首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The transport and accumulation of 2-[14C]-IAA applied to the apex of cuttings of Pisum sativum L. cv. Alaska was greater in cuttings from stock plants grown under 38 W m−2 than 16 W m−2. Accumulation of 14C in the base of the cuttings from the highest level of irradiance was correspondingly more significant. The level of irradiance to the stock plants greatly affected the rate of accumulation, while the light conditions during IAA transport had a minor effect. The amount of IAA reaching the base of the cuttings increased with increasing concentration of IAA in the treatment solution, but the percentage of applied IAA reaching the base decreased.
The relative chromatographic partition of ethanol-extractable 14C showed that, after 12 h of IAA-transport, the amount of 2-[14C]-IAA was higher in the base of cuttings from 38 W m−2 than in those from 16 W m−2. After a further 12 h of transport the relative amounts of 2-[14C]-IAA in the two types of cuttings were reduced to the same lower level.
A possible role of an irradiance-mediated difference in the topographic distribution of IAA in the base of pea cuttings on the subsequent adventitious root formation is discussed.  相似文献   

2.
Rooting ability was studied for cuttings derived from pea plants ( Pisum sativum , L. cv. Alaska) grown in controlled environment rooms. When the cuttings were rooted at 70 μmol m−2 s, 1 (photosynthetic photon flux density) or more, a stock plant irradiance at 100 μmol m−2 s−1 decreased rooting ability in cuttings compared to 5 μmol m−2, s−1, However, cuttings rooted at 160 μmol m−2 s−1 formed more roots compared to 5 (μmol m−2 s−1. Although a high irradiance increased the number of roots formed, it could not overcome a decreased potential for root formation in stock plants grown at high irradiance. Light compensation point and dark respiration of cuttings decreased by 70% during the rooting period, and the final levels were strongly influenced by the irradiance to the cuttings. Respiratory O2 uptake decreased in the apex and the base of the cutting from day 2 onwards, whereas a constant level was found in the leaves. Only the content of extractable fructose, glucose, sucrose and starch varied during the early part of the rooting period. We conclude that the observed changes in the cuttings are initiated by excision of the root system, and are not involved in the initiation of adventitious roots.  相似文献   

3.
Rooting ability was studied for cuttings derived from stock plants of wild type pea seedlings and seedings of two mutants deficient in photosystem II activity and chlorophyll. Stock plants were grown at 15, 20, 25 or 30°C at 38 W m-2. Cuttings were rooted at 20°C and at an irradiance of 16 or 38 W m-2. The rooting ability seemed to be correlated with the initial carbohydrate content only at 38 W m-2. Based on the findings of the present study it may be concluded that for pea seedlings the growth temperature is more important than photosynthesis as regards accumulation of extractable carbohydrates. During the rooting period carbohydrates are necessary for root formation, but the effect of the iradiance on the number of roots formed is not mediated by the carbohydrate content. Under specific rooting conditions it is possible to correlate the initial carbohydrate content with the rooting capacity of the cuttings within a phenotype, but not always when different phenotypes are considered. The results indicate a connection between the metabolic activity of the cuttings and their ability to form adventitious roots.  相似文献   

4.
Seedlings of Pinus sylvestris were grown for 6 weeks under natural light conditions in a temperature controlled environment room. Cuttings from these plants were rooted in tap water or in indolebutyric acid (IBA) solutions for 60 days at an irradiance of 16 W m-2. Experiments were performed at 3-week intervals during two growth seasons. — Seasonal changes in root formation were found in control cuttings as well as in IBA treated cuttings. The number of roots and the percentage of cuttings that rooted were high during early spring and autumn. During the summer period hardly any roots were formed. Stimulation of root formation by IBA occurred manily during spring and autumn when cuttings already possessed the ability to form roots. — The influence of photoperiod during stock plant growth was also investigated. Shorter photoperiod resulted in an increase in the number of roots and rooting percentage. The period during summer where rooting was inhibited under natural light conditions was considerably shortened when stock plants were grown at a photoperiod of only 4 h. The results demonstrate the importance of the growing conditions for stock plants for subsequent root formation. The results are discussed with special reference to the role of irradiance.  相似文献   

