首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Horseradish peroxidase was applied by inotophoretic injections to physiologically identified regions of the laryngeal motor nucleus, the nucleus ambiguus in the CF/FM bat Rhinolophus rouxi. The connections of the nucleus ambiguus were analysed with regards to their possible functional significance in the vocal control system, in the respiration control system, and in mediating information from the central auditory system. The nucleus ambiguus is reciprocally interconnected with nuclei involved in the generation of the vocal motor pattern, i.e., the homonomous contralateral nucleus and the area of the lateral reticular formation. Similarly, reciprocal connections are found with the nuclei controlling the rhythm of respiration, i.e., medial parts of the medulla oblongata and the parabrachial nuclei. Afferents to the nucleus ambiguus derive from nuclei of the 'descending vocalization system' (periaqueductal gray and cuneiform nuclei) and from motor control centers (red nucleus and frontal cortex). Afferents to the nucleus ambiguus, possibly mediating auditory influence to the motor control of vocalization, come from the superior colliculus and from the pontine nuclei. The efferents from the pontine nuclei are restricted to rostral parts of the nucleus ambiguus, which hosts the motoneurons of the cricothyroid muscle controlling the call frequency.  相似文献   

2.
An antiserum raised against the synthetic tripeptide pyroglutamyl-histidyl-proline (free acid) was used to localize thyrotropin-releasing hormone (TRH) in the rat central nervous system (CNS) by immunocytochemistry. The distribution of TRH-immunoreactive structures was similar to that reported earlier; i.e., most of the TRH-containing perikarya were located in the parvicellular part of the hypothalamic paraventricular nucleus, the suprachiasmatic portion of the preoptic nucleus, the dorsomedial nucleus, the lateral basal hypothalamus, and the raphe nuclei. Several new locations for TRH-immunoreactive neurons were also observed, including the glomerular layer of the olfactory bulb, the anterior olfactory nuclei, the diagonal band of Broca, the septal nuclei, the sexually dimorphic nucleus of the preoptic area, the reticular thalamic nucleus, the lateral reticular nucleus of the medulla oblongata, and the central gray matter of the mesencephalon. Immunoreactive fibers were seen in the median eminence, the organum vasculosum of the lamina terminalis, the lateral septal nucleus, the medial habenula, the dorsal and ventral parabrachial nuclei, the nucleus of the solitary tract, around the motor nuclei of the cranial nerves, the dorsal vagal complex, and in the reticular formation of the brainstem. In the spinal cord, no immunoreactive perikarya were observed. Immunoreactive processes were present in the lateral funiculus of the white matter and in laminae V-X in the gray matter. Dense terminal-like structures were seen around spinal motor neurons. The distribution of TRH-immunoreactive structures in the CNS suggests that TRH functions both as a neuroendocrine regulator in the hypothalamus and as a neurotransmitter or neuromodulator throughout the CNS.  相似文献   

3.
Connections between the anterior thalamic and habenular nuclei were investigated in the lizard by administering horseradish peroxidase to these nuclei. They were shown to have overlapping locations of afferent sources, namely basotelencephalic structures, nuclei of anterior and hippocampal commissures, preoptic and lateral hypothalamic area, and superior raphe nucleus, as well as common projection zones, viz: the mamillary complex and the ventral tegmental area. Specific connections confined to individual nuclei were discovered, apart from those common to the nuclei: A reciprocal connection with the dorsolateral hypothalamic nucleus (for the anterior dorsolateral nucleus), a projection to the interpeduncular nucleus (for the habenular nucleus), and to the dorsal hypothalamic area (for the dorsomedial nucleus). No sources of afferent pathways to the anterior thalamic nuclei were found in the mamillary complex. All the thalamic nuclei studied, togetherwith their connections, are considered diencephalic relay links in pathways comparable with the dorsal (in the case of the habenular nuclei) and the ventral (with respect to the anterior thalamic nuclei) pathways of the mammalian limbic system.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 110–120, January–February, 1987.  相似文献   

