首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predicting subcellular localization of proteins in a hybridization space   总被引:2,自引:0,他引:2  
MOTIVATION: The localization of a protein in a cell is closely correlated with its biological function. With the number of sequences entering into databanks rapidly increasing, the importance of developing a powerful high-throughput tool to determine protein subcellular location has become self-evident. In view of this, the Nearest Neighbour Algorithm was developed for predicting the protein subcellular location using the strategy of hybridizing the information derived from the recent development in gene ontology with that from the functional domain composition as well as the pseudo amino acid composition. RESULTS: As a showcase, the same plant and non-plant protein datasets as investigated by the previous investigators were used for demonstration. The overall success rate of the jackknife test for the plant protein dataset was 86%, and that for the non-plant protein dataset 91.2%. These are the highest success rates achieved so far for the two datasets by following a rigorous cross-validation test procedure, suggesting that such a hybrid approach (particularly by incorporating the knowledge of gene ontology) may become a very useful high-throughput tool in the area of bioinformatics, proteomics, as well as molecular cell biology. AVAILABILITY: The software would be made available on sending a request to the authors.  相似文献   

2.
The location of a protein in a cell is closely correlated with its biological function. Based on the concept that the protein subcellular location is mainly determined by its amino acid and pseudo amino acid composition (PseAA), a new algorithm of increment of diversity combined with support vector machine is proposed to predict the protein subcellular location. The subcellular locations of plant and non-plant proteins are investigated by our method. The overall prediction accuracies in jackknife test are 88.3% for the eukaryotic plant proteins and 92.4% for the eukaryotic non-plant proteins, respectively. In order to estimate the effect of the sequence identity on predictive result, the proteins with sequence identity 相似文献   

3.
Information of protein subcellular location plays an important role in molecular cell biology. Prediction of the subcellular location of proteins will help to understand their functions and interactions. In this paper, a different mode of pseudo amino acid composition was proposed to represent protein samples for predicting their subcellular localization via the following procedures: based on the optimal splice site of each protein sequence, we divided a sequence into sorting signal part and mature protein part, and extracted sequence features from each part separately. Then, the combined features were fed into the SVM classifier to perform the prediction. By the jackknife test on a benchmark dataset in which none of proteins included has more than 90% pairwise sequence identity to any other, the overall accuracies achieved by the method are 94.5% and 90.3% for prokaryotic and eukaryotic proteins, respectively. The results indicate that the prediction quality by our method is quite satisfactory. It is anticipated that the current method may serve as an alternative approach to the existing prediction methods.  相似文献   

4.
The study of rat proteins is an indispensable task in experimental medicine and drug development. The function of a rat protein is closely related to its subcellular location. Based on the above concept, we construct the benchmark rat proteins dataset and develop a combined approach for predicting the subcellular localization of rat proteins. From protein primary sequence, the multiple sequential features are obtained by using of discrete Fourier analysis, position conservation scoring function and increment of diversity, and these sequential features are selected as input parameters of the support vector machine. By the jackknife test, the overall success rate of prediction is 95.6% on the rat proteins dataset. Our method are performed on the apoptosis proteins dataset and the Gram-negative bacterial proteins dataset with the jackknife test, the overall success rates are 89.9% and 96.4%, respectively. The above results indicate that our proposed method is quite promising and may play a complementary role to the existing predictors in this area.  相似文献   