5.
When rooted cuttings of Corylus maxima Mill. cv. Purpurea are moved from the wet and humid conditions of the rooting environment, the leaves frequently shrivel and die. Since the newly formed adventitious root system has been shown to be functional in supplying water to the shoot, stomatal behaviour in C. maxima was investigated in relation to the failure to prevent desiccation. Stomatal conductance (gs) in expanding leaves (L3) of cuttings increased almost 10-fold over the first 14 days in the rooting environment (fog), from 70 to 650 mmol m−2 s−1. In contrast, gs of expanded leaves (L1) changed little and was in the region of 300 mmol m−2 s−1. Midday leaf water potential was much higher in cuttings than in leaves on the mother stock-plant (−0.5 versus −1.2 MPa) even before any roots were visible. Despite this, leaf expansion of L3 was inhibited by >50% in cuttings and stomata showed a gradual reduction in their ability to close in response to abscisic acid (ABA). To determine whether the loss of stomatal function in cuttings was due to severance or to unnaturally low vapour pressure deficit and wetting in fog, intact plants were placed alongside cuttings in the rooting environment. The intact plants displayed reductions in leaf expansion and in the ability of stomata to close in response to dark, desiccation and ABA. However, in cuttings, the additional effect of severance resulted in smaller leaves than in intact plants and more severe reduction in stomatal closure, which was associated with a 2.5-fold increase in stomatal density and distinctively rounded stomatal pores. The similarities between stomatal dysfunction in C. maxima and that observed in many species propagated in vitro are discussed, as is the possible mechanism of dysfunction.  相似文献   

6.
Untreated and indole-3-butyrie acid-treated (IBA) cuttings from 90-day-old Pinus banksiana Lamb, stock plants were propagated under normal greenhouse irradiance (max. 900 $$mol m-2 s-1) and shade (max. 120 $$mol m-2 s-1) to determine effects on adventitious rooting and on reducing sugar and starch concentrations in needles and basal stems. In one experiment, cuttings were assessed at days 15 and 25 of propagation for basal 1-cm stem fresh weight, proportion rooted, number of roots and longest root length. In a second experiment with cuttings, basal 1-cm stem fresh weight and concentrations of reducing sugar and starch in needles and basal stems were measured each day for the first 10 days of propagation. Carbohydrate measurements were also made for seedling stock plants as controls for the second experiment. Carbohydrate data for cuttings were primarily evaluated based on net (cutting minus seedling) concentrations, to correct for changes in cuttings not related to adventitious rooting. Increase of basal stem fresh weight and rooting of cuttings, based on all measured variables, occurred in the order: light + IBA > light > shade + IBA > shade. The best rooting required the greater irradiance. Compared to results from cuttings in the light, shading resulted in lesser accumulations of reducing sugars and starch in needles and basal stems. Reducing sugar: starch concentration ratios were significantly greater in shade- vs light-propagated cuttings, IBA treatment did not offset the effects of shade on rooting or on reducing sugar and starch concentrations or ratios. Overall, the results suggested that decreased reducing sugar and starch concentrations and/or their increased ratios are associated with shade-induced poor rooting of P. banksiana cuttings.  相似文献   

7.
Light effects on in vitro adventitious root formation in axillary shoots of a 95-year-old black cherry ( Prunus serotina Ehrh.) were examined using microcuttings derived from cultured vegetative buds. Three studies were performed: 1) complete darkness and 4 levels of continuous white light irradiance were tested at 70, 278, 555 and 833 μmol m−2 s−1; 2) white, red, yellow and blue light were tested to assess the importance of spectral quality; and 3) the effect of blue light at intensities of 7,15, 22 and 30 μmol m−2 s−1 was also studied, Measurements included rooting percentage, total number of roots per shoot, and shoot and root dry weight. There was a strong negative effect of white light intensity upon root formation. Blue light between 15 and 22 μmol m−2: s−1 significantly retarded root formation and completely inhibited it at 36 μmol m−2 s−1. Shoots treated with yellow light exhibited the highest rooting percentage, mean number of roots per shoot, and root dry weight.  相似文献   

8.
Tomato plants were grown under light intensities of 36 or 90 W m−2 [photosynthetically active radiation (PAR)], and then the light intensity was changed to 36, 90 or 180 W m−2 for 8 h to investigate the effect of temporary changes in light intensity on the carbon budget of photoassimilates from the third leaf using a 14CO2 steady-state feeding method. In the plants that were raised under 90 W m−2, the photosynthetic rate increased when the light intensity was increased to 180 W m−2, whereas no increase occurred in the plants that were raised under 36 W m−2. Although the total amount of carbon fixed during the 8-h light period showed a large difference between plants grown at the two initial light intensities, the proportion of carbon exported during the light period did not differ apparently, irrespective of the change in light intensity. However, the amount of carbon exported during the time course was higher in plants that were raised under 90 W m−2 than those raised under 36 W m−2, irrespective of the change in light intensity. The partitioning pattern of 14C-photoassimilates was not changed by the change in light intensity, irrespective of whether the light intensity was increased or not. However, the amount of 14C-photoassimilates accumulated in each part differed according to the two initial light intensities. The carbon transport from a source leaf was also investigated through a quantitative analysis of carbon balance.  相似文献   

