首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
Light effects on in vitro adventitious root formation in axillary shoots of a 95-year-old black cherry ( Prunus serotina Ehrh.) were examined using microcuttings derived from cultured vegetative buds. Three studies were performed: 1) complete darkness and 4 levels of continuous white light irradiance were tested at 70, 278, 555 and 833 μmol m−2 s−1; 2) white, red, yellow and blue light were tested to assess the importance of spectral quality; and 3) the effect of blue light at intensities of 7,15, 22 and 30 μmol m−2 s−1 was also studied, Measurements included rooting percentage, total number of roots per shoot, and shoot and root dry weight. There was a strong negative effect of white light intensity upon root formation. Blue light between 15 and 22 μmol m−2: s−1 significantly retarded root formation and completely inhibited it at 36 μmol m−2 s−1. Shoots treated with yellow light exhibited the highest rooting percentage, mean number of roots per shoot, and root dry weight.  相似文献   

2.
The objective of the present study was to determine the influence of reduced irradiance on the activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and respiratory enzymes. Rooted cuttings of the tropical epiphyte. Ficus benjamina L., were grown in a shaded environment that excluded approximately 50% of the natural photosynthetically active irradiance (890 μmol m−2 s−1) for 4 months. Established plants were transferred and grown for 10 months under a range of irradiance levels with daily average maxima varying from a full-sun environment to 20% full sun (100%−1735; 50%−890; 40%−695; and 20%−303 μmol m−2s−1). Chlorophyll, carotenoid and soluble protein content increased in Ficus leaves as irradiance level decreased, while Rubisco increased on a fresh weight basis but decreased on a protein basis. Glycolytic enzymes, enolase and pyruvate kinase, showed higher activities in full-sun plants on a protein and fresh weight basis. However, the activity of two mitochondrial enzymes, aconitase and malate dehydrogenase, was not different under the various irradiance levels. When transferred to a very low irradiance environment (18 μmol m−2 s−1), mature leaves exhibited increased chlorophyll and carotenoid levels regardless of previous irradiance treatment. Exposure to very low irradiance resulted in a large increase in enolase and pyruvate kinase activities. Only plants grown under full sun conditions showed a decline in Rubisco activity following growth at very low irradiance. Together, these studies demonstrate the ability of mature leaves of Ficus to biochemically adjust photosynthetic and respiratory components over a wide range of irradiance.  相似文献   

3.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

4.
The circadian rhythm in growth of the red macroalga Porphyra umbilicalis (Linnaeus) J. Agardh was investigated under different spectral light conditions in laboratory-grown thalli. A free-running rhythm was observed in constant green or red light at irradiances of 2.5 to 20 μmol photons·m−2·s−1, whereas arhythmicity occurred in constant blue light at 6–20 μmol photons·m−2·s−1. The circadian oscillator controlling growth rhythmicity in Porphyra uses most of the visible sunlight spectrum and possibly multiple photoreceptors with a high sensitivity for blue light and a lower sensitivity for red light. This was inferred from three experimental results: (1) The free-running period, τ, of the growth rhythm decreased with increasing irradiance, from approximately 25 h at 2.5 μmol photons·m−2·s−1 to 22 h at 20 μmol photons·m−2·s−1 in red or green light, (2) Dark pulses of 3 h duration, interrupting otherwise continuous green or red light, caused advances during the subjective day and delays during the subjective night; the circadian oscillator in Porphyra can discriminate darkness from green or red light, and (3) Low-irradiance blue light pulses (2.5 μmol photons·m−2·s−1) shifted the growth rhythm in red light of higher irradiance (e.g. 10 μmol photons·m−2·s−1), and a strong, high amplitude, type 0 phase response curve was obtained that is usually observed with light pulses shifting a circadian rhythm in otherwise continuous darkness.  相似文献   

5.
The effects of light on in vitro proliferation and subsequent in vivo rooting and acclimatisation of Vaccinium corymbosum were investigated. The shoots were exposed in vitro to different irradiances (total radiation ranging from 55 to 240 μmol m−2 s−1) for 7 to 60 days. In vitro growth and proliferation and the possible consequences on in vivo rooting were observed.
As compared to the control treatment (55 μmol m−2 s−1), higher irradiances improved proliferation and rooting ratios only with short applications (7 days). Short but high (210 μmol m−2 s−1) exposures applied at the end of the proliferation phase increased in vivo growth and rooting of the shoots. The shoots treated with strong light for longer times (14 and 28 days) showed both inhibition of growth and red colour of leaves and sprouts, and were less vigorous when transferred in vivo.  相似文献   

