首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten human monoclonal antibodies derived from peripheral B cells of a patient with human T-cell lymphotropic virus (HTLV)-associated myelopathy are described. One monoclonal antibody recognized a linear epitope within the carboxy-terminal 43 amino acids of HTLV gp21, and two monoclonal antibodies recognized linear epitopes within HTLV type 1 (HTLV-1) gp46. The remaining seven monoclonal antibodies recognized denaturation-sensitive epitopes within HTLV-1 gp46 that were expressed on the surfaces of infected cells. Two of these antibodies also bound to viable HTLV-2 infected cells and immunoprecipitated HTLV-2 gp46. Virus neutralization was determined by syncytium inhibition assays. Eight monoclonal antibodies, including all seven that recognized denaturation-sensitive epitopes within HTLV-1 gp46, possessed significant virus neutralization activity. By competitive inhibition analysis it was determined that these antibodies recognized at least four distinct conformational epitopes within HTLV-1 gp46. These findings indicate the importance of conformational epitopes within HTLV-1 gp46 in mediating a neutralizing antibody response to HTLV infection.  相似文献   

2.
Heterologous expression of the human T-cell lymphotropic virus type 1 (HTLV-1) envelope surface glycoprotein (gp46) in a vaccinia virus/T7 polymerase system resulted in the production of authentic recombinant gp46. Five differentially glycosylated forms of the surface envelope protein were produced by this mammalian system, as demonstrated by tunicamycin inhibition of N-glycosylation and N-glycan removal with endoglycosidase H and glycopeptidase F. These studies revealed that all four potential N-glycosylation sites in gp46 were used for oligosaccharide modification and that the oligosaccharides were mannose-rich and/or hybrid in composition. Conformational integrity of the recombinant HTLV-1 envelope protein was determined by the ability to bind to various HTLV-1-infected human sera and a panel of conformational-dependent human monoclonal antibodies under nondenaturing conditions. Furthermore, this recombinant gp46 was recognized by a series of HTLV-2-infected human sera and sera from a Pan paniscus chimpanzee infected with the distantly related simian T-cell lymphotropic virus STLVpan-p. Maintenance of highly conserved conformational epitopes in the recombinant HTLV-1 envelope protein structure suggests that it may serve as a useful diagnostic reagent and an effective vaccine candidate.  相似文献   

3.
The humoral immune response to human cytomegalovirus (CMV) membrane glycoprotein gp58/116 (gB) has been studied by establishing cell lines producing specific human monoclonal antibodies. These cell lines were generated from peripheral blood lymphocytes obtained from a healthy carrier. Hybridomas producing gp58/116-specific antibodies were detected by reactivity to procaryotically expressed proteins containing the major neutralizing epitopes of this glycoprotein complex. One antibody, ITC88, which recognized an epitope located between amino acid residues 67 and 86 of gp116, potently neutralized the virus at 1 to 2 micrograms of immunoglobulin G per ml. Only four of the six human antibodies detecting the major neutralizing domain of gp58 neutralized the virus, and none of them required complement for activity. All antibodies that bound mature, processed gp58 recognized a conformational epitope involving sequences between residues 549 and 635. However, small differences existed between the antibodies in the actual minimal requirement for C- and N-terminal parts of this epitope. By peptide mapping with several of the antibodies, the epitope was shown to consist mainly of residues between amino acids 570 to 579 and 606 to 619. Despite the conformational nature of the epitope, the antibodies recognized both reduced and denatured native antigen. Presence of carbohydrates was not required for antigen binding of these gp58-specific human antibodies, but in at least one case, it greatly enhanced antigen recognition, indicating an importance of carbohydrate structures in some epitopes within the major neutralizing specificity of gp58.  相似文献   