5.
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.  相似文献   

6.
Gao QB  Wang ZZ  Yan C  Du YH 《FEBS letters》2005,579(16):3444-3448
To understand the structure and function of a protein, an important task is to know where it occurs in the cell. Thus, a computational method for properly predicting the subcellular location of proteins would be significant in interpreting the original data produced by the large-scale genome sequencing projects. The present work tries to explore an effective method for extracting features from protein primary sequence and find a novel measurement of similarity among proteins for classifying a protein to its proper subcellular location. We considered four locations in eukaryotic cells and three locations in prokaryotic cells, which have been investigated by several groups in the past. A combined feature of primary sequence defined as a 430D (dimensional) vector was utilized to represent a protein, including 20 amino acid compositions, 400 dipeptide compositions and 10 physicochemical properties. To evaluate the prediction performance of this encoding scheme, a jackknife test based on nearest neighbor algorithm was employed. The prediction accuracies for cytoplasmic, extracellular, mitochondrial, and nuclear proteins in the former dataset were 86.3%, 89.2%, 73.5% and 89.4%, respectively, and the total prediction accuracy reached 86.3%. As for the prediction accuracies of cytoplasmic, extracellular, and periplasmic proteins in the latter dataset, the prediction accuracies were 97.4%, 86.0%, and 79.7, respectively, and the total prediction accuracy of 92.5% was achieved. The results indicate that this method outperforms some existing approaches based on amino acid composition or amino acid composition and dipeptide composition.  相似文献   

7.
Proteins are generally classified into the following 12 subcellular locations: 1) chloroplast, 2) cytoplasm, 3) cytoskeleton, 4) endoplasmic reticulum, 5) extracellular, 6) Golgi apparatus, 7) lysosome, 8) mitochondria, 9) nucleus, 10) peroxisome, 11) plasma membrane, and 12) vacuole. Because the function of a protein is closely correlated with its subcellular location, with the rapid increase in new protein sequences entering into databanks, it is vitally important for both basic research and pharmaceutical industry to establish a high throughput tool for predicting protein subcellular location. In this paper, a new concept, the so-called "functional domain composition" is introduced. Based on the novel concept, the representation for a protein can be defined as a vector in a high-dimensional space, where each of the clustered functional domains derived from the protein universe serves as a vector base. With such a novel representation for a protein, the support vector machine (SVM) algorithm is introduced for predicting protein subcellular location. High success rates are obtained by the self-consistency test, jackknife test, and independent dataset test, respectively. The current approach not only can play an important complementary role to the powerful covariant discriminant algorithm based on the pseudo amino acid composition representation (Chou, K. C. (2001) Proteins Struct. Funct. Genet. 43, 246-255; Correction (2001) Proteins Struct. Funct. Genet. 44, 60), but also may greatly stimulate the development of this area.  相似文献   

8.
Zhou XB  Chen C  Li ZC  Zou XY 《Amino acids》2008,35(2):383-388
Apoptosis proteins play an important role in the development and homeostasis of an organism. The accurate prediction of subcellular location for apoptosis proteins is very helpful for understanding the mechanism of apoptosis and their biological functions. However, most of the existing predictive methods are designed by utilizing a single classifier, which would limit the further improvement of their performances. In this paper, a novel predictive method, which is essentially a multi-classifier system, has been proposed by combing a dual-layer support vector machine (SVM) with multiple compositions including amino acid composition (AAC), dipeptide composition (DPC) and amphiphilic pseudo amino acid composition (Am-Pse-AAC). As a demonstration, the predictive performance of our method was evaluated on two datasets of apoptosis proteins, involving the standard dataset ZD98 generated by Zhou and Doctor, and a larger dataset ZW225 generated by Zhang et al. With the jackknife test, the overall accuracies of our method on the two datasets reach 94.90% and 88.44%, respectively. The promising results indicate that our method can be a complementary tool for the prediction of subcellular location.  相似文献   

9.
Gao Y  Shao S  Xiao X  Ding Y  Huang Y  Huang Z  Chou KC 《Amino acids》2005,28(4):373-376
Summary. With the avalanche of new protein sequences we are facing in the post-genomic era, it is vitally important to develop an automated method for fast and accurately determining the subcellular location of uncharacterized proteins. In this article, based on the concept of pseudo amino acid composition (Chou, K.C. Proteins: Structure, Function, and Genetics, 2001, 43: 246–255), three pseudo amino acid components are introduced via Lyapunov index, Bessel function, Chebyshev filter that can be more efficiently used to deal with the chaos and complexity in protein sequences, leading to a higher success rate in predicting protein subcellular location.  相似文献   