6.
Spirogyra Link (1820) is an anabranched filamentous green alga that forms free-floating mats in shallow waters. It occurs widely in static waters such as ponds and ditches, sheltered littoral areas of lakes, and stow-flowing streams. Field observations of its seasonal distribution suggest that the 70-μm-wide filament form of Spirogyra should have a cool temperature and high irradiance optimum for net photosynthesis. Measurements of net photosynthesis and respiration were marie at 58 combinations of tight and temperature in a controlled environment facility. Optimum conditions were 25°C and 1500 μmol photons m−2 s−1, at which net photosynthesis averaged 75.7 mg O2 gdm−1 h−1. Net photosynthesis was positive at temperatures from 5° to 35°C at most irradiances except at combinations of extremely low irradiances and high temperatures (7 and 23 μmol photons m−2 s−1 at 30°C and 7, 23, and 35 μmol photons m−2 s−1 at 35°C). Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiances of 750 μmol photons m−2 s−1 or greater. Polynomials were fitted to the data to generate response surfaces; such response surfaces can be used to represent net photosynthesis and respiration in ecological models. The data indicate that the alga can tolerate the cool water and high irradiances characteristic of early spring but cannot maintain positive net photosynthesis under conditions of high temperature and low light (e.g. when exposed to self-shading ).  相似文献   

7.
Carotenoids play critical roles in both light harvesting and energy dissipation for the protection of photosynthetic structures. However, limited research is available on the impact of irradiance on the production of secondary plant compounds, such as carotenoid pigments. Kale ( Brassica oleracea L.) and spinach ( Spinacia oleracea L.) are two leafy vegetables high in lutein and β-carotene carotenoids. The objectives of this study were to determine the effects of different irradiance levels on tissue biomass, elemental nutrient concentrations, and lutein β-carotene and chlorophyll (chl) pigment accumulation in the leaves of kale and spinach. 'Winterbor' kale and 'Melody' spinach were grown in nutrient solution culture in growth chambers at average irradiance levels of 125, 200, 335, 460, and 620 μmol m−2 s−1. Highest tissue lutein β-carotene and chls occurred at 335 μmol m−2 s−1 for kale, and 200 μmol m−2 s−1 for spinach. The accumulations of lutein and β-carotene were significantly different among irradiance levels for kale, but were not significantly different for spinach. However, lutein and β-carotene accumulation was significant for spinach when computed on a dry mass basis. Identifying effects of irradiance on carotenoid accumulation in kale and spinach is important information for growers producing these crops for dry capsule supplements and fresh markets.  相似文献   

8.
Abstract: Very large numbers (3466 ml−1) of ciliated protozoa were found living beneath the oxic-anoxic boundary in a stratified freshwater pond. Most ciliates (96%) contained symbiotic algae ( Chlorella spp.). Peak abundance was in anoxic water with almost 1 mol free CO2 m−3 and a midday irradiance of 6 μmol photon m−2 s−1. Photosynthetic rate measurements of metalimnetic water indicated a light compensation point of 1.7 μmol photon m−2 s−1 which represents 0.6% of sub-surface light. We calculate that photosynthetic evolution of O2 by symbionts is sufficient to meet the demand of the host ciliates for 13 to 14 hours each day. Each 'photosynthetic ciliate' may therefore become an aerobic island surrounded by anoxic water.  相似文献   

9.
The effects of UV-C (254 nm), UV-A (365 nm) and broad-band UV (280–380 nm) on guard cells of Vicia faba L. cv. Long Pod were investigated in the presence of white light (450 μmol m−2 s−1). UV-C (7 μmol m−2 s−1) was found to cause leakage of 86Rb+ from guard cells, while UV-A (0.3 μmol m−2 s−1) stimulated increased uptake in these cells. A relatively small stimulatory effect was observed by broad-band UV (3 μmol m−2 s−1) during the first 30 min of irradiation with an apparent equilibration of influx and efflux thereafter. Leakage of 86Rb+ from guard cells continued despite the removal of UV-C and an increase in the amount of white light from 450 to 1500 μmol m−2 s−1, suggesting that membranes were irreversibly damaged. Irradiation of guard cells with UV-C for 30, 45 and 90 min indicated that these cells began to be affected already by 30 min UV-C irradiation.  相似文献   

