首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescent properties of drumsticks, drumstick-like appendages, and other nuclear bodies in the polymorphonuclear leukocytes from six human males and females were studied with the aid of the quinacrine-mustard staining technique. Both brightly and weakly fluorescent drumsticks (in females) and drumstick-like bodies (in males) were observed, and they were readily differentiated on the basis of size, shape and, usually, fluorescent intensity. An analysis of the correlation between the extent of nuclear lobulation of the polymorphs and the corresponding fluorescent patterns of the adjoining drumsticks and drumstick-like bodies indicated that a possible change in the state and/or condensation of chromatin in these nuclear bodies might occur with increasing age of the polymorphs. Although the brightly fluorescent regions of the nuclei usually corresponded to the areas darkly stained with Giemsa, much finer patterns of differential staining of drumsticks and other nuclear bodies were obtained only by the fluorescent method.  相似文献   

2.
Recently, we described the distribution of testosterone-metabolizing enzymes (i.e., aromatase, 5 alpha- and 5 beta-reductases) in the zebra finch (Taeniopygia guttata) brain using a sensitive radioenzyme assay combined to the Palkovits punch method. A number of sex-differences in the activity of these enzymes were observed especially in nuclei of the song-control system. The hormonal controls of these differences have now been analyzed by gonadectomizing birds of both sexes and by giving them a replacement therapy with silastic implants of testosterone (T). Five nuclei of the song system (Area X [X], nucleus magnocellularis of the anterior neostriatum [MAN], nucleus robustus archistriatalis [RA], nucleus intercollicularis [ICo], hyperstriatum ventrale, pars caudalis [HVc]) and three preoptic-hypothalamic areas (preoptic anterior [POA], periventricular magnocellular nucleus [PVM], and posterior medial hypothalamic nucleus [PMH]) were studied as well as other limbic and control non-steroid-sensitive areas. The activity of the 5 alpha-reductase was higher in males than in females for the five song-control nuclei and was not affected by the hormonal treatments. The overall activity of this enzyme was not sexually dimorphic in POA and PVM. It was higher in males than in females in intact birds only, and was reduced by gonadectomy and enhanced by T. The activity of the 5 beta-reductase was higher in females than in males in all nuclei of the song system and in POA, but was not influenced by the changes in T level. Both sex and treatment effects were observed in the control of aromatase. The production of estrogens was dimorphic (females greater than males) in RA and PMH. It was increased by T in POA, PVM, and PMH, and also in RA. These data show that some of the sex differences in T-metabolizing enzymes result from the exposure to different levels of T in adulthood (e.g., 5 alpha-reductase in POA and PVM or aromatase in PVM), whereas others persist even if birds are exposed to the same hormonal conditions. These are presumably the result of organizational effects of steroids. The steroid modulation of the aromatase might be related directly to the activation of sexual, aggressive, and nest-building behaviors, whereas the stable dimorphism in 5 alpha- and 5 beta-reductase observed in the nuclei of the song system might be one of the neurochemical bases of the sex differences in the vocal behavior of the zebra finch.  相似文献   

3.
Adult male canaries learn to produce high-amplitude complex courtship songs each breeding season, whereas females do not, and brain nuclei involved with the production of song behavior are much larger in breeding males than in nonbreeding males or females (Nottebohm, 1980, 1981). However, treatment of adult females with testosterone (T) causes them to produce male-like song and stimulates pronounced growth of some song-control brain nuclei such as the caudal nucleus of the ventral hyperstriatum (HVc). We reexamined the effects of T on song-control nuclei in deafened birds. In order to examine whether the pattern of hormone accumulation varies as a function of circulating testosterone levels we described the distribution of testosterone-concentrating cells in HVc and the magnocellular nucleus of the anterior neostriatum (MAN) in hearing adult male, female, and T-treated female canaries, as well as in deaf T-treated and untreated females. In contrast to our previous findings (Bottjer, Schoonmaker, and Arnold, 1986a), we observed no tendency in this study for testosterone-induced growth of HVc to be attenuated in deafened birds. There was no difference between deaf and hearing birds in the incidence of labeled cells within HVc. We also observed no sex or hormone-induced differences in the percentage of hormone-concentrating cells in HVc: normal females have approximately the same proportion of hormone target cells as do males and T-treated females. However, males normally have many more neurons in HVc than do control females, and systemic exposure to testosterone induces a pronounced increase in the number of HVc neurons of adult females. Therefore, the absolute number of hormone target cells in HVc is likely to be much greater in males and T-treated females than in normal females. As in HVc, there were no differences among groups in the proportion of labeled cells within lateral MAN (IMAN), a nucleus that has been implicated in song learning (Bottjer, Miesner and Arnold, 1984). In contrast, the incidence of hormone target cells in medial MAN (mMAN) did vary as a function of hormonal condition: although mMAN of normal females is rarely visible in Nissl-stained sections and cells in this region are not hormone labeled, mMAN is clearly visible in Nissl-stained sections of males and T-treated females and contains many hormone-labeled cells. This testosterone-induced change in the phenotype of mMAN cells suggests a possible role for mMAN in learned song behavior.  相似文献   