4.
We have used an indirect-capture enzyme-linked immunosorbent assay to quantitate the reactivity of sera from human immunodeficiency virus type 1 (HIV-1)-infected humans with native recombinant gp120 (HIV-1 IIIB or SF-2) or with the gp120 molecule (IIIB or SF-2) denatured by being boiled in the presence of dithiothreitol with or without sodium dodecyl sulfate. Denaturation of IIIB gp120 reduced the titers of sera from randomly selected donors by at least 100-fold, suggesting that the majority of cross-reactive anti-gp120 antibodies present are directed against discontinuous or otherwise conformationally sensitive epitopes. When SF-2 gp120 was used, four of eight serum samples reacted significantly with the denatured protein, albeit with ca. 3- to 50-fold reductions in titer. Only those sera reacting with denatured SF-2 gp120 bound significantly to solid-phase-adsorbed SF-2 V3 loop peptide, and none bound to IIIB V3 loop peptide. Almost all antibody binding to reduced SF-2 gp120 was blocked by preincubation with the SF-2 V3 loop peptide, as was about 50% of the binding to native SF-2 gp120. When sera from a laboratory worker or a chimpanzee infected with IIIB were tested, the pattern of reactivity was reversed, i.e., there was significant binding to reduced IIIB gp120, but not to reduced SF-2 gp120. Binding of these sera to reduced IIIB gp120 was 1 to 10% that to native IIIB gp120 and was substantially decreased by preincubation with IIIB (but not SF-2) V3 loop peptide. To analyze which discontinuous or conformational epitopes were predominant in HIV-1-positive sera, we prebound monoclonal antibodies (MAbs) to IIIB gp120 and then added alkaline phosphatase-labelled HIV-1-positive sera. MAbs (such as 15e) that recognize discontinuous epitopes and compete directly with CD4 reduced HIV-1-positive sera binding by about 50%, whereas neutralizing MAbs to the C4, V2, and V3 domains of gp120 were either not inhibitory or only weakly so. Thus, antibodies to the discontinuous CD4-binding site on gp120 are prevalent in HIV-1-positive sera, antibodies to linear epitopes are less common, most of the antibodies to linear epitopes are directed against the V3 region, and most cross-reactive antibodies are directed against discontinuous epitopes, including regions involved in CD4 binding.  相似文献   

5.
The humoral immune response to human immunodeficiency virus type 1 (HIV-1) is often studied by using monomeric or denatured envelope proteins (Env). However, native HIV-1 Env complexes that maintain quaternary structure elicit immune responses that are qualitatively distinct from those seen with monomeric or denatured Env. To more accurately assess the levels and types of antibodies elicited by HIV-1 infection, we developed an antigen capture enzyme-linked immunosorbent assay using a soluble, oligomeric form of HIV-1IIIB Env (gp140) that contains gp120 and the gp41 ectodomain. The gp140, captured by various monoclonal antibodies (MAbs), retained its native oligomeric structure: it bound CD4 and was recognized by MAbs to conformational epitopes in gp120 and gp41, including oligomer-specific epitopes in gp41. We compared the reactivities of clade B and clade E serum samples to captured Env preparations and found that while both reacted equally well with oligomeric gp140, clade B seras reacted more strongly with monomeric gp120 than did clade E samples. However, these differences were minimized when gp120 was captured by a V3 loop MAb, which may lead to increased exposure of the CD4 binding site. We also measured the ability of serum samples to block binding of MAbs to epitopes in gp120 and gp41. Clade B serum samples consistently blocked binding of oligomer-dependent MAbs to gp41 and, to a slightly lesser extent, MAbs to the CD4 binding site in gp120. Clade E serum samples showed equivalent or greater blocking of oligomer-dependent gp41 antibodies and considerably less blocking of CD4-binding-site MAbs. Finally, we found that < 5% of the antibodies in clade B sera bound to epitopes present only in monomeric gp120, 30% bound to epitopes present in both monomeric gp120 and oligomeric gp140, and 70% bound to epitopes present in oligomeric gp140, which includes gp41. Thus, captured oligomeric Env closely reflects the antigenic characteristics of Env protein on the surface of virions and infected cells, retains highly conserved epitopes that are recognized by antibodies raised against different clades, and makes it possible to detect a much greater fraction of total anti-HIV-1 Env activity in sera than does native monomeric gp120.  相似文献   