9.
In flood-tolerant species, a common response to inundation is growth of adventitious roots into the water column. The capacity for these roots to become photosynthetically active has received scant attention. The experiments presented here show the aquatic adventitious roots of the flood-tolerant, halophytic stem-succulent, Tecticornia pergranulata (subfamily Salicornioideae, Chenopodiaceae) are photosynthetic and quantify for the first time the photosynthetic capacity of aquatic roots for a terrestrial species. Fluorescence microscopy was used to determine the presence of chloroplasts within cells of aquatic roots. Net O2 production by excised aquatic roots, when underwater, was measured with varying light and CO2 regimes; the apparent maximum capacity ( P max) for underwater net photosynthesis in aquatic roots was 0.45  µ mol O2 m−2 s−1. The photosynthetic potential of these roots was supported by the immunolocalization of PsbA, the major protein of photosystem II, and ribulose-1-5-bisphosphate carboxylase/oxygenase (Rubisco) in root protein extracts. Chlorophyllous aquatic roots of T. pergranulata are photosynthetically active, and such activity is a previously unrecognized source of O2, and potentially carbohydrates, in flooded and submerged plants.  相似文献   

10.
Three levels of atmospheric CO2 and 2 levels of relative humidity (RH) during the rooting period were tested for their effect on several factors presumed to influence adventitious root formation in leafy pea ( Pisum sativum L. cv. Alaska) cuttings. Compared to normal CO2 levels (350 μl l−1), neither 1800 nor 675 μl l−1 CO2 affected the rooting percentage or the number of roots per cutting. However, 1800 μl l−1 CO2 increased root and shoot dry weight, root length, carbohydrate levels in the base of the cuttings and water potential (Ψw) of cuttings compared to normal levels of CO2. Compared to 87% RH. 55% RH decreased all of the above parameters, including the number of roots per cutting. A polyvinyl chloride antitranspirant (which partially blocks stomata and slows photosynthesis) applied simultaneously with 87% RH increased Ψw and root length but lowered all of the other above parameters, compared to 87% RH without antitranspirant. Increasing current photosynthate (products of photosynthetic activity after excision), carbohydrate, or Ψw either alone or together was associated with increased root system size but not necessarily with increased rooting percentage or root number. The data are consistent with a hypothesis that the number of roots per cutting increased with increasing current photosynthate and carbohydrate until some other factor became limiting. Also, the effect of Ψw on rooting percentage and root number was mediated through its effect on current photosynthate and carbohydrate.  相似文献   

11.
以2.5 g·L-1、5.0 g·L-1、10.0 g·L-1三个浓度复合肥对采穗圃进行施肥试验,研究不同浓度复合肥对松材线虫病抗性马尾松采穗圃的产穗和穗条扦插的影响。结果表明,与空白对照相比,施用复合肥使萌条数量,穗条扦插的生根率、不定根数量、最长不定根、总根长和侧根数增加。不同浓度复合肥对性状的影响不同。复合肥2.5 g·L-1最有利于萌条数量增加,较对照增加106%,差异达显著水平;5.0 g·L-1最有利于提高不定根数、总根长和侧根数,较对照分别提高100.0%、189.1%和186.4%,其中总根长差异达极显著水平,侧根数达显著水平;10.0 g·L-1最有利于提高生根率和最长不定根长度,较对照分别上升23.2%和134.7%,其中最长不定根差异达极显著水平。综合评价10项萌条和生根性状,复合肥10.0 g·L-1综合目标值最高,是三个浓度中最佳施肥浓度。  相似文献   

12.
Protonemata of the moss Funaria hygrometrica Sibth. (L.) show a strong pH dependence for auxin accumulation. IAA uptake is enhanced when the pH of the incubation medium is lowered from 7.6 to 4. In low light intensity grown protonemata (0.56 W m−2) a component of IAA uptake could be saturated by IAA; efflux of IAA could be inhibited by 2,3,5-triiodobenzoic acid. This is explained by the presence of influx and efflux carriers for IAA. In protonemata grown at high light intensity (2.00-2.30 W m−2) these carriers could not be shown to be present. These results are discussed with regard to the different physiological behavior of moss protonemata grown under different light conditions.  相似文献   