10.
The abundance and cellular location of Fe-containing superoxide dismutase (Fe-SOD) in trichomes of Nodularia , Aphanizomenon and Anabaena collected from various depths in the Baltic Sea, and in trichomes of a cultured Nodularia strain, BC Nod-9427, isolated from the Baltic Sea, was examined by immunogold labelling. For trichomes collected from natural populations the areal concentration of Fe-SOD labelling decreased with depth: trichomes collected from surface accumulations had between 8 and 11 gold particles μm−2 whereas trichomes collected from a depth of 18 m were unlabelled. When trichomes collected from a depth of 10 m (mean areal labelling density 0·5 gold particles μm−2) were exposed to the higher irradiances present at 1 m, the areal concentration of Fe-SOD increased to 3·5–4 gold particles μm−2 within 4 h. When cultures of Nodularia strain BC Nod-9427, adapted to low light (10 μmol m−2 s−1), were transferred to an incident irradiance of 1350 μmol m−2 s−1, a doubling of the areal concentration of Fe-SOD gold label was observed within 1 h. Addition of 3-(3,4-dichlorophenyl)-1,1'-dimethylurea (DCMU) to cultures immediately before their transfer to increased illumination resulted in a decrease in areal Fe-SOD concentrations whereas addition of CdCl2 caused an increase over and above that induced by the elevated irradiance. These results suggest that Baltic Sea cyanobacteria are able to modulate their Fe-SOD content but that this might be in response to oxidative stress rather than to light per se .  相似文献   

11.
Pea plants ( Pisum sativum L. ev. Greenfeast) were grown for 2 to 3 weeks in while (˜ 50 μmol photons m−2 s−1; 400–700 nm) or green (˜ 30 μmol photons m−2 s −1 400–700 nm) light (16 h day/8 h night), with or without far-red light. Supplementary far-red light decreased leaf area and increased internodal length in both white and green light, demonstrating that phytochrome influenced leaf size and plant growth. However, there was no effect of far-red light on chlorophyll a /chlorophyll b ratios, chlorophyll-protein composition, the stoichiometry of electron transport complexes or photosynthetic function of isolated thylakoids. These results suggest that phytochrome is ineffective in modulating the composition and function of thylakoids in pea plants grown at low irradiance. One possible explanation of the ineffectiveness of phytochrome on thylakoids is discussed in terms of the drastic attenuation of red relative to far-red light in green tissue.  相似文献   

12.
SUMMARY. Diel vertical migrations of a dinoflagellate, Ceratium hirundinella , were induced in a laboratory tube (1.63 × 0.15 m) under a light-dark cycle. The timing of vertical migrations differed between cultures in the exponential and stationary phases of growth; the latter showed a greater coincidence with the light regime.
Migration of cells into the surface layers occurred at low values of surface irradiance (<550 μeinsteins m−2 s−1). At irradiances more closely approaching summer sunshine (> 1300 μE m−2 s−1) there was a marked avoidance of surface waters, and population maxima were found at depths associated with a relative irradiance level of 10% or c. 150 μE m−2 s−1). Thermal stratification restricted downward movement of cells into the cooler layers. The combination of high surface irradiance and thermal stratification resulted in large, stable, sub-surface maxima of Ceratium , similar to those observed in natural waters under comparable environmental conditions.  相似文献   

13.
Proliferating cultures of Actinidia deliciosa A. Chev., C. F. Liang and A. R. Ferguson cv. Tomuri (♂) were grown under photosynthetic photon flux density (PPFD) rates ranging from 30 to 250 μmol m−2 s−1 in order to determine certain physiological parameters in vitro: CO2 evolution, photosynthesis at three CO2 atmospheric concentrations (330, 1450 and 4500 μl l−1), fresh and dry matter accumulation and proliferation rate.
A proportional response in dry weight, dry/fresh weight ratios and PPFD was found. The proliferation rate increased up to 120 μmol m−2 s−1 but decreased at higher rates. At the highest PPFD, the CO2 released from cultures and accumulated in the vessels reached 200 μl l−1 of; at the lowest rate the CO2 concentration reached 10500 μl l−1 after 28 days of culture. The photosynthetic rate at 1450 and 4500 μl l−1 of CO2 was nearly 4 times higher than at the lowest concentration tested.  相似文献   