6.
Broadly cross-reactive human immunodeficiency virus (HIV)-neutralizing antibodies are infrequently elicited in infected humans. The two best-characterized gp41-specific cross-reactive neutralizing human monoclonal antibodies, 4E10 and 2F5, target linear epitopes in the membrane-proximal external region (MPER) and bind to cardiolipin and several other autoantigens. It has been hypothesized that, because of such reactivity to self-antigens, elicitation of 2F5 and 4E10 and similar antibodies by vaccine immunogens based on the MPER could be affected by tolerance mechanisms. Here, we report the identification and characterization of a novel anti-gp41 monoclonal antibody, designated m44, which neutralized most of the 22 HIV type 1 (HIV-1) primary isolates from different clades tested in assays based on infection of peripheral blood mononuclear cells by replication-competent virus but did not bind to cardiolipin and phosphatidylserine in an enzyme-linked immunosorbent assay and a Biacore assay nor to any protein or DNA autoantigens tested in Luminex assays. m44 bound to membrane-associated HIV-1 envelope glycoproteins (Envs), to recombinant Envs lacking the transmembrane domain and cytoplasmic tail (gp140s), and to gp41 structures containing five-helix bundles and six-helix bundles, but not to N-heptad repeat trimers, suggesting that the C-heptad repeat is involved in m44 binding. In contrast to 2F5, 4E10, and Z13, m44 did not bind to any significant degree to denatured gp140 and linear peptides derived from gp41, suggesting a conformational nature of the epitope. This is the first report of a gp41-specific cross-reactive HIV-1-neutralizing human antibody that does not have detectable reactivity to autoantigens. Its novel conserved conformational epitope on gp41 could be helpful in the design of vaccine immunogens and as a target for therapeutics.  相似文献   

7.
Neutralization of a chimeric human immunodeficiency virus (HIV) type 1, containing the V3 loop of the MN isolate substituted within the HXB2 envelope, was enhanced up to 20-fold compared with the HXB2 or MN parental isolates by human HIV-positive sera. MN V3 loop-specific monoclonal antibodies were better able to recognize the chimeric virus compared with MN, staining a greater percentage of infected cells and exhibiting slight increases in relative affinity with a concomitant increase in neutralization titer. Competition analysis revealed that enhanced neutralization by human HIV-positive sera of the chimera was attributable in some cases to better reactivity with the linear V3 loop epitope but in others to conformational loop epitopes or previously cryptic or poorly recognized epitopes outside the loop region. Mice primed with a vaccinia virus-chimeric envelope recombinant and boosted with gp160 developed a spectrum of antibodies different from that of mice similarly immunized with HXB2 or MN recombinants or that of naturally infected humans. The chimeric envelope elicited antibodies with enhanced binding to the native MN V3 loop; however, the sites seen by the BALB/c mice were not neutralizing epitopes. Nevertheless, similar to the observations made with use of human sera, the chimeric virus was more readily neutralized by all of the immune mouse sera, an effect apparently mediated by non-V3 loop epitopes. These studies illustrate that not only the V3 loop sequence and conformation but also its context within the viral envelope influence neutralization.  相似文献   