10.
The function of a protein is closely correlated with its subcellular location. With the success of human genome project and the rapid increase in the number of newly found protein sequences entering into data banks, it is highly desirable to develop an automated method for predicting the subcellular location of proteins. The establishment of such a predictor will no doubt expedite the functionality determination of newly found proteins and the process of prioritizing genes and proteins identified by genomics efforts as potential molecular targets for drug design. Based on the concept of pseudo amino acid composition originally proposed by K. C. Chou (Proteins: Struct. Funct. Genet. 43: 246–255, 2001), the digital signal processing approach has been introduced to partially incorporate the sequence order effect. One of the remarkable merits by doing so is that many existing tools in mathematics and engineering can be straightforwardly used in predicting protein subcellular location. The results thus obtained are quite encouraging. It is anticipated that the digital signal processing may serve as a useful vehicle for many other protein science areas as well.  相似文献   

11.
Based on the recent development in the gene ontology and functional domain databases, a new hybridization approach is developed for predicting protein subcellular location by combining the gene product, functional domain, and quasi-sequence-order effects. As a showcase, the same prokaryotic and eukaryotic datasets, which were studied by many previous investigators, are used for demonstration. The overall success rate by the jackknife test for the prokaryotic set is 94.7% and that for the eukaryotic set 92.9%. These are so far the highest success rates achieved for the two datasets by following a rigorous cross-validation test procedure, suggesting that such a hybrid approach may become a very useful high-throughput tool in the area of bioinformatics, proteomics, as well as molecular cell biology. The very high success rates also reflect the fact that the subcellular localization of a protein is closely correlated with: (1). the biological objective to which the gene or gene product contributes, (2). the biochemical activity of a gene product, and (3). the place in the cell where a gene product is active.  相似文献   

12.
Xiao X  Shao S  Ding Y  Huang Z  Huang Y  Chou KC 《Amino acids》2005,28(1):57-61
Summary. Recent advances in large-scale genome sequencing have led to the rapid accumulation of amino acid sequences of proteins whose functions are unknown. Because the functions of these proteins are closely correlated with their subcellular localizations, it is vitally important to develop an automated method as a high-throughput tool to timely identify their subcellular location. Based on the concept of the pseudo amino acid composition by which a considerable amount of sequence-order effects can be incorporated into a set of discrete numbers (Chou, K. C., Proteins: Structure, Function, and Genetics, 2001, 43: 246–255), the complexity measure approach is introduced. The advantage by incorporating the complexity measure factor as one of the pseudo amino acid components for a protein is that it can more effectively reflect its overall sequence-order feature than the conventional correlation factors. With such a formulation frame to represent the samples of protein sequences, the covariant-discriminant predictor (Chou, K. C. and Elrod, D. W., Protein Engineering, 1999, 12: 107–118) was adopted to conduct prediction. High success rates were obtained by both the jackknife cross-validation test and independent dataset test, suggesting that introduction of the concept of the complexity measure into prediction of protein subcellular location is quite promising, and might also hold a great potential as a useful vehicle for the other areas of molecular biology.  相似文献   