14.
The effects of photon flux density and temperature on net photosynthesis and transpiration rates of mature and immature leaves of three-year-old Japanese larch Larix kaempferi (Lamb.) Sarg. trees were determined with an infrared, differential open gas analysis system. Net photosynthetic response to increasing photon flux densities was similar for different foliage positions and stage of maturity. Light compensation was between 25 and 50 μmol m−2 s−1. Rates of photosynthesis increased rapidly at photon flux densities above the compensation level and became saturated between 800 and 1000 μmol m−2 s−1. Transpiration rates at constant temperature likewise increased with increasing photon flux density, and leveled off between 800 and 1000 μmol m−2 s−1. Photosynthetic response to temperature was determined in saturating light and was similar for all foliage positions; it increased steadily from low temperatures to an optimum range betweeen 15 and 21°C and then decreased rapidly above 21°C. Transpiration rate, however, increased continuously with rising temperature up to the experimental maximum. CO2 compensation concentrations for mature foliage varied between 58 and 59 μl l−1; however, foliage borne at the apex of the terminal leader compensated at 75 μl l−1. None of these data support the claim that Japanese larch possesses C4 photosynthetic characteristics.  相似文献   

15.
Gyrodinium dorsum Kofoid responds photophobically to flashes of blue light. The photophobic response consists of a cessation of movement (stop-response). Without background light and after a flash fluence above 10 J m−2, 75–85% of the cells show a stop-response, while only 50% of the cells show this response at 5 J m−2. With a flash fluence of 5 J m−2, background light of different wavelengths either increases (614 nm. 5.5–18.2 μmol m−2 s−1) or decreases (700 nm, 18.4–36.0 μmol m−2 s−1) the stop-response. Two hypotheses for the mechanism of the modulation by background light of the photophobic response are discussed: an effect of light on the balance of the photosynthetic system (PS I/PS II) or an effect on a phytochrome-like pigment (Pr/Pfr). This study supports the idea that a phytochrome-like pigment works in combination with a blue light-absorbing pigment. It was also found that cells of Gyrodinium dorsum cultured in red light (39.8 μmol m−2) had a higher absorption in the red region of the absorption spectra than those cultured in white light (92.7 μmol m−2).  相似文献   

16.
When rooted cuttings of Corylus maxima Mill. cv. Purpurea are moved from the wet and humid conditions of the rooting environment, the leaves frequently shrivel and die. Since the newly formed adventitious root system has been shown to be functional in supplying water to the shoot, stomatal behaviour in C. maxima was investigated in relation to the failure to prevent desiccation. Stomatal conductance (gs) in expanding leaves (L3) of cuttings increased almost 10-fold over the first 14 days in the rooting environment (fog), from 70 to 650 mmol m−2 s−1. In contrast, gs of expanded leaves (L1) changed little and was in the region of 300 mmol m−2 s−1. Midday leaf water potential was much higher in cuttings than in leaves on the mother stock-plant (−0.5 versus −1.2 MPa) even before any roots were visible. Despite this, leaf expansion of L3 was inhibited by >50% in cuttings and stomata showed a gradual reduction in their ability to close in response to abscisic acid (ABA). To determine whether the loss of stomatal function in cuttings was due to severance or to unnaturally low vapour pressure deficit and wetting in fog, intact plants were placed alongside cuttings in the rooting environment. The intact plants displayed reductions in leaf expansion and in the ability of stomata to close in response to dark, desiccation and ABA. However, in cuttings, the additional effect of severance resulted in smaller leaves than in intact plants and more severe reduction in stomatal closure, which was associated with a 2.5-fold increase in stomatal density and distinctively rounded stomatal pores. The similarities between stomatal dysfunction in C. maxima and that observed in many species propagated in vitro are discussed, as is the possible mechanism of dysfunction.  相似文献   