4.
Brain nuclei that control song are larger in male canaries, which sing, than in females, which sing rarely or not at all. Treatment of adult female canaries with testosterone (T) induces song production and causes song-control nuclei to grow, approaching the volumes observed in males. For example, the higher vocal center (HVC) of adult females approximately doubles in size by 1 month following the onset of T treatment. Male HVC projects to a second telencephalic nucleus, RA (the robust nucleus of the archistriatum), which projects in turn to the vocal motor neurons. Whether HVC makes a similar connection in female canaries is not known, although HVC and RA are not functionally connected in female zebra finches, a species in which testosterone does not induce neural or behavioral changes in the adult song system. This experiment investigated whether HVC makes an efferent projection to RA in normal adult female canaries, or if T is necessary to induce the growth of this connection. In addition, we examined whether T-induced changes in adult female canary brain are reversible. Adult female canaries received systemic T implants that were removed after 4 weeks; these birds were killed 4 weeks after T removal (Testosterone-Removal, T-R). Separate groups of control birds received either (a) T implants for 4 weeks which were not removed (Testosterone-Control, T-C) or (b) empty implants (Untreated Control, øO-C). Crystals of the fluorescent tracer DiI were placed in the song-control nucleus HVC in order to anterogradely label both efferent targets of HVC, RA and Area X. Projections from HVC to RA and Area X were present in all treatment groups including untreated controls, and did not appear to differ either qualitatively or quantitatively. Thus, formation of efferent connections from HVC may be prerequisite to hormone-induced expression of song behavior in adult songbirds. The volumes of RA and Area X were measured using the distribution of anterograde label as well as their appearance in Nissl-stained tissue. RA was larger in T-treated control birds than in untreated controls. Experimental birds in which T was given and then removed (T-R) had RA volumes closer in size to untreated controls (ø-C). Because the volume of RA in T-treated controls (T-C) was larger than that of birds that did not receive T (ø-C), we conclude that the volume of RA increased in both T-C and T-R birds but regressed upon removal of T in T-R birds. Surprisingly, the volume of Area X did not increase in T-treated birds. Birds in this study were maintained on short days, suggesting that T-induced growth of Area X reported previously may have resulted from an interaction between T and another seasonal or photoperiodic factor induced by exposure to long daylengths. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Adult male canaries learn to produce high-amplitude complex courtship songs each breeding season, whereas females do not, and brain nuclei involved with the production of song behavior are much larger in breeding males than in nonbreeding males or females (Nottebohm, 1980, 1981). However, treatment of adult females with testosterone (T) causes them to produce male-like song and stimulates pronounced growth of some song-control brain nuclei such as the caudal nucleus of the ventral hyperstriatum (HVc). We reexamined the effects of T on song-control nuclei in deafened birds. In order to examine whether the pattern of hormone accumulation varies as a function of circulating testosterone levels we described the distribution of testosterone-concentrating cells in HVc and the magnocellular nucleus of the anterior neostriatum (MAN) in hearing adult male, female, and T-treated female canaries, as well as in deaf T-treated and untreated females. In contrast to our previous findings (Bottjer, Schoonmaker, and Arnold, 1986a), we observed no tendency in this study for testosterone-induced growth of HVc to be attenuated in deafened birds. There was no difference between deaf and hearing birds in the incidence of labeled cells within HVc. We also observed no sex or hormone-induced differences in the percentage of hormone-concentrating cells in HVc: normal females have approximately the same proportion of hormone target cells as do males and T-treated females. However, males normally have many more neurons in HVc than do control females, and systemic exposure to testosterone induces a pronounced increase in the number of HVc neurons of adult females. Therefore, the absolute number of hormone target cells in HVc is likely to be much greater in males and T-treated females than in normal females. As in HVc, there were no differences among groups in the proportion of labeled cells within lateral MAN (IMAN), a nucleus that has been implicated in song learning (Bottjer, Miesner and Arnold, 1984). In contrast, the incidence of hormone target cells in medial MAN (mMAN) did vary as a function of hormonal condition: although mMAN of normal females is rarely visible in Nissl-stained sections and cells in this region are not hormone labeled, mMAN is clearly visible in Nisslstained sections of males and T-treated females and contains many hormone-labeled cells. This testosterone-induced change in the phenotype of mMAN cells suggests a possible role for mMAN in learned song behavior.  相似文献   

