首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last two decades, the number of the known protein sequences increased very rapidly. However, a knowledge of protein function only exists for a small portion of these sequences. Since the experimental approaches for determining protein functions are costly and time consuming, in silico methods have been introduced to bridge the gap between knowledge of protein sequences and their functions. Knowing the subcellular location of a protein is considered to be a critical step in understanding its biological functions. Many efforts have been undertaken to predict the protein subcellular locations in silico. With the accumulation of available data, the substructures of some subcellular organelles, such as the cell nucleus, mitochondria and chloroplasts, have been taken into consideration by several studies in recent years. These studies create a new research topic, namely ‘protein sub-subcellular location prediction’, which goes one level deeper than classic protein subcellular location prediction.  相似文献   

2.
One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell. Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein, not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate, which is higher than the state-of-the-art methods.  相似文献   

3.
Addressing protein localization within the nucleus   总被引:1,自引:0,他引:1       下载免费PDF全文
Bridging the gap between the number of gene sequences in databases and the number of gene products that have been functionally characterized in any way is a major challenge for biology. A key characteristic of proteins, which can begin to elucidate their possible functions, is their subcellular location. A number of experimental approaches can reveal the subcellular localization of proteins in mammalian cells. However, genome databases now contain predicted sequences for a large number of potentially novel proteins that have yet to be studied in any way, let alone have their subcellular localization determined. Here we ask whether using bioinformatics tools to analyse the sequence of proteins whose subnuclear localizations have been determined can reveal characteristics or signatures that might allow us to predict localization for novel protein sequences.  相似文献   

4.
Recent advances in large-scale genome sequencing have led to the rapid accumulation of amino acid sequences of proteins whose functions are unknown. Since the functions of these proteins are closely correlated with their subcellular localizations, many efforts have been made to develop a variety of methods for predicting protein subcellular location. In this study, based on the strategy by hybridizing the functional domain composition and the pseudo-amino acid composition (Cai and Chou [2003]: Biochem. Biophys. Res. Commun. 305:407-411), the Intimate Sorting Algorithm (ISort predictor) was developed for predicting the protein subcellular location. As a showcase, the same plant and non-plant protein datasets as investigated by the previous investigators were used for demonstration. The overall success rate by the jackknife test for the plant protein dataset was 85.4%, and that for the non-plant protein dataset 91.9%. These are so far the highest success rates achieved for the two datasets by following a rigorous cross validation test procedure, further confirming that such a hybrid approach may become a very useful high-throughput tool in the area of bioinformatics, proteomics, as well as molecular cell biology.  相似文献   

5.
GASA蛋白是植物特有的一类富含半胱氨酸的小分子蛋白, 大多定位于细胞壁, 在植物生长发育和激素信号转导过程中发挥重要作用。该蛋白具有富含12个半胱氨酸残基的GASA结构域, 该结构域被认为是GASA蛋白维持空间结构和发挥功能的关键区域。该文重点综述了植物GASA蛋白的分子结构、亚细胞定位和生物学功能, 并对相关领域的研究进行了 展望。  相似文献   

6.
Li T  Du P  Xu N 《PloS one》2010,5(11):e15411
Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites. The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A, and protein kinase C families (available at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of other post-translational modification substrates.  相似文献   

7.
Proteins may simultaneously exist at, or move between, two or more different subcellular locations. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. For instance, among the 6408 human protein entries that have experimentally observed subcellular location annotations in the Swiss-Prot database (version 50.7, released 19-Sept-2006), 973 ( approximately 15%) have multiple location sites. The number of total human protein entries (except those annotated with "fragment" or those with less than 50 amino acids) in the same database is 14,370, meaning a gap of (14,370-6408)=7962 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the gap, so far all the existing methods for predicting human protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Hum-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Hum-mPLoc is freely accessible to the public as a web server at http://202.120.37.186/bioinf/hum-multi. Meanwhile, for the convenience of people working in the relevant areas, Hum-mPLoc has been used to identify all human protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Hum-mPLoc.xls". This file is available at the same website and will be updated twice a year to include new entries of human proteins and reflect the continuous development of Hum-mPLoc.  相似文献   

8.
Newly developed in silico protein design methods have recently been applied to problems in protein stabilization. Stabilized protein sequences can be designed by combining potential functions that model a protein sequence's compatibility with a structure and fast optimization tools that can search the enormous number of sequence possibilities. The experimental testing of several sequence-design strategies has demonstrated that a wide range of protein structures can be stabilized. The primary advantage of in silico design is the vast number of sequences that can be rapidly screened in the search for an optimal design, far exceeding non-computational methods. This feature allows very large changes in protein properties to be discovered.  相似文献   