13.
Given a protein sequence, how to identify its subcellular location? With the rapid increase in newly found protein sequences entering into databanks, the problem has become more and more important because the function of a protein is closely correlated with its localization. To practically deal with the challenge, a dataset has been established that allows the identification performed among the following 14 subcellular locations: (1) cell wall, (2) centriole, (3) chloroplast, (4) cytoplasm, (5) cytoskeleton, (6) endoplasmic reticulum, (7) extracellular, (8) Golgi apparatus, (9) lysosome, (10) mitochondria, (11) nucleus, (12) peroxisome, (13) plasma membrane, and (14) vacuole. Compared with the datasets constructed by the previous investigators, the current one represents the largest in the scope of localizations covered, and hence many proteins which were totally out of picture in the previous treatments, can now be investigated. Meanwhile, to enhance the potential and flexibility in taking into account the sequence‐order effect, the series‐mode pseudo‐amino‐acid‐composition has been introduced as a representation for a protein. High success rates are obtained by the re‐substitution test, jackknife test, and independent dataset test, respectively. It is anticipated that the current automated method can be developed to a high throughput tool for practical usage in both basic research and pharmaceutical industry. © 2003 Wiley‐Liss, Inc.  相似文献   

14.
For a protein, an important characteristic is its location or compartment in a cell. This is because a protein has to be located in its proper position in a cell to perform its biological functions. Therefore, predicting protein subcellular location is an important and challenging task in current molecular and cellular biology. In this paper, based on AdaBoost.ME algorithm and Chou's PseAAC (pseudo amino acid composition), a new computational method was developed to identify protein subcellular location. AdaBoost.ME is an improved version of AdaBoost algorithm that can directly extend the original AdaBoost algorithm to deal with multi-class cases without the need to reduce it to multiple two-class problems. In some previous studies the conventional amino acid composition was applied to represent protein samples. In order to take into account the sequence order effects, in this study we use Chou's PseAAC to represent protein samples. To demonstrate that AdaBoost.ME is a robust and efficient model in predicting protein subcellular locations, the same protein dataset used by Cedano et al. (Journal of Molecular Biology, 1997, 266: 594-600) is adopted in this paper. It can be seen from the computed results that the accuracy achieved by our method is better than those by the methods developed by the previous investigators.  相似文献   

15.
Large-scale plant protein subcellular location prediction   总被引:1,自引:0,他引:1  
Current plant genome sequencing projects have called for development of novel and powerful high throughput tools for timely annotating the subcellular location of uncharacterized plant proteins. In view of this, an ensemble classifier, Plant-PLoc, formed by fusing many basic individual classifiers, has been developed for large-scale subcellular location prediction for plant proteins. Each of the basic classifiers was engineered by the K-Nearest Neighbor (KNN) rule. Plant-PLoc discriminates plant proteins among the following 11 subcellular locations: (1) cell wall, (2) chloroplast, (3) cytoplasm, (4) endoplasmic reticulum, (5) extracell, (6) mitochondrion, (7) nucleus, (8) peroxisome, (9) plasma membrane, (10) plastid, and (11) vacuole. As a demonstration, predictions were performed on a stringent benchmark dataset in which none of the proteins included has > or =25% sequence identity to any other in a same subcellular location to avoid the homology bias. The overall success rate thus obtained was 32-51% higher than the rates obtained by the previous methods on the same benchmark dataset. The essence of Plant-PLoc in enhancing the prediction quality and its significance in biological applications are discussed. Plant-PLoc is accessible to public as a free web-server at: (http://202.120.37.186/bioinf/plant). Furthermore, for public convenience, results predicted by Plant-PLoc have been provided in a downloadable file at the same website for all plant protein entries in the Swiss-Prot database that do not have subcellular location annotations, or are annotated as being uncertain. The large-scale results will be updated twice a year to include new entries of plant proteins and reflect the continuous development of Plant-PLoc.  相似文献   