6.
Bengalese finches, Lonchura striata, are extremely sexually dimorphic in their singing behavior; males sing complex songs, whereas females do not sing at all. This study describes the developmental differentiation of the brain song system in Bengalese finches. Nissl staining was used to measure the volumes of four telencephalic song nuclei: Area X, HVC, the robust nucleus of the arcopallium (RA), and the lateral portion of the magnocellular nucleus of the anterior nidopallium (LMAN). In juveniles (circa 35 days old), Area X and the HVC were well developed in males, while they were absent or not discernable in females. The RA was much larger in males but barely discernable in females. In males, the volumes of Area X and the RA increased further into adulthood, but that of the HVC remained unchanged. The LMAN volume was greater in juveniles than in adults, and there was no difference in the LMAN volume between the sexes. The overall tendency was similar to that described in zebra finches, except for the volume of the RA, where the degree of sexual dimorphism is larger and the timing of differentiation occurs earlier in Bengalese finches. Motor learning of the song continues until day 90 in zebra finches, but up to day 120 in Bengalese finches. Earlier neural differentiation and a longer learning period in Bengalese finches compared with zebra finches may be related to the more elaborate song structures of Bengalese finches.  相似文献   

7.
The plainfin midshipman fish (Porichthys notatus) has a caudal hindbrain vocal motor circuit that has been proposed to share a common embryonic origin with the hindbrain vocal networks of other vertebrates. In midshipman, this vocal circuit includes three groups of neurons: sonic motor, pacemaker, and ventral medullary. Here, transneuronal transport of biocytin or neurobiotin was used to delineate the early ontogeny of the three hindbrain vocal nuclei and their pattern of connectivity. The organization of the vocal nuclei was studied in animals beginning soon after hatching until the nuclei have the adult phenotype at the time fish become free-swimming. There is a clear sequence of events whereby motoneurons establish their connections with the sonic muscle prior to establishing connections with premotor neurons; developmental milestones of the vocal pathway parallel those of the sonic muscle. The results also indicate that sexual differentiation of the vocal motor system in midshipman begins early in development, well before any evidence of sexual maturation. Embryonic males and females differ in the relationship between soma size and body length for the three hindbrain nuclei. Males are also more variable than females in body mass, volume of the sonic motor nucleus, and motoneuron cell size.  相似文献   

8.
Both song behavior and its neural substrate are hormone sensitive: castrated adult male zebra finches need replacement of gonadal steroids in order to restore normal levels of song production, and sex steroids are necessary to establish male-typical neural song-control circuits during early development. This pattern of results suggests that hormones may be required for normal development of learned song behavior, but evidence that steroids are necessary for normal neural and behavioral development during song learning has been lacking. We addressed this question by attempting to eliminate the effects of gonadal steroids in juvenile male zebra finches between the time of initial song production and adulthood. Males were castrated at 20 days of age and received systemic implants of either an antiandrogen (flutamide), an antiestrogen (tamoxifen), or both drugs. The songs of both flutamide- and tamoxifen-treated birds were extremely disrupted relative to normal controls in terms of the stereotypy and acoustic quality of individual note production, as well as stereotypy of the temporal structure of the song phrase. We did not discern any differences in the pattern of behavioral disruption between birds that were treated with either flutamide, tamoxifen, or a combination of both drugs. Flutamide treatment resulted in a reduced size of two forebrain nuclei that are known to play some role unique to early phases of song learning [lateral magnocellular nucleus of the anterior neostriatum (IMAN) and area X (X)], but did not affect the size of two song-control nuclei that are necessary for normal song production in adult birds [caudal nucleus of the ventral hyperstriatum (HVc) and robust nucleus of the archistriatum (RA)]. In contrast, treatment with tamoxifen did not result in any changes in the size of song-control nuclei relative to normal controls, and it blocked the effects of flutamide on the neural song-control system in birds that were treated with both drugs. Castration and antisteroid treatment exerted no deleterious effects on the quality of song behavior in adult birds, indicating that gonadal hormones are necessary for the development of normal song behavior during a sensitive period.  相似文献   