9.
Apoptosis proteins have a central role in the development and homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. As a result of genome and other sequencing projects, the gap between the number of known apoptosis protein sequences and the number of known apoptosis protein structures is widening rapidly. Because of this extremely unbalanced state, it would be worthwhile to develop a fast and reliable method to identify their subcellular locations so as to gain better insight into their biological functions. In view of this, a new method, in which the support vector machine combines with discrete wavelet transform, has been developed to predict the subcellular location of apoptosis proteins. The results obtained by the jackknife test were quite promising, and indicated that the proposed method can remarkably improve the prediction accuracy of subcellular locations, and might also become a useful high-throughput tool in characterizing other attributes of proteins, such as enzyme class, membrane protein type, and nuclear receptor subfamily according to their sequences.  相似文献   

10.
Zhou GP  Doctor K 《Proteins》2003,50(1):44-48
Apoptosis proteins have a central role in the development and homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. Many efforts in pharmaceutical research have been aimed at understanding their structure and function. Unfortunately, thus far, very few apoptosis protein structures have been determined. In contrast, many apoptosis protein sequences are known, and many more are expected to come in the near future. Because of the extremely unbalanced state, it would be worthwhile to develop a fast sequence-based method to identify their subcellular location so as to gain some insight about their biological function. In view of this, a study was initiated in an attempt to identify the subcellular location of apoptosis proteins according to their sequences by means of the covariant discriminant function, which was established based on the Mahalanobis distance and Chou's invariance theorem (Chou, Proteins 1995;21:319-344). The results were quite promising, indicating that the subcellular location of apoptosis proteins are predictable to a considerably accurate extent if a good training data set can be established. It is expected that, with a continuous improvement of the training data set by incorporating more and more new data, the current method might eventually become a useful tool in this area because the function of an apoptosis protein is closely related to its subcellular location.  相似文献   

11.
Substantial experimental datasets defining the subcellular location of Arabidopsis (Arabidopsis thaliana) proteins have been reported in the literature in the form of organelle proteomes built from mass spectrometry data (approximately 2,500 proteins). Subcellular location for specific proteins has also been published based on imaging of chimeric fluorescent fusion proteins in intact cells (approximately 900 proteins). Further, the more diverse history of biochemical determination of subcellular location is stored in the entries of the Swiss-Prot database for the products of many Arabidopsis genes (approximately 1,800 proteins). Combined with the range of bioinformatic targeting prediction tools and comparative genomic analysis, these experimental datasets provide a powerful basis for defining the final location of proteins within the wide variety of subcellular structures present inside Arabidopsis cells. We have analyzed these published experimental and prediction data to answer a range of substantial questions facing researchers about the veracity of these approaches to determining protein location and their interrelatedness. We have merged these data to form the subcellular location database for Arabidopsis proteins (SUBA), providing an integrated understanding of protein location, encompassing the plastid, mitochondrion, peroxisome, nucleus, plasma membrane, endoplasmic reticulum, vacuole, Golgi, cytoskeleton structures, and cytosol (www.suba.bcs.uwa.edu.au). This includes data on more than 4,400 nonredundant Arabidopsis protein sequences. We also provide researchers with an online resource that may be used to query protein sets or protein families and determine whether predicted or experimental location data exist; to analyze the nature of contamination between published proteome sets; and/or for building theoretical subcellular proteomes in Arabidopsis using the latest experimental data.  相似文献   

12.
One of the critical challenges in predicting protein subcellular localization is how to deal with the case of multiple location sites. Unfortunately, so far, no efforts have been made in this regard except for the one focused on the proteins in budding yeast only. For most existing predictors, the multiple-site proteins are either excluded from consideration or assumed even not existing. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. For instance, according to the Swiss-Prot database (version 50.7, released 19-Sept-2006), among the 33,925 eukaryotic protein entries that have experimentally observed subcellular location annotations, 2715 have multiple location sites, meaning about 8% bearing the multiplex feature. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. Meanwhile, according to the same Swiss-Prot database, the number of total eukaryotic protein entries (except those annotated with "fragment" or those with less than 50 amino acids) is 90,909, meaning a gap of (90,909-33,925) = 56,984 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the blank, so far, all the existing methods for predicting eukaryotic protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Euk-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Euk-mPLoc is freely accessible to the public as a Web server at http://202.120.37.186/bioinf/euk-multi. Meanwhile, to support the people working in the relevant areas, Euk-mPLoc has been used to identify all eukaryotic protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited at the same Web site via a downloadable file prepared with Microsoft Excel and named "Tab_Euk-mPLoc.xls". Furthermore, to include new entries of eukaryotic proteins and reflect the continuous development of Euk-mPLoc in both the coverage scope and prediction accuracy, we will timely update the downloadable file as well as the predictor, and keep users informed by publishing a short note in the Journal and making an announcement in the Web Page.  相似文献   