8.
Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.  相似文献   

9.
The fine specificities of antibodies produced against human immunodeficiency virus type 1 (HIV-1) gp160 were examined in sera from 23 HIV-1-infected chimpanzees. These animals had been infected with one of six isolates of HIV-1. Sera were screened by enzyme-linked immunosorbent assay for reactivity against seven synthetic peptides corresponding to regions of gp160. Chimpanzees appear to remain healthy after infection with HIV-1, suggesting that these animals may prevent extensive spread of the virus in vivo through immunologic mechanisms. Antibody specificity to gp160 epitopes may play a key role in the defense against HIV-1-related disease. Approximately one-half of all chimpanzee sera contained antibodies reactive with peptide 846-860, which corresponds to the carboxyl terminus of gp41. Less than 10% of sera from HIV-1-infected humans that were examined contained antibodies reactive with peptide 846-860, suggesting that this region is not highly immunogenic in humans. Of the human sera containing antibodies reactive with this peptide, all were from individuals classified as Walter Reed stages 1 to 3. No sera from humans with advanced stages of the disease contained antibodies reactive with peptide 846-860. Peptide 600-611, which reportedly reacts with nearly all sera from HIV-infected humans, was reactive with less than one-half of sera from HIV-1-infected chimpanzees. The observed differences in antibody reactivity to gp160 peptides in sera from HIV-1-infected chimpanzees and humans suggest that each may generate antibodies against differing sets of HIV-1 epitopes. These differences may contribute to the lack of disease progression in chimpanzees after infection with HIV-1.  相似文献   

10.
The human T-lymphotropic virus type-1 (HTLV-1) is the cause of adult T cell leukaemias/lymphoma. Because thymic epithelial cells (TEC) express recently defined receptors for the virus, it seemed conceivable that these cells might be a target for HTLV-1 infection. We developed an in vitro co-culture system comprising HTLV-1+-infected T cells and human TECs. Infected T cells did adhere to TECs and, after 24 h, the viral proteins gp46 and p19 were observed in TECs. After incubating TECs with culture supernatants from HTLV-1+-infected T cells, we detected gp46 on TEC membranes and the HTLV-1 tax gene integrated in the TEC genome. In conclusion, the human thymic epithelium can be infected in vitro by HTLV-1, not only via cell-cell contact, but also via exposure to virus-containing medium.  相似文献   

11.
We describe here a detailed analysis of the antigenic determinants of the surface unit glycoprotein (gp90) of equine infectious anemia virus (EIAV), using a comprehensive panel of synthetic peptides in enzyme-linked immunosorbent assays with immune serum from naturally and experimentally infected horses and with a panel of gp90-specific neutralizing and nonneutralizing monoclonal antibodies. The results of these studies identify immunoreactive segments throughout the conserved and variable domains of gp90 but localize immunodominant (100% reactivity) determinants to the amino and carboxyl termini of the glycoprotein molecule. Analysis of peptide reactivities with longitudinal serum samples taken from experimentally infected ponies revealed that antibody responses to conserved B-cell determinants appeared earlier and at higher titers than do antibodies specific for determinants contained in the variable domain of gp90. These observations suggest an evolution of antibody responses in EIAV-infected ponies that may correspond to the establishment of immunological control of virus replication and disease routinely observed in EIAV infections. In addition, the mapping of monoclonal antibody epitopes to peptides of 9 to 12 amino acids demonstrated that all of the neutralizing epitopes are located in the variable domain of gp90. The arrangement of neutralizing epitopes and critical structural considerations suggest that EIAV gp90 contains a principal neutralizing domain similar to the V3 loop of human immunodeficiency virus type 1. These antigenic analyses provide an important foundation for further analyzing the protective immune response generated during persistent EIAV infections and also provide potential peptide substrates for diagnostic assays and for vaccine strategies.  相似文献   