9.
In zebra finches the gonadal steroid estradiol (E2) directs the sexual differentiation of neural regions controlling song and synergizes with androgens to stimulate song in adulthood. To identify regions where E2 may act to exert these effects, steroid autoradiographic techniques were used to assess cellular accumulation of 3[H]-E2 or its metabolites within various nuclei of the zebra finch brain. In Experiment 1 we examined brains from juvenile females, still within the critical period for E2's effect on sexual differentiation. In Experiment 2 the pattern and extent of labeling in adult male brains was determined following injection of 3[H]-E2, 3[H]-testosterone, or 3[H]-dihydrotestosterone. The results suggest that, both during development and in adulthood, most song-control nuclei contain few E2-accumulating cells. In contrast, many cells densely labeled by 3[H]-E2 or its metabolites are present in the hypothalamus and in close proximity to one song-control region, the hyperstriatum ventralis pars caudalis (HVc). The distribution of these latter cells overlaps with cells that project to another song-related nucleus, Area X. Thus, in Experiment 3 fluorescent retrograde tracing and steroid autoradiographic techniques were combined to determine if E2-accumulating cells project to Area X in adult males. Although a few retrogradely labeled cells were lightly labeled by 3[H]-E2 or its metabolites, for the most part these appear to be two distinct populations of cells. The sparse accumulation of E2 in the zebra finch song system contrasts with that described in other song birds and has important implications as to the mechanism of E2 action on the developing and mature song system.  相似文献   

10.
We examined the effects of song tutoring on adult song preferences, volume of song-control brain regions, and activity of auditory brain regions in female house finches (Carpodacus mexicanus). Hand-reared females were tutored with local songs, foreign songs, or no song. We then examined adult song preferences, determined the Nissl-defined volume of the song-control nuclei HVc, Area X, and RA, and compared the number of cells immunoreactive for Zenk protein in the auditory regions NCM and cmHV, following playback of songs heard early in life (Tutor/Playback Match) versus not heard (Tutor/Playback Nonmatch). All hand-reared birds exhibited preferences for locally recorded song over foreign or heterospecific song. We found no difference in the volume of song-control nuclei among the three groups. As well, we found no difference in the number of Zenk immunoreactive cells in NCM and cmHV between females in the Tutor/Playback Match group and females in the Tutor/Playback Nonmatch group. Isolate-reared birds showed greater Zenk immunoreactivity following song playback than either tutored group. Thus, early auditory experience may not play a role in adult geographic song preferences, suggesting that genetic factors can lead to preferences for songs of local dialects. Song tutoring did not influence the size of song-control regions nor Zenk induction levels following song playback, suggesting that early experience with particular songs does not influence Zenk expression. However, overall greater activation in isolate females in auditory areas suggests that exposure to song early in life may increase the selectivity of Zenk activation to song playback in auditory areas.  相似文献   

11.
Both song behavior and its neural substrate are hormone sensitive: Castrated adult male zebra finches need replacement of gonadal steroids in order to restore normal levels of song production, and sexsteroids are necessary to establish male-typical neural song-controlcircuits during early development. This pattern of results suggests that hormones may be required for normal development of learned songbehavior, but evidence that steroids are necessary for normal neuraland behavioral development during song learning has been lacking. Weaddressed this question by attempting to eliminate the effects of gonadal steroids in juvenile male zebra finches between the time of initial song production and adulthood. Males were castrated at 20 daysof age and received systemic implants of either an antiandrogen (flutamide). an antiestrogen (tamoxifen), or both drugs. The songs of both flutamide-and tamoxifen-treated birds were extremely disrupted relative to normal controls in terms of the stereotypy and acoustic quality of individual note production, as well as stereotypy of the temporal structure of the song phrase. We did not discern any differences in the pattern of behavioral disruption between birds that were treated with either flutamide, tamoxifen, or a combination of both drugs. Flutamide treatment resulted in a reduced size of two forebrain nuclei that are known to play some role unique to early phases of song learning [lateral magnocellular nucleus of the anterior neostriatum (IMAN) and area X (X)], but did not affect the size of two song-control nuclei that are necessary for normal song productionin adult birds [caudal nucleus of the ventral hyperstriatum (HVc) and robust nucleus of the archistriatum (RA)]. In contrast, treatment with tamoxifen did not result in any changes in the size of song-control nuclei relative to normal controls, and it blocked the effects of flutamide on the neural song-control system in birds that were treated with both drugs. Castration and antisteroid treatment exerted no deleterious effects on the quality of song behavior in adult birds, indicating that gonadal hormones are necessary for the development of normal song behavior during a sensitive period. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
Summary A monoclonal antibody against substance P was used for immunocytochemical staining of the central ganglia of the snail Helix aspersa and several peripheral tissues including the gut, reproductive system, cardiovascular system, tentacle and other muscles.Within the central ganglia many neurones, and many fibres in the neuropile and the nerves entering the ganglia, were stained for the SP-like material. The largest numbers of reactive cell bodies were in the pleural ganglia and on the dorsal surfaces of the pedal ganglia. A group of cells was also found, surrounding the right pedal-cerebral connective, that did not fluoresce, but were enveloped by reactive processes terminating directly onto the neurone somata.Specific staining was observed in all peripheral tissues examined and always appeared to be concentrated in nerve terminals. Most particularly these occurred in the heart and aorta, the pharyngeal retractor muscle and the tentacle. Although mostly present in muscular tissues, some fluorescence was also observed in the nervous layer surrounding the retina. The tentacular ganglion also contained immunoreactive cell bodies.  相似文献   