4.
用免疫组织化学方法研究P物质在雌雄黄雀发声控制核团和听觉中枢内的分布,结合计算机图像分析仪检测SP免疫阳性细胞和末梢的灰度值,并作雌雄比较。结果如下:1.在发声学习中枢嗅叶X区有大量的SP阳性神经末梢和一些神经细胞。2.在发声控制核团前脑高级发声中枢(HVc)、古纹状体栎核、发声学习中枢新纹状体巨细胞核和丘脑背内侧核外侧部内有许多的SP免疫阳性细胞。3.在发声控制中枢中脑背内侧核和延髓舌下神经核气管鸣管部、听觉中枢丘脑卵圆核的壳区、中脑背外侧核壳区及中脑丘间核等有密集的SP免疫阳性神经末梢和纤维分布;雄性发声中枢内SP的分布比雌性丰富,两者有显著的差异。结果表明:SP的分布在雌雄发声中枢之间存在显著的性双态;SP广泛分布于黄雀发声控制核团和部分听觉中枢内,提示SP可能在发声控制及听觉中枢内具有重要的生理功能。  相似文献   

5.
Using an antiserum directed against synthetic galanin (GAL) a sensitive radioimmunoassay was developed. The antiserum interaction with GAL was characterized by displacement curve characteristics and high performance liquid chromatography. Besides the main GAL-immunoreactive peak several small peaks with GAL-like immunoreactivity were observed. No cross-reactivity of the GAL-antiserum with several other peptides was observed. GAL-like immunoreactivity was measured in 37 microdissected areas of the rat central nervous system. High concentrations (greater than 2000 fmol/mg protein) were observed in the amygdaloid nuclei, the septum, globus pallidus, bed nuclei of the stria terminalis, all hypothalamic nuclei, the superior colliculus, locus coeruleus, the nucleus of the solitary tract and the neurointermediate lobe of the pituitary. Moderate concentrations (1000-2000 fmol/mg protein) were observed in the hippocampus, the nucleus accumbens and nucleus of the diagonal tract, the caudate-putamen, the central gray, the nucleus, tract and substantia gelatinosa of the spinal trigeminal nerve. The results generally correlate with those previously published by immunocytochemistry. The widespread distribution of GAL-like immunoreactivity in the rat central nervous system suggests an involvement of GAL in a variety of brain functions.  相似文献   

6.
用免疫组织化学方法研究脑啡肽(ENK)在极危物种朱(Nipponia nippon)脑内的分布,结合计算机图像分析仪检测免疫阳性细胞和末梢的灰度值。ENK阳性细胞、纤维和终末分布如下:发声核团有原纹状体中间区腹部、丘脑背内侧核外侧部、中脑丘间核、中脑背内侧核、延髓舌下神经核。听觉中枢有丘脑卵圆核壳区、中脑背外侧核壳区、脑桥外侧丘系腹核、上橄榄核、耳蜗核等。内分泌核团有视前区前核、旧纹状体增加部、下丘脑外侧核、下丘脑腹内侧核等。结果表明,朱脑内ENK可能对发声、听觉和下丘脑内分泌的生理活动有一定的调制作用。  相似文献   

7.
Synchronized activity (spindles, augmentation response) evoked by stimulation of thalamic nonspecific, association, and specific nuclei was investigated in chronic experiments on 11 cats before and after successive destruction of the caudate nuclei. After destruction of the caudate nuclei the duration of spindle activity in the frontal cortex and subcortical formations (thalamic nuclei, globus pallidus, putamen) was reduced to only three or four oscillations. In the subcortical nuclei its amplitude fell significantly (by 50±10%); in the cortex the decrease in amplitude was smaller and in some cases was not significant. Different changes were observed in the amplitude of the augmentation response, depending on where it was recorded. In the subcortical formations it was considerably and persistently reduced (by 50±10%); in the cortex these changes were unstable in character. Unilateral destruction of the caudate nucleus inhibited synchronized activity evoked by stimulation of the thalamic nuclei on the side of the operation only. Destruction of the basal ganglia (caudate nucleus, globus pallidus, entopeduncular nucleus, and putamen) did not prevent the appearance of synchronized activity; just as after isolated destruction of the caudate nucleus, after this operation synchronized activity was simply reduced in duration and amplitude. It is suggested that the caudate nucleus exerts an ipsilateral facilitatory influence on the nonspecific system of the thalamus during the development of evoked synchronized activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 239–248, May–June, 1977.  相似文献   