17.
The transport and accumulation of 2-[14C]-IAA applied to the apex of cuttings of Pisum sativum L. cv. Alaska was greater in cuttings from stock plants grown under 38 W m−2 than 16 W m−2. Accumulation of 14C in the base of the cuttings from the highest level of irradiance was correspondingly more significant. The level of irradiance to the stock plants greatly affected the rate of accumulation, while the light conditions during IAA transport had a minor effect. The amount of IAA reaching the base of the cuttings increased with increasing concentration of IAA in the treatment solution, but the percentage of applied IAA reaching the base decreased.
The relative chromatographic partition of ethanol-extractable 14C showed that, after 12 h of IAA-transport, the amount of 2-[14C]-IAA was higher in the base of cuttings from 38 W m−2 than in those from 16 W m−2. After a further 12 h of transport the relative amounts of 2-[14C]-IAA in the two types of cuttings were reduced to the same lower level.
A possible role of an irradiance-mediated difference in the topographic distribution of IAA in the base of pea cuttings on the subsequent adventitious root formation is discussed.  相似文献   

18.
Untreated and indole-3-butyrie acid-treated (IBA) cuttings from 90-day-old Pinus banksiana Lamb, stock plants were propagated under normal greenhouse irradiance (max. 900 $$mol m-2 s-1) and shade (max. 120 $$mol m-2 s-1) to determine effects on adventitious rooting and on reducing sugar and starch concentrations in needles and basal stems. In one experiment, cuttings were assessed at days 15 and 25 of propagation for basal 1-cm stem fresh weight, proportion rooted, number of roots and longest root length. In a second experiment with cuttings, basal 1-cm stem fresh weight and concentrations of reducing sugar and starch in needles and basal stems were measured each day for the first 10 days of propagation. Carbohydrate measurements were also made for seedling stock plants as controls for the second experiment. Carbohydrate data for cuttings were primarily evaluated based on net (cutting minus seedling) concentrations, to correct for changes in cuttings not related to adventitious rooting. Increase of basal stem fresh weight and rooting of cuttings, based on all measured variables, occurred in the order: light + IBA > light > shade + IBA > shade. The best rooting required the greater irradiance. Compared to results from cuttings in the light, shading resulted in lesser accumulations of reducing sugars and starch in needles and basal stems. Reducing sugar: starch concentration ratios were significantly greater in shade- vs light-propagated cuttings, IBA treatment did not offset the effects of shade on rooting or on reducing sugar and starch concentrations or ratios. Overall, the results suggested that decreased reducing sugar and starch concentrations and/or their increased ratios are associated with shade-induced poor rooting of P. banksiana cuttings.  相似文献   

19.
Water (H15O) translocation from the roots to the top of rice plants ( Oryza saliva L. cv. Nipponbare) was visualized over time by a positron-emitting tracer imaging system (PETIS). H15O flow was activated 8 min after plants were exposed to bright light (1 500 μmol m−2 s−1). When the light was subsequently removed, the flow gradually slowed and completely stopped after 12 min. In plants exposed to low light (500 μmol m−2 s−1), H15O flow was activated more slowly, and a higher translocation rate of H15O was observed in the same low light at the end of the next dark period. NaCl (80 m M ) and methylmercury (1 m M ) directly suppressed absorption of H15O by the roots, while methionine sulfoximine (1 m M ), abscisic acid (10 μ M ) and carbonyl cyanide m -chlorophenylhydrazone (10 m M ) were transported to the leaves and enhanced stomatal closure, reducing H15O translocation.  相似文献   

20.
Seedlings of Pinus sylvestris were grown for 6 weeks under natural light conditions in a temperature controlled environment room. Cuttings from these plants were rooted in tap water or in indolebutyric acid (IBA) solutions for 60 days at an irradiance of 16 W m-2. Experiments were performed at 3-week intervals during two growth seasons. — Seasonal changes in root formation were found in control cuttings as well as in IBA treated cuttings. The number of roots and the percentage of cuttings that rooted were high during early spring and autumn. During the summer period hardly any roots were formed. Stimulation of root formation by IBA occurred manily during spring and autumn when cuttings already possessed the ability to form roots. — The influence of photoperiod during stock plant growth was also investigated. Shorter photoperiod resulted in an increase in the number of roots and rooting percentage. The period during summer where rooting was inhibited under natural light conditions was considerably shortened when stock plants were grown at a photoperiod of only 4 h. The results demonstrate the importance of the growing conditions for stock plants for subsequent root formation. The results are discussed with special reference to the role of irradiance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号