13.
In the last two decades, predicting protein subcellular locations has become a hot topic in bioinformatics. A number of algorithms and online services have been developed to computationally assign a subcellular location to a given protein sequence. With the progress of many proteome projects, more and more proteins are annotated with more than one subcellular location. However, multisite prediction has only been considered in a handful of recent studies, in which there are several common challenges. In this special report, the authors discuss what these challenges are, why these challenges are important and how the existing studies gave their solutions. Finally, a vision of the future of predicting multisite protein subcellular locations is given.  相似文献   

14.
Late embryogenesis abundant (LEA) proteins are hydrophilic, mostly intrinsically disordered proteins, which play major roles in desiccation tolerance. In Arabidopsis thaliana, 51 genes encoding LEA proteins clustered into nine families have been inventoried. To increase our understanding of the yet enigmatic functions of these gene families, we report the subcellular location of each protein. Experimental data highlight the limits of in silico predictions for analysis of subcellular localization. Thirty-six LEA proteins localized to the cytosol, with most being able to diffuse into the nucleus. Three proteins were exclusively localized in plastids or mitochondria, while two others were found dually targeted to these organelles. Targeting cleavage sites could be determined for five of these proteins. Three proteins were found to be endoplasmic reticulum (ER) residents, two were vacuolar, and two were secreted. A single protein was identified in pexophagosomes. While most LEA protein families have a unique subcellular localization, members of the LEA_4 family are widely distributed (cytosol, mitochondria, plastid, ER, and pexophagosome) but share the presence of the class A α-helix motif. They are thus expected to establish interactions with various cellular membranes under stress conditions. The broad subcellular distribution of LEA proteins highlights the requirement for each cellular compartment to be provided with protective mechanisms to cope with desiccation or cold stress.  相似文献   

15.
蛋白质亚细胞定位信息对深入研究蛋白质的细胞生物学功能十分重要.通过Helix Systems在线计算程序和Vor计算程序两种方法讨论了蛋白质的体积对其亚细胞定位的影响,发现定位于细胞外的蛋白质体积显著小于定位于细胞核、细胞膜和细胞质的蛋白体积,证实了体积参数对区分蛋白质的亚细胞定位是有效的.  相似文献   

16.
Xiao X  Shao S  Ding Y  Huang Z  Huang Y  Chou KC 《Amino acids》2005,28(1):57-61
Summary. Recent advances in large-scale genome sequencing have led to the rapid accumulation of amino acid sequences of proteins whose functions are unknown. Because the functions of these proteins are closely correlated with their subcellular localizations, it is vitally important to develop an automated method as a high-throughput tool to timely identify their subcellular location. Based on the concept of the pseudo amino acid composition by which a considerable amount of sequence-order effects can be incorporated into a set of discrete numbers (Chou, K. C., Proteins: Structure, Function, and Genetics, 2001, 43: 246–255), the complexity measure approach is introduced. The advantage by incorporating the complexity measure factor as one of the pseudo amino acid components for a protein is that it can more effectively reflect its overall sequence-order feature than the conventional correlation factors. With such a formulation frame to represent the samples of protein sequences, the covariant-discriminant predictor (Chou, K. C. and Elrod, D. W., Protein Engineering, 1999, 12: 107–118) was adopted to conduct prediction. High success rates were obtained by both the jackknife cross-validation test and independent dataset test, suggesting that introduction of the concept of the complexity measure into prediction of protein subcellular location is quite promising, and might also hold a great potential as a useful vehicle for the other areas of molecular biology.  相似文献   