8.
The occurrence and distribution of neurotensin-immunoreactive (NT-IR) perikarya was studied in the central nervous system of the guinea pig using a newly raised antibody (KN 1). Numerous NT-IR perikarya were found in the nuclei amygdaloidei, nuclei septi interventriculare, hypothalamus, nucleus parafascicularis thalami, substantia grisea centralis mesencephali, ventral medulla oblongata, nucleus solitarius and spinal cord. The distribution of NT-IR perikarya was similar to that previously described in the rat and monkey. In the gyrus cinguli, hippocampus and nucleus olfactorius, though, no NT-IR neurons were detected in this investigation. Additional immunoreactive perikarya, however, were observed in areas of the ventral medulla oblongata, namely in the nucleus paragigantocellularis, nucleus retrofacialis and nucleus raphe obscurus. The relevance of the NT-IR perikarya within the ventral medulla oblongata is discussed with respect to other neuropeptides, which are found in this area, and to cardiovascular regulation.  相似文献   

9.
1. The nuclei of the cells of the whole rat brain have been fractionated in a B-XIV zonal rotor with a discontinuous gradient of sucrose. Five fractions were obtained. Zone (I) contained neuronal nuclei (70%) and astrocytic nuclei (23%). Zone (II) contained astrocytic nuclei (81%) and neuronal nuclei (15%). Zone (III) contained astrocytic nuclei (84%) and oligodendrocytic nuclei (15%). Zone (IV) contained oligodendrocytic nuclei (92%) and zone (V) contained only oligodendrocytic nuclei. 2. The content of DNA, RNA and protein per nucleus was determined for each zone. Although the amount of DNA per nucleus is constant (7pg) the RNA varies from 4.5 to 2.5pg/nucleus and the protein from 38 to 17.6pg/nucleus. The neuronal nuclei have the greatest amounts of protein. The oligodendrocytic nuclei have the least content of RNA and protein. 3. The effects of pH, ionic strength, and Mg(2+) and Mn(2+) concentration on the activity of the nuclear system for synthesis in vitro of RNA have been investigated for unfractionated nuclei. From these studies a standard set of conditions for the assay of nuclear RNA polymerase has been established. 4. The activity of the RNA polymerase in each of the zonal fractions has been determined in the presence and in the absence of alpha-amanitin. Zone (II) is the most active, followed by zone (I). The nuclei of zones (IV) and (V) have comparable activity, which is 40% of that of zone (II). 5. The extent of incorporation of each of the four labelled nucleoside triphosphates by the nuclei from each zone has been measured. These values have been used to calculate the base composition of the RNA synthesized in vitro in each class of nucleus. 6. The effect of changes in the condition of assay of RNA polymerase in the different classes of nuclei has been investigated. Significant differences in the response to concentrations of metal ions and ammonium sulphate have been observed. 7. Homopolymer formation in each zone of brain nuclei has been determined. The extent of formation of the four homopolymers roughly parallels the RNA polymerase activity.  相似文献   

10.
It turtles, Testudo horsfieldi (Gray) connections of anterior dorsomedial and dorsolateral thalamic nuclei have been investigated by means of horseradish peroxidase, injected ionophoretically. Retrogradely labelled neurons are predominantly revealed ipsilaterally in the cerebral structures belonging to the limbic system: in the forebrain--basal parts of the hemisphere, septum, adjoining nucleus, nuclei of the anterior and hippocampal commissures, hippocampal cortex, preoptic area; in the diencephalon--in the subthalamus (suprapeduncular nucleus), in some hypothalamic structures (para- and periventricular nuclei, posterior nucleus, lateral hypothalamic area, mamillary complex); in the brain stem--ventral tegmental area, superior nucleus of the suture. Less vast connections are with nonlimbic cerebral formations: projections to the striatum, afferents from the laminar nucleus of the acoustic torus, nuclei of the posterior commissure. Similarity and difference of the nuclei investigated in the turtles with the thalamic anterior nuclei in lizards, with the anterior and intralaminar nuclei in Mammalia are discussed. An idea is suggested on functional heterogeneity of the anterior nuclei in reptiles and on their role for ensuring limbic functions at the thalamic level.  相似文献   

