt)was evident in ovules than in ovary tissues. These results suggestthat for racemes otherwise destined to abscise, applicationof BAP promotes pod set and growth by stimulating ovule development.Copyright1993, 1999 Academic Press Pod, ovule soybean, abscission, 6-benzylaminopurine  相似文献   

14.
ERNER  YAIR; SHOMER  ILAN 《Annals of botany》1996,78(5):537-545
Flowering and vegetative shoots of ‘Shamouti’ orange[Citrus sinensis (L.) Osbeck] and ‘Marsh’ seedlessgrapefruit (Citrus paradisi Macf.) were examined for correlationof their morphology and anatomy with fruit set. Fruit set isfavoured on leafy inflorescences whereas abortion is nearlycomplete on leafless inflorescences. Leafless inflorescencesof ‘Shamouti’ with one flower were found to havea very thin stem which contained few vascular bundles, whereasthose with three flowers had better-developed vascular systems.The vascular system of leafy inflorescences is significantlydifferent from that of leafless ones and contains a distinctcentral xylem cylinder. The vascular area of leafless inflorescencesis only about one-quarter of that of the leafy ones. The vascularsystem of grapefruit resembles that of the ‘Shamouti’orange. This study emphasizes the importance of the dimensionof the vascular system for fruit set and provides a possibleexplanation for the better fruit set on both leafy and leaflessinflorescences with several flowers compared with single-floweredinflorescences. Anatomy; citrus; fruit set; leafless inflorescence; leafy inflorescence; pedicel; vascular system; vegetative shoot  相似文献   

15.
HERBERT  S. J. 《Annals of botany》1979,43(1):55-63
In an August-sown experiment the pattern of flower developmentwas followed for cv. Ultra (Lupinus albus L.) and cv. Unicrop(L. angustifolius L.) grown at low (10 plants m–2) andhigh (93 and 83 plants m–2, Ultra and Unicrop respectively)densities. Dry weight increase of flowers on the main-stem inflorescenceand first lateral below the main-stem were compared at differentfloral stages. Maximum flower weight was reached just priorto the open flower stage and remained constant or declined untila pod formed or abscission occurred. The time period betweenmaximum flower weight and pod formation or abscission was upto 10 days. Emergence of the inflorescence was earlier and thefirst flower of Ultra opened 10 days before Unicrop. Developmentof each terminal raceme (inflorescence) was acropetal, withpods having formed on lower flower nodes when terminal flowerswere still quite immature. Laterals forming the next generationof inflorescences grew from axillary leaf buds below an inflorescencewhile it was in full flower. Sources of competition from connectedreproductive and vegetative metabolic sinks are discussed. Lupinus spp., lupins, flower development, planting density  相似文献   

16.
Soil salinity is an increasing problem, including in regions of the world where chickpea is cultivated. Salt sensitivity of chickpea was evaluated at both the vegetative and reproductive phase. Root-zone salinity treatments of 0, 20, 40 and 60 mM NaCl in aerated nutrient solution were applied to seedlings or to older plants at the time of flower bud initiation. Even the reputedly tolerant cultivar JG11 was sensitive to salinity. Plants exposed to 60 mM NaCl since seedlings, died by 52 d without producing any pods; at 40 mM NaCl plants died by 75 d with few pods formed; and at 20 mM NaCl plants had 78-82% dry mass of controls, with slightly higher flower numbers but 33% less pods. Shoot Cl exceeded shoot Na by 2-5 times in both the vegetative and reproductive phase, and these ions also entered the flowers. Conversion of flowers into pods was sensitive to NaCl. Pollen from salinized plants was viable, but addition of 40 mM NaCl to an in vitro medium severely reduced pollen germination and tube growth. Plants recovered when NaCl was removed at flower bud initiation, adding new vegetative growth and forming flowers, pods and seeds. Our results demonstrate that chickpea is sensitive to salinity at both the vegetative and reproductive phase, with pod formation being particularly sensitive. Thus, future evaluations of salt tolerance in chickpea need to be conducted at both the vegetative and reproductive stages.  相似文献   