12.
A specific response of human serum neutralizing antibodies (nAb) to a conformational epitope as a result of vaccination of human subjects with the surface envelope glycoprotein (gp120) of HIV-1 has not previously been documented. Here, we used computational analysis to assess the epitope-specific responses of human subjects, which were immunized with recombinant gp120 immunogens in the VAX003 and VAX004 clinical trials. Our computational methodology--a variation of sieve analysis--compares the occurrence of specific nAb targeted conformational 3D epitopes on viruses from infected individuals who received vaccination to the occurrence of matched epitopes in the viruses infecting placebo subjects. We specifically studied seven crystallographically defined nAb targeted conformational epitopes in the V3 loop, an immunogenic region of gp120. Of the six epitopes present in the immunogens and targeted by known monoclonal neutralizing antibodies, only the one targeted by the anti-V3 nAb 2219 exhibited a significant reduction in occurrence in vaccinated subjects compared to the placebo group. This difference occurred only in the VAX003 Thailand cohort. No difference was seen between vaccinated and placebo groups for the occurrence of an epitope that was not present in the immunogen. Thus, it can be theorized that a specific 2219-like human neutralizing antibody immune response to AIDSVAX immunization occurred in the VAX003 cohort, and that this response protected subjects from a narrow subset of HIV-1 viruses circulating in Thailand in the 1990s and bearing the conformational epitope targeted by the neutralizing antibody 2219.  相似文献   

13.
The protection of individuals from human immunodeficiency virus type 1 (HIV-1) infection with an envelope subunit derived from a single isolate will require the presentation of conserved epitopes in gp120. The objective of the studies presented here was to test whether a native recombinant gp120 (rgp120) immunogen would elicit responses to conserved neutralization epitopes that are not present in a denatured recombinant gp120 antigen from the same virus isolate. In a large study of 51 baboons, we have generated heterologous neutralizing activity with native, glycosylated rgp120SF2 but not with denatured, nonglycosylated env 2-3SF2. After repeated exposure to rgp120SF2 formulated with one of several adjuvants, virus isolates from the United States, the Caribbean, and Africa were neutralized. The timing of the immunization regimen and the choice of adjuvant affected the virus neutralization titers both quantitatively and qualitatively. These results suggest that vaccination with native, glycosylated rgp120 from a single virus isolate, HIV-SF2, may elicit a protective immune response effective against geographically and sequentially distinct HIV-1 isolates.  相似文献   

14.
We previously reported that the region corresponding to amino acids 197 to 216 of the gp46 surface glycoprotein (gp46-197) served as a binding domain for the interaction between gp46 and trypsin-sensitive membrane components of the target cell, leading to syncytium formation induced by human T-cell lymphotropic virus type 1 (HTLV-1)-bearing cells. Our new evidence shows that the 71-kDa heat shock cognate protein (HSC70) acts as a cellular receptor for syncytium formation. Using affinity chromatography with the peptide gp46-197, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, we isolated three components (bands A, B, and C) from MOLT-4 cell lysate which exhibited specific interactions with gp46 and inhibitory activities for syncytium formation induced by HTLV-1-bearing cells. Band A and B components were identified as HSC70 and β-actin, respectively, through amino acid sequencing by tandem mass spectrometry and immunostaining with specific monoclonal antibodies. Band C is likely to be a nonprotein component, because full activity for syncytium formation was seen after extensive trypsin digestion. Anti-HSC70 monoclonal antibody clearly blocked syncytium formation in a coculture of HTLV-1-bearing cells and indicator cells, whereas no inhibition was seen with anti-β-actin monoclonal antibody. Furthermore, flow cytometric analysis indicated that anti-HSC70 antibody reacted with MOLT-4 cells. Thus, we propose that HSC70 expressed on the target cell surface acts as a cellular acceptor to gp46 exposed on the HTLV-1-infected cell for syncytium formation, thereby leading to cell-to-cell transmission of HTLV-1.  相似文献   

15.
The objective of this study was to extend our previous research and to further characterize the humoral immune responses against HIV-1 p24, gp41 and the specific peptides carrying the immunodominant epitopes (IDEs) that react with human serum samples from HIV-1-infected individuals in China. We found that the majority (90.45%, 180/199) of the samples did not react with any of the three HIV-1 p24 peptides carrying IDEs, but did react with the recombinant full-length p24, suggesting that these samples tested in China were primarily directed against the conformational epitopes of HIV-1 p24. In contrast, 84.54% (164/194) of the samples reacted with at least one HIV-1 linear gp41 peptide, in particular the gp41-p1 peptide (amino acids 560–616). Both recently and long-term HIV-1-infected individuals displayed similar humoral immune responses against the recombinant gp41. However, samples from long-term HIV-1-infected subjects but not from recently infected subjects, showed a very strong reaction against the gp41-p1 peptide. The different response patterns observed for the two groups against the gp41 and the peptide gp41-p1 were statistically significant (P<0.01, Chi-square test). These results have direct relevance and importance for design of improved HIV-1 p24 detection assays and the gp41- based immunoassay that can be used to reliably distinguish recent and long-term HIV-1 infection.  相似文献   