11.
Recently, we described the distribution of testosterone-metabolizing enzymes (i.e., aromatase, 5 alpha- and 5 beta-reductases) in the zebra finch (Taeniopygia guttata) brain using a sensitive radioenzyme assay combined to the Palkovits punch method. A number of sex-differences in the activity of these enzymes were observed especially in nuclei of the song-control system. The hormonal controls of these differences have now been analyzed by gonadectomizing birds of both sexes and by giving them a replacement therapy with silastic implants of testosterone (T). Five nuclei of the song system (Area X [X], nucleus magnocellularis of the anterior neostriatum [MAN], nucleus robustus archistriatalis [RA], nucleus intercollicularis [ICo], hyperstriatum ventrale, pars caudalis [HVc]) and three preoptic-hypothalamic areas (preoptic anterior [POA], periventricular magnocellular nucleus [PVM], and posterior medial hypothalamic nucleus [PMH]) were studied as well as other limbic and control non-steroid-sensitive areas. The activity of the 5 alpha-reductase was higher in males than in females for the five song-control nuclei and was not affected by the hormonal treatments. The overall activity of this enzyme was not sexually dimorphic in POA and PVM. It was higher in males than in females in intact birds only, and was reduced by gonadectomy and enhanced by T. The activity of the 5 beta-reductase was higher in females than in males in all nuclei of the song system and in POA, but was not influenced by the changes in T level. Both sex and treatment effects were observed in the control of aromatase. The production of estrogens was dimorphic (females greater than males) in RA and PMH. It was increased by T in POA, PVM, and PMH, and also in RA. These data show that some of the sex differences in T-metabolizing enzymes result from the exposure to different levels of T in adulthood (e.g., 5 alpha-reductase in POA and PVM or aromatase in PVM), whereas others persist even if birds are exposed to the same hormonal conditions. These are presumably the result of organizational effects of steroids. The steroid modulation of the aromatase might be related directly to the activation of sexual, aggressive, and nest-building behaviors, whereas the stable dimorphism in 5 alpha- and 5 beta-reductase observed in the nuclei of the song system might be one of the neurochemical bases of the sex differences in the vocal behavior of the zebra finch.  相似文献   

12.
Summary The visual system of adult zebra finches was investigated 1) immunocytochemically for the distribution of the Ca2+-binding protein parvalbumin, 2) for the activity of the respiratory enzyme cytochrome oxidase, and 3) for the uptake of 2-deoxyglucose. In the visual system, only nuclei of the tecto-fugal pathway and related nuclei were labeled by the parvalbumin antiserum (ectostriatum, nucleus rotundus, tectum opticum, nucleus postero-ventralis, nucleus praetectalis, nucleus subpraetectalis, nucleus isthmipars parvocellularis and-magnocellularis, nucleus isthmoopticus). Additionally, parvalbumin-positive nuclei such as area entorhinalis, area a in the hyperstriatum accessorium, nucleus septalis medialis and nucleus habenularis are described. With few exceptions there was a striking correlation of parvalbumin-positive and cytochrome oxidase-positive nuclei of the visual system. Most of the areas with high levels of parvalbumin and cytochrome oxidase were labeled with 2-deoxyglucose as well. Nucleus posteroventralis showed labeling below background intensity. 2-Deoxyglucose uptake primarily reflects energy demands of actual electrical activity, i.e., of the Na+-K+ pump, while cytochrome oxidase supposedly indicates the long-term energy demands of various metabolic pathways. Consequently, high cytochrome oxidase activity together with large 2-deoxyglucose uptake in the tecto-fugal pathway might be due to the high spontaneous and evoked electrical activity. Parvalbumin concentrations in the same areas (and in auditory areas, see Braun et al. 1985I) suggest as one possibility that special Ca2+ mechanisms are present in neuronal systems that can reach high levels of electrical activity.  相似文献   