13.
Abstract. The root systems of 30-d-old sunflower plants were treated with polyethylene glycol (PEG; osmotic potential - 1.0MPa) for 2h, causing mild and transient wilting. Ten minutes before this treatment was applied, half the plants were defoliated. At varying times after the imposition of the PEG 'drought stimulus', the plant stems were cut and the sap exudate was collected and analysed for abscisic acid (ABA), using an elisa method. When stems were cut 2.25h after the treatments were applied, the ABA concentration in the sap of the controls did not vary with time: the mean concentration was 10.7 ± 1.0μ, mol m−3. However, in the treated plants, the first sample contained 78.1 ± 10.1 μmol m−3, decreasing to 13.6 ± 2.8 μmol m−3 over 8.75h. Defoliation did not affect the ABA concentration in the sap. When stems were cut at varying times (up to 25h) after treatment, the PEG treatment again caused an immediate increase in the ABA concentration in the sap, from 20 ± 1 to 136 ± 21 μmol m−3. However, defoliation reduced this increase, but only in plants sampled 4–25h after treatment. We conclude that, after the PEG treatment to the roots, the initial increase of the ABA content of sap, and its attenuation with time, may be ascribed to synthesis in the roots whereas, thereafter, ABA derived from the leaves makes a major contribution to the ABA found in the xylem sap.  相似文献   

14.
Abstract. The rates of uptake of 32P-labelled orthophosphate by whole root systems of young apple trees (M.9 rootslocks and Worcester Pearmain seedlings) were measured in solution culture. Using a solution depletion technique, the 32P-phosphate uptake rates per unit length, surface area or fresh weight of roots were determined as a function of 32P-phosphate concentration in solution at the root surface over the range 0.25–10 mmol m−3. The effect of P concentration within various plant parts on the relation between uptake rate and external P concentration was studied using plants differing in internal P levels.
The apparent minimutn P concentration below which P uptake ceased was of the order of 0.25–0.50 mmol m−3. Fluxes, inflows and unit absorption rates increased approximately proportionately with solution concentration up to 10mmolm−3. Except perhaps in the case of the low-P M.9 plant, there was no evidence of a diminishing returns type of relationship over the range of solution concentrations examined. The threshold P concentration in solution above which uptake rates cease to increase thus appears to be higher for apples than for other species.
At any given P concentration, fluxes, inflows and unit absorption rates were higher for M.9 than for Worcester and for low-P plants than for high-P plants. The difference between plants of different P status was more marked for M.9 and seems to be more closely related to shoot P levels than to root P.  相似文献   

15.
The relationship between specific rate of respiration (respiration rate per unit root dry weight) and concentration of reduced nitrogen was examined for maize ( Zea mays L.) roots. Plants with 2 primary nodal root axes were grown for 8 days in a split-root hydroponic system in which NO-3 was supplied to both axes at 1.0 mol m−3, to one axis at 1.0 mol m−3 and the other axis at 0.0 mol m−3 or to both axes at 0.0 mol m−3 Respiration rates and root characteristics were measured at 2-day intervals. Specific rate of respiration was positively correlated in a nonlinear relationship with concentration of reduced nitrogen. The lowest specific rates of respiration occurred when neither axis received exogenous NO−3 and the concentration of reduced nitrogen in the axes was less than 9 mg g−1. The greatest rates occurred in axes that were actively absorbing NO−3 and contained more than 35 mg g−1 of reduced nitrogen. At 23 mg g−1 of reduced nitrogen, below which initiation of lateral branches was decreased by 30–50%. specific rate of respiration was 17% greater for roots actively absorbing NO−3 than for roots not absorbing NO−3 Increases in specific rate of respiration associated with concentrations of reduced nitrogen greater than 23 mg g−1 were concluded to be attributable primarily to proliferation of lateral branches.  相似文献   

16.
The influence of nicotianamine (NA) on formation and elongation of adventitious roots in hypocotyls of de-rooted NA-less mutant seedlings of Lycopersicon esculentum Mill, was examined in relation to the iron supply [ferric N-N'-ethylenediaminedi-(2-hydroxyphenylacetate) (FEDDHA), ferric ethylenediaminetetracetate (FeEDTA), ferric N-(2-hydroxyethyl)-ethylenediaminetriacetate (FeHEDTA, Fe-citrate and FeCl3] in the nutrient solution. The initiation of root primordia in hypocotyl cuttings was independent of NA and occurred with about the same frequency in both, mutant and wild-type. In the mutant the development of primordia to adventitious roots was blocked at all iron sources used, except FeEDTA. Addition of NA (5x 10−6 to 2 × 10−5 M ) to the rooting medium resulted in a fast growth of adventitious roots in mutant cuttings with all iron sources tested. Rooting of wild-type cuttings was independent from NA application and iron sources. We suppose that NA is involved in the intracellular transport of iron. Its function is possibly linked with chelation of ferrous iron in the cell.  相似文献   