17.
Summary The effects of three water table (WT) depths (0, 15 and 40 cm) and calcium peroxide (Calper) on the growth and yield of cowpea (Vigna unguiculata, L.) and soybean (Glycine max) were investigated in field lysimeters for a sandy loam soil. Cowpea growth was the best at 40 cm WT depth. Leaf area, plant height, dry matter production, number of leaves and pods, grain yield and consumptive water use of cowpea increases with deeper (lower) WT depth. Application of calcium peroxide improved per cent emergence, leaf area, dry matter, number of leaves and pods, weight of 100 seeds, grain yield and water use in cowpea. The optimum WT depth for vegetative growth of soybean was 15 cm, although the highest grain yield was obtained at 40 cm WT depth. Number of pods, grain yield and water use efficiency of soybean increased with deeper water table depth. Application of calcium peroxide to soybean increased number of leaves and pods per plant, and grain yield for the 15 cm WT depth treatment.  相似文献   

18.
Many of the flowers produeed bv a plant fail to mature seeds despite effective pollination. The role of inflorescence architecture governing patterns of abortion in plants has been underestimated. 1 he inflorescence of Echium vulgare L. comprises a raceme bearing lateral inflorescences, each of which is cymosc. Within each cyme, there is a correlation between the proximity of a flower to the main axis and its order of flowering; and (lie probability of it maturing seeds. These findings appear to result from a decrease in the availability of maternal resources as the flowering period progresses. No relationship could be shown between the position of the cyme on the main inflorescence and the number of seeds set per flower although position was correlated with the length of the cyme, the number of (lowers and the length of the subtending bract. The mctamcric units of E. vulgare appear to function largely independently in their assimilation of resources. Larger cymes not only bear more flowers, but also draw on a larger area of photosynthetic tissue for resources. This hypothesis is supported by the removal of the bract or of part of the cyme at the onset of flowering; cymes without bracts mature fewer ovules than controls while decapitated cymes mature a greater proportion of ovules.  相似文献   

19.
Abortion of pepper flowers depends on the light intensity perceivedby the plant and on the amounts of sucrose taken up by the flower(Aloni B, Karni L, Zaidman Z, Schaffer AA. 1996.Annals of Botany78: 163–168). We hypothesize that changes in the activityof sucrose-cleaving enzymes within the flower ovary might beresponsible for the changes in flower abortion under differentlight conditions. In the present study we report that the activityof sucrose synthase, but not of cytosolic acid invertase, increasesin flowers of pepper plants which were exposed, for 2 d, toincreasing photosynthetically active radiation (PAR) in therange of 85–400 µmol m-2s-1at midday. Sucrose synthaseactivity increased in parallel with the increasing concentrationsof starch in the flower ovary. Feeding flower explants, preparedfrom 3-d-predarkened plants, with 100 mM sucrose for 24 h, causeda 23% increase in reducing sugars and a 2.5-fold increase instarch concentration, compared with explants fed with buffer.Likewise, feeding explants of pepper flowers with sucrose, glucose,fructose and also mannitol increased the sucrose synthase activityin the ovaries. Concomitantly, sucrose, glucose and fructose,but not mannitol, reduced the abortion of flower explants. Itis suggested that sucrose entry into the flower increases theflower sink activity by inhibiting abscission and inducing metabolicchanges, thus enhancing flower set. Pepper; Capsicum annuum L.; abscission; light; pepper flowers; sucrose; glucose; fructose; starch; acid invertase; sucrose synthase  相似文献   

20.
Nymphaea and Nuphar (Nymphaeaceae) share an extra-axillary mode of floral inception in the shoot apical meristem (SAM). Some leaf sites along the ontogenetic spiral are occupied by floral primordia lacking a subtending bract. This pattern of flower initiation in leaf sites is repeated inside branching flowers of Nymphaea prolifera (Central and South America). Instead of fertile flowers this species usually produces sterile tuberiferous flowers that act as vegetative propagules. N. prolifera changes the meristem identity from reproductive to vegetative or vice versa repeatedly. Each branching flower first produces some perianth-like leaves, then it switches back to the vegetative meristem identity of the SAM with the formation of foliage leaves and another set of branching flowers. This process is repeated up to three times giving rise to more than 100 vegetative propagules. The developmental morphology of the branching flowers of N. prolifera is described using both microtome sections and scanning electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号