13.
We studied by immunocytochemistry the expression of adrenomedullin (AM) in the human medulla oblongata, sampled from 13 adult subjects (mean age: 38 years), whose medical history was negative for neurological and neurovascular pathologies. Immunoreactive neurons were found in the medulla oblongata with statistically significant differences among the various nuclei (one-way ANOVA, P < 0.001). The hypoglossal nucleus showed higher AM expression than that of the spinal tract of the trigeminal nerve (P < 0.05), solitary tract nucleus (P < 0.05), nucleus intercalatus (P < 0.05), and area postrema (P < 0.05). The arcuate nucleus and inferior olivary nuclear complex showed lower AM expression than the hypoglossal nucleus (P < 0.001), vestibular nuclei (P < 0.01), cuneate and gracile nuclei (P < 0.05), lateral column of the reticular formation (P < 0.05), and nucleus ambiguous (P < 0.05). Furthermore the nuclei were grouped with reference to their function, into somatic sensitive nuclei, somatic motor nuclei, visceral nuclei, reticular formation, and nuclei involved in cerebellar functions. The ANOVA revealed statistically significant differences (P < 0.001) in mean AM scores among the different groups. Nuclei involved in cerebellar function showed the lowest mean AM score (P < 0.05). The difference in AM score between somatic motor nuclei and visceral nuclei was also statistically significant (P < 0.05). Widespread AM immunoreactivity in the nuclei of the medulla oblongata may account for the role of the peptide in neuronal function and regulation of regional blood flow. Differences in the expression of AM in the nuclei studied indicate the different involvement of AM in neurotransmission and neuromodulation.  相似文献   

14.
A system of brain nuclei controls song learning and behavior in zebra finches (Poephila guttata). The size of song-control nuclei are much larger in males, which sing, than in females, which do not sing. This study examined the distribution of fibers, terminals, and cell bodies that are immunoreactive for tyrosine hydroxylase (TH) (the rate-limiting enzyme in the synthesis of catecholamines) in song-control nuclei of adult males and females and juvenile males. In addition, the broad pattern of TH staining throughout the brain was described. There was a sex difference in TH immunoreactivity within song-control nuclei: males had light to moderate staining in all three cortical nuclei examined, whereas females had little or no label in corresponding areas [lateral magnocellular nucleus of the anterior neostriatum (IMAN), higher vocal center (HVC), and robust nucleus of the archistriatum (RA)]. The song-control nucleus area X (X), located in the striatum of avian basal ganglia, was more darkly stained than the surrounding striatum only in males; X was not defined by more intense immunoreactivity in females and hence could not be visualized. There were no apparent differences in TH staining in males ranging in age from 50 days to adulthood (>90 days). Outside of the song-control system there were no substantive differences as a function of sex or age in the pattern or intensity of TH labeling. Major areas of telencephalic staining included the striatal region of basal ganglia, which was covered with dense, fine-grained label, and the septum, where cell bodies were encircled by extremely well-labeled thick processes. In the diencephalon, the preoptic area and hypothalamus included a complex pattern of darkly stained somata and fiber and terminal labeling. Darkly stained somata surrounded the pretectal nucleus, and labeled processes ramified throughout the superficial layers of the optic tectum. The midbrain and hindbrain contained a dense plexus of extremely dark cell bodies corresponding to mammalian substantia nigra, adjacent tegmental areas, and locus ceruleus. Labeled hindbrain cells were also seen in the pontine region, around nucleus solitarius, and in the ventrolateral medulla. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
李浩  张平 《菌物学报》2012,31(2):223-228
用双苯并咪唑(Hoechst 33258)染色法分别对长根小奥德蘑Oudemansiella radicata双孢菌株和四孢菌株的菌丝、子实体、担孢子进行染色观察,结果表明:双孢长根小奥德蘑菌丝细胞多为单核,无锁状联合;原担子中单核进行一次有丝分裂形成两个横向或纵向排列的子核,这2个子核分别进入2个担孢子中,留下无核的空担子;成熟担孢子具有一个核。四孢长根小奥德蘑菌丝细胞大多数为双核,具有锁状联合;进入原担子中的两个单倍性细胞核先发生核配,形成一个二倍性的核,再经过减数分裂形成四个染色体减半的单倍性子核,  相似文献   