17.
The number of roots formed in cuttings of pea ( Pisum sativum L. cv. Alaska) was regulated both by the temperature and by IAA, whereas the time to the appearance of the first roots was regulated only by the temperature. Cuttings treated with 10-3 M IAA had a smaller content of extractable carbohydrates than the control ones irrespective of the temperature. In the bases of cuttings rooted at 25°C the content of extractable carbohydrates was lower than in those rooted at 15°C. Cuttings treated with IAA showed up to elevenfold increase of extractable carbohydrates in the bases at day 3. This increase of soluble sugars was not correlated with the number of roots formed or the speed of rooting. It is concluded that IAA affects the accumulation of carbohydrates, and this is not connected with the rooting ability of the cuttings.  相似文献   

18.
The length of the auxin-sensitive phase of root initiation 'in vitro' in the apple rootstock M.9 ( Malus pumila Mill.) has been determined using the auxins indol-3yl-acettc acid (IAA) at 2.8 × 10−5 M and indol-3yl-butyric acid (IBA) at 1.5 × 10−5 M in the presence and absence of 10−3 M phloroglucinol (PG). PG synergised IBA-induced rooting after 4 days exposure, but contact times exceeding 8 days decreased root number. In contrast, PG consistently synergised IAA-induced rooting in the dark for contact periods up to 13 days with the highest rooting being recorded at 9 days. An irradiance of 20 W m−2 from fluorescent lamps halved IAA-induced rooting irrespective of the presence or absence of PG. The culture of shoots at temperatures of 22,25 and 29°C during the root initiation phase (auxin present) and the root emergence phase (auxin absent) produced no difference in rooting response. In the presence of PG the use of liquid culture in place of agar-solidified culture during the auxin-sensitive phase reduced root number but not rooting percentage.  相似文献   

19.
Spinach plants ( Spinacia oleracea L. cv. Subito) were grown in a complete nutrient solution under ample light intensity (14 h day−1 at 660 μmol m−2 s−1) before being transferred either to a minus-N solution (experiment 1), or to limiting light conditions (6 h day−1 at 220 μmol m−2 s−1; experiment 2). Shoot growth in experiment 1 decreased significantly from 0.24 day−1 to 0.07 day−1 after the fourth day of transfer. Root relative growth rate increased after 1 day from 0.25 to 0.31 day−1, but decreased on the fifth day after transfer to 0.11 day−1. Shoot growth in experiment 2 decreased significantly from 0.25 to 0.17 day−1 after the fourth day of transfer, while root growth decreased to half of its original level (0.25 day−1) already on the second day. Growth substrate levels in the plants (free sugars, free amino acids) and starch levels depended on the plant age, the moment in the diurnal cycle, and the imposed treatment. Fluctuations in shoot growth or root growth resulting from the light or N limitation could not be explained by a correspondent increase or decrease in the levels of growth substrates. The hypotheses underlying the functional equilibrium theory, assuming shoot and root growth to be controlled by N- and C-containing substrates respectively, and several other growth and partitioning models are therefore questioned. A neglect of the osmotic role of the free sugars in these models might be the explanation for this.  相似文献   

20.
The influence of light intensity and phytochrome on the uptake of 14C-kinetin (6-furfurylamino-[8- 14C]-purine) by the plant and the translocation of the phytochrome between the roots, the hypocotyl and the cotyledons were investigated with radish seedlings ( Raphanus sativus L. cv. Saxa Treib) grown in the dark or under white light of high (20,000 lux, 90 W m−2) or low intensity (2,000 lux, 14 W m−2). The highest uptake of labelled kinetin was found in plants grown in continuous darkness. The total uptake of kinetin was decreased by strong light and to a finally higher extent by weak light. Under white light most of the kinetin accumulated in the root, whereas in the dark an enhanced translocation of the phytohormone into the cotyledons was observed. In etiolated radish seedlings, light acting on phytochrome (daily 5 min red or far red light pulses) decreased the translocation of 14C-kinetin into the cotyledons. Under far red light a pronounced uptake of the phytohormone into the roots was found. The data are discussed with regard to the interaction of light and phytohormones on plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号