17.
Information of the proteins' subcellular localization is crucially important for revealing their biological functions in a cell, the basic unit of life. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop computational tools for timely identifying their subcellular locations based on the sequence information alone. The current study is focused on the Gram-negative bacterial proteins. Although considerable efforts have been made in protein subcellular prediction, the problem is far from being solved yet. This is because mounting evidences have indicated that many Gram-negative bacterial proteins exist in two or more location sites. Unfortunately, most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions important for both basic research and drug design. In this study, by using the multi-label theory, we developed a new predictor called “pLoc-mGneg” for predicting the subcellular localization of Gram-negative bacterial proteins with both single and multiple locations. Rigorous cross-validation on a high quality benchmark dataset indicated that the proposed predictor is remarkably superior to “iLoc-Gneg”, the state-of-the-art predictor for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for the novel predictor has been established at http://www.jci-bioinfo.cn/pLoc-mGneg/, by which users can easily get their desired results without the need to go through the complicated mathematics involved.  相似文献   

18.
Li S  Ehrhardt DW  Rhee SY 《Plant physiology》2006,141(2):527-539
Cells are organized into a complex network of subcellular compartments that are specialized for various biological functions. Subcellular location is an important attribute of protein function. To facilitate systematic elucidation of protein subcellular location, we analyzed experimentally verified protein localization data of 1,300 Arabidopsis (Arabidopsis thaliana) proteins. The 1,300 experimentally verified proteins are distributed among 40 different compartments, with most of the proteins localized to four compartments: mitochondria (36%), nucleus (28%), plastid (17%), and cytosol (13.3%). About 19% of the proteins are found in multiple compartments, in which a high proportion (36.4%) is localized to both cytosol and nucleus. Characterization of the overrepresented Gene Ontology molecular functions and biological processes suggests that the Golgi apparatus and peroxisome may play more diverse functions but are involved in more specialized processes than other compartments. To support systematic empirical determination of protein subcellular localization using a technology called fluorescent tagging of full-length proteins, we developed a database and Web application to provide preselected green fluorescent protein insertion position and primer sequences for all Arabidopsis proteins to study their subcellular localization and to store experimentally verified protein localization images, videos, and their annotations of proteins generated using the fluorescent tagging of full-length proteins technology. The database can be searched, browsed, and downloaded using a Web browser at http://aztec.stanford.edu/gfp/. The software can also be downloaded from the same Web site for local installation.  相似文献   

19.
Nitric oxide (NO) is now recognized as a key regulator of plant physiological processes. Understanding the mechanisms by which NO exerts its biological functions has been the subject of extensive research. Several components of the signaling pathways relaying NO effects in plants, including second messengers, protein kinases, phytohormones, and target genes, have been characterized. In addition, there is now compelling experimental evidence that NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation and tyrosine nitration. Recently, proteome-wide scale analyses led to the identification of numerous protein candidates for S-nitrosylation in plants. Subsequent biochemical and in silico structural studies revealed certain mechanisms through which S-nitrosylation impacts their functions. Furthermore, first insights into the physiological relevance of S-nitrosylation, particularly in controlling plant immune responses, have been recently reported. Collectively, these discoveries greatly extend our knowledge of NO functions and of the molecular processes inherent to signal transduction in plants.  相似文献   

20.
Shen HB  Chou KC 《Biopolymers》2007,85(3):233-240
Viruses can reproduce their progenies only within a host cell, and their actions depend both on its destructive tendencies toward a specific host cell and on environmental conditions. Therefore, knowledge of the subcellular localization of viral proteins in a host cell or virus-infected cell is very useful for in-depth studying of their functions and mechanisms as well as designing antiviral drugs. An analysis on the Swiss-Prot database (version 50.0, released on May 30, 2006) indicates that only 23.5% of viral protein entries are annotated for their subcellular locations in this regard. As for the gene ontology database, the corresponding percentage is 23.8%. Such a gap calls for the development of high throughput tools for timely annotating the localization of viral proteins within host and virus-infected cells. In this article, a predictor called "Virus-PLoc" has been developed that is featured by fusing many basic classifiers with each engineered according to the K-nearest neighbor rule. The overall jackknife success rate obtained by Virus-PLoc in identifying the subcellular compartments of viral proteins was 80% for a benchmark dataset in which none of proteins has more than 25% sequence identity to any other in a same location site. Virus-PLoc will be freely available as a web-server at http://202.120.37.186/bioinf/virus for the public usage. Furthermore, Virus-PLoc has been used to provide large-scale predictions of all viral protein entries in Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Virus-PLoc.xls." This file is available at the same website and will be updated twice a year to include the new entries of viral proteins and reflect the continuous development of Virus-PLoc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号