16.
We have examined the exposure and conservation of antigenic epitopes on the surface envelope glycoproteins (gp120 and gp41) of 26 intact, native, primary human immunodeficiency virus type 1 (HIV-1) group M virions of clades A to H. For this, 47 monoclonal antibodies (MAbs) derived from HIV-1-infected patients were used which were directed at epitopes of gp120 (specifically V2, C2, V3, the CD4-binding domain [CD4bd], and C5) and epitopes of gp41 (clusters I and II). Of the five regions within gp120 examined, MAbs bound best to epitopes in the V3 and C5 regions. Only moderate to weak binding was observed by most MAbs to epitopes in the V2, C2, and CD4bd regions. Two anti-gp41 cluster I MAbs targeted to a region near the tip of the hydrophilic immunodominant domain bound strongly to >90% of isolates tested. On the other hand, binding of anti-gp41 cluster II MAbs was poor to moderate at best. Binding was dependent on conformational as well as linear structures on the envelope proteins of the virions. Further studies of neutralization demonstrated that MAbs that bound to virions did not always neutralize but all MAbs that neutralized bound to the homologous virus. This study demonstrates that epitopes in the V3 and C5 regions of gp120 and in the cluster I region of gp41 are well exposed on the surface of intact, native, primary HIV-1 isolates and that cross-reactive epitopes in these regions are shared by many viruses from clades A to H. However, only a limited number of MAbs to these epitopes on the surface of HIV-1 isolates can neutralize primary isolates.  相似文献   

17.
HIV-1 gp41 envelope antibodies, which are frequently induced in HIV-1-infected individuals, are predominantly nonneutralizing. The rare and difficult-to-induce neutralizing antibodies (2F5 and 4E10) that target gp41 membrane-proximal epitopes (MPER) are polyspecific and require lipid binding for HIV-1 neutralization. These results raise the questions of how prevalent polyreactivity is among gp41 antibodies and how the binding properties of gp41-nonneutralizing antibodies differ from those of antibodies that are broadly neutralizing. In this study, we have characterized a panel of human gp41 antibodies with binding specificities within the immunodominant cluster I (gp41 amino acids [aa] 579 to 613) or cluster II (gp41 aa 644 to 667) for reactivity to autoantigens, to the gp140 protein, and with MPER peptide-lipid conjugates. We report that while none of the gp41 cluster I antibodies studied were polyspecific, all three gp41 cluster II antibodies bound either to lipids or autoantigens, thus showing the propensity of cluster II antibodies to manifest polyreactivity. All cluster II gp41 monoclonal antibodies (MAbs), including those that were lipid reactive, failed to bind to gp41 MPER peptide-lipid complexes. Cluster II antibodies bound strongly with nanomolar binding affinity (dissociation constant [K(d)]) to oligomeric gp140 proteins, and thus, they recognize conformational epitopes on gp41 that are distinct from those of neutralizing gp41 antibodies. These results demonstrate that lipid-reactive gp41 cluster II antibodies are nonneutralizing due to their inability to bind to the relevant neutralizing epitopes on gp41.  相似文献   