16.
The distribution of cholinergic neurons was studies in the brain steam, medulla and rostral spinal cord of the salmon Onchorynchus masu using histochemical choline acetyltransferase (ChAT) detection. Cholinergic neurons were observed in the isthmus, cranial nerve motor nuclei and spinal cord. In order to characterize several cholinergic nuclei observed in the isthmus of O. masu, their projections were studied by application of 1,1'-dioctadecyl-3,3,3',3,'-tetramethylindocarbocyanine perchlorate (DiI) to selected structures of the brain. The secondary gustatory nucleus projected mainly to the lateral hypothalamic lobes, whereas the nucleus isthmi projected to the optic tectum and parvocellular superficial pretectal nucleus, as it was earlier described for the other teleost group. In addition, the other isthmic cholinergic nuclei in O. masu may be homologous to the meso-pontine system of mammals. We conclude that the cholinergic systems of teleosts show many primitive features that have been presented during evolution, together with exclusive to the group characteristics.  相似文献   

17.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

18.
Retinal connections were studied in Eptesicus fuscus and Artibeus jamaicensis using anterograde axonal degeneration and autoradiographic techniques following unilateral enucleations and uniocular injections of radioactive amino acids. Although each retina projected bilaterally to the brainstem, the number of silver grains in the emulsion of autoradiographs indicated that nearly all fibers in the optic nerve entered the contralateral optic tract. Ipsilaterally, a major portion of the projection ended in the suprachiasmatic nucleus; caudal to the suprachiasmatic nucleus, the amount of label was so small that individual silver grains were counted to determine the location and quantity of label in other ipsilateral nuclei. In both species the retinal projection terminated bilaterally in the suprachiasmatic, dorsal lateral geniculate, ventral lateral geniculate, and pretectal olivary nuclei and contralaterally in the posterior pretectal nucleus, superficial gray layers of the superior colliculus, and nuclei of the accessory optic system. In Eptesicus the projection to the nucleus of the optic tract ended contralaterally, and in Artibeus it ended in this nucleus bilaterally. The results of this study revealed a basic theme in the optic projection of the two ecologically different microchiropterans. The results differed, however, in that the projection was larger and visually related nuclei were better developed in Artibeus. Such variations are presumed to relate to eye size and the relative use of vision by the two chiropterans.  相似文献   

19.
Ascending and descending projections to the inferior colliculus in the rat   总被引:1,自引:0,他引:1  
The ascending and descending projections to the central nucleus of the inferior colliculus (IC) were studied with the aid of retrograde transport of horseradish peroxidase (HRP). HRP-labelled cells were found in contralateral cochlear nuclei, where the majority of different cell types was stained. Few labelled cells were observed in the ipsilateral cochlear nuclei. HRP-positive neurones were found in all nuclei of the superior olivary complex on the ipsilateral side with the exception of the medial nucleus of the trapezoid body, which was never labelled either ipsilaterally or contralaterally. The largest concentration of HRP-labelled cells was usually observed in the ipsilateral superior olivary nucleus. Smaller numbers of labelled cells were present in contralateral nuclei of the superior olivary complex. Massive projections to the inferior colliculus were found from the contralateral and ipsilateral dorsal nucleus of the lateral lemniscus and ipsilateral ventral nucleus of the lateral lemniscus. Many neurones of the central and external nuclei of the contralateral inferior colliculus were labelled with HRP. Topographic organisation of the pathways ascending to the colliculus was expressed in the cochlear nuclei, lateral superior olivary nucleus and in the dorsal nucleus of the lateral lemniscus. HRP--positive cells were found in layer V of the ipsilateral auditory cortex, however, the evidence for topographic organisation was lacking.  相似文献   

20.
Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine, is presently the most specific marker for identifying cholinergic neurons in the central and peripheral nervous systems. The present article reviews immunohistochemical and in situ hybridization studies on the distribution of neurons expressing ChAT in the human central nervous system. Neurons with both immunoreactivity and in situ hybridization signals of ChAT are observed in the basal forebrain (diagonal band of Broca and nucleus basalis of Meynert), striatum (caudate nucleus, putamen and nucleus accumbens), cerebral cortex, mesopontine tegmental nuclei (pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus and parabigeminal nucleus), cranial motor nuclei and spinal motor neurons. The cerebral cortex displays regional and laminal differences in the distribution of neurons with ChAT. The medial septal nucleus and medial habenular nucleus contain immunoreactive neurons for ChAT, which are devoid of ChAT mRNA signals. This is probably because there is a small number of cholinergic neurons with a low level of ChAT gene expression in these nuclei of human. Possible connections and speculated functions of these neurons are briefly summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号