16.
The function of protein is closely correlated with it subcellular location. Prediction of subcellular location of apoptosis proteins is an important research area in post-genetic era because the knowledge of apoptosis proteins is useful to understand the mechanism of programmed cell death. Compared with the conventional amino acid composition (AAC), the Pseudo Amino Acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence so as to remarkably enhance the power of using a discrete model to predict various attributes of a protein. In this study, a novel approach is presented to predict apoptosis protein solely from sequence based on the concept of Chou's PseAA composition. The concept of approximate entropy (ApEn), which is a parameter denoting complexity of time series, is used to construct PseAA composition as additional features. Fuzzy K-nearest neighbor (FKNN) classifier is selected as prediction engine. Particle swarm optimization (PSO) algorithm is adopted for optimizing the weight factors which are important in PseAA composition. Two datasets are used to validate the performance of the proposed approach, which incorporate six subcellular location and four subcellular locations, respectively. The results obtained by jackknife test are quite encouraging. It indicates that the ApEn of protein sequence could represent effectively the information of apoptosis proteins subcellular locations. It can at least play a complimentary role to many of the existing methods, and might become potentially useful tool for protein function prediction. The software in Matlab is available freely by contacting the corresponding author.  相似文献   

17.
In this paper, based on the approach by combining the "functional domain composition" [K.C. Chou, Y. D. Cai, J. Biol. Chem. 277 (2002) 45765] and the pseudo-amino acid composition [K.C. Chou, Proteins Struct. Funct. Genet. 43 (2001) 246; Correction Proteins Struct. Funct. Genet. 2044 (2001) 2060], the Nearest Neighbour Algorithm (NNA) was developed for predicting the protein subcellular location. Very high success rates were observed, suggesting that such a hybrid approach may become a useful high-throughput tool in the area of bioinformatics and proteomics.  相似文献   

18.
Predicting subcellular localization with AdaBoost Learner   总被引:1,自引:0,他引:1  
Protein subcellular localization, which tells where a protein resides in a cell, is an important characteristic of a protein, and relates closely to the function of proteins. The prediction of their subcellular localization plays an important role in the prediction of protein function, genome annotation and drug design. Therefore, it is an important and challenging role to predict subcellular localization using bio-informatics approach. In this paper, a robust predictor, AdaBoost Learner is introduced to predict protein subcellular localization based on its amino acid composition. Jackknife cross-validation and independent dataset test were used to demonstrate that Adaboost is a robust and efficient model in predicting protein subcellular localization. As a result, the correct prediction rates were 74.98% and 80.12% for the Jackknife test and independent dataset test respectively, which are higher than using other existing predictors. An online server for predicting subcellular localization of proteins based on AdaBoost classifier was available on http://chemdata.shu. edu.cn/sl12.  相似文献   

19.
According to the recent experiments, proteins in budding yeast can be distinctly classified into 22 subcellular locations. Of these proteins, some bear the multi-locational feature, i.e., occur in more than one location. However, so far all the existing methods in predicting protein subcellular location were developed to deal with only the mono-locational case where a query protein is assumed to belong to one, and only one, subcellular location. To stimulate the development of subcellular location prediction, an augmentation procedure is formulated that will enable the existing methods to tackle the multi-locational problem as well. It has been observed thru a jackknife cross-validation test that the success rate obtained by the augmented GO-FnD-PseAA algorithm [BBRC 320 (2004) 1236] is overwhelmingly higher than those by the other augmented methods. It is anticipated that the augmented GO-FunD-PseAA predictor will become a very useful tool in predicting protein subcellular localization for both basic research and practical application.  相似文献   

20.
相似性比对预测蛋白质亚细胞区间   总被引:1,自引:0,他引:1  
王雄飞  张梁  薛卫  赵南  徐焕良 《微生物学通报》2016,43(10):2298-2305
【目的】对蛋白质所属的亚细胞区间进行预测,为进一步研究蛋白质的生物学功能提供基础。【方法】以蛋白质序列的氨基酸组成、二肽、伪氨基酸组成作为序列特征,用BLAST比对改进K最近邻分类算法(K-nearest neighbor,KNN)实现蛋白序列所属亚细胞区间预测。【结果】在Jackknife检验下,数据集CH317三种特征的成功率分别为91.5%、91.5%和89.3%,数据集ZD98成功率分别为93.9%、92.9%和89.8%。【结论】BLAST比对改进KNN算法是预测蛋白质亚细胞区间的一种有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号