18.
The primary protein product of the human T-cell leukemia virus type 1 (HTLV-1) env gene, gp61, is cleaved to produce both the exterior (gp46) and the transmembrane (gp21) portions of the HTLV-1 envelope protein. To compare the reactivity with human antibodies of different regions of this gp61 protein, five plasmids (A, B, B1, C, and D) were constructed to express recombinant proteins (RPs) in Escherichia coli. RP-A, RP-B, RP-B1, and RP-C contain amino acid residues 26 to 165, 166 to 229, 166 to 201, and 229 to 308, respectively, of the exterior envelope protein gp46. Serum samples from HTLV-1-seropositive subjects were assayed for reactivity with these RPs by Western immunoblotting. The percentages of positive reactivity with each of the RPs were as follows: 18.9% (23 of 122) for RP-A, 89.6% (112 of 125) for RP-B, 70.2% (85 of 121) for RP-B1, and 92.9% (117 of 126) for RP-C. These results indicate that the C-terminal half of gp46 (RP-B plus RP-C) can detect 97.6% (123 of 126) of positive samples, while the N-terminal half of gp46 (RP-A) can only detect 18.9% of the HTLV-1-positive sera (P less than 0.005). Furthermore, RP-A, -B, and -C, which together span the entire length of gp46 except the first five amino acids at the N terminus and the last four amino acids at the C- terminus, detected 99.2% (125 of 126) of the HTLV-1-positive subjects. In contrast, RP-D, which contains the HTLV-1 transmembrane envelope protein gp21 minus the first amino acid at the N terminus, had a lower rate of antibody reactivity at 73.7% (84 of 114) (P less than 0.005). The difference in seropositive rates for RP-D between HTLV-1 carriers (55.6%) and adult T-cell leukemia patients (85.5%) is statistically significant (P less than 0.01). This study therefore indicates that the C-terminal half of gp46, especially the amino acid sequence from 200 to 308, contains the most reactive epitopes of the HTLV-1 gp61 envelope glycoprotein.  相似文献   

19.
While one hypervariable, linear neutralizing determinant on the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein has been well characterized, little is known about the conserved, discontinuous gp120 epitopes recognized by neutralizing antibodies in infected individuals. Here, the epitope recognized by a broadly reactive neutralizing monoclonal antibody (F105) derived from an HIV-1-infected patient was characterized by examining the effects of changes in conserved gp120 amino acids on antibody reactivity. The F105 epitope was disrupted by changes in gp120 amino acids 256 and 257, 368 to 370, 421, and 470 to 484, which is consistent with the discontinuous nature of the epitope. Three of these regions are proximal to those previously shown to be important for CD4 binding, which is consistent with the ability of the F105 antibody to block gp120-CD4 interaction. Since F105 recognition was more sensitive to amino acid changes in each of the four identified gp120 regions than was envelope glycoprotein function, replication-competent mutant viruses that escaped neutralization by the F105 antibody were identified. These studies identify a conserved, functional HIV-1 gp120 epitope that is immunogenic in man and may serve as a target for therapeutic or prophylactic intervention.  相似文献   

20.
Attachment of Entamoeba histolytica to colonic epithelium and a variety of other target cells is mediated by a galactosc/N-acetyl D-galactosamine (Gal/GalNAc) inhibitable adhesin. Seven monoclonal antibodies specific for nonoverlapping epitopes of the 170 kDa subunit have been shown to have distinct effects on adherence. Four of these monoclonal antibodies inhibit or have no effect on amebic adherence while two others enhance amebic adherence. The epitopes recognized by these seven monoclonal antibodies have been mapped to the extracellular cysteine rich region of the 170 kDa subunit. The conformational nature of the epitopes was examined by testing monoclonal antibody reactivity with isolated regions of the 170 kDa subunit expressed as fusion proteins in E. coli and also with denatured native adhesin. These analyses suggested that three of monoclonal antibodies recognized conformational epitopes while the remaining four recognized linear epitopes. The mapping of these monoclonal antibodies have identified functionally important regions of the Gal/GalNAc adhesin and have also shown that recombinant Gal/GalNAc adhesin, when expressed in E. coli, retained at least some of its native conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号