13.
To reveal the behavior of silver stainable material localized mainly in the nucleoli and nucleolar organizing regions (NORs), the somatic cells ofVicia faba were investigated by silver staining throughout the mitotic cell cycle. Nucleoli of interphase and early prophase nuclei were darkly stained. From late prophase to anaphase the secondary constrictions were discriminated as silver stained NORs and many silver grains appeared throughout the cytoplasm. At late prophase the NOR condensed at the same rate as the chromosome arm. Small spherical bodies and two new nucleoli appeared in telophase nuclei and at the same time the cytoplasmic grains disappeared. On the basis of the above observations on the silver stainable material during each mitotic phase, the behavior of silver stainable material is interpreted.  相似文献   

14.
Histochemical localization of ascorbic acid was carried out in the testis, epididymis and vas deferens of rat, guinea pig, mouse and also human beings, using a modified technique (CHINOY and SANJEEVAN 1978). The staining pattern was same in all cases, wherein, the nuclei were stained more intensely as compared to the cytoplasm. The luminal spermatozoa were also darkly stained. The significance of the localization is discussed in the light of the recent findings.  相似文献   

15.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

16.
Distribution of NADPH-diaphorase positive cells in the rat brain   总被引:1,自引:0,他引:1  
1. Recent work suggests that neurones in vivo and in culture which contain neuropeptide Y and somatostatin and which stain positively for the enzyme NADPH-diaphorase may be resistant to excitotoxins. 2. We have therefore examined the distribution of the enzyme throughout the rat brain. 3. Neurones were found intensely or moderately stained at all levels of the neuraxis, but with particularly dense clusters of cells in the periaqueductal grey area and dorsal raphe nucleus of the hindbrain, the pedunculopontine and interpeduncular nuclei, and the dorsal spinal trigeminal nucleus. 4. Intensely stained cells occurred with no clear pattern in neocortical and striatal areas, and in nucleus basalis. 5. The observed distribution of staining is consistent with previous studies in other species of limited regions of the CNS. 6. While no consistent functional or neurochemical correlate of the NADPH-diaphorase distribution could be proposed, the work provides a basis for more detailed investigations of neuronal sensitivity to excitotoxins.  相似文献   

17.
Summary In this study, immunohistochemistry for neuronal nitric oxide synthase (bNOS-IR), nicotinamide adenine dinucleotide phosphate diaphorase histochemistry (NADPHd) and nitric oxide synthase radioassay were used to study the occurrence, number and distribution pattern of nitric oxide synthesizing neurons in the lumbar (L1–L7) and sacral (S1–S3) dorsal root ganglia of the dog. Nitric oxide synthase immunolabelling was present in a large number of small- (area <1000 μm2) and medium-sized (area 1000–2000 μm2) as well as in a limited number of large-sized (area >2000 μm2) neurons. Although neuronal nitric oxide synthase immunolabelling and histochemical staining provided intense staining of multiple small- and medium-sized neurons in all lumbar and sacral dorsal root ganglia, immunolabelled or histochemically stained somata exhibited little topographic distribution in individual dorsal root ganglia. Great heterogeneity was noticed in the immunolabelling of medium-sized nitric oxide synthase immunopositive neurons ranging from lightly immunolabelled somata to heavily immunoreactive ones with completely obscured nuclei. Both staining procedures proved to be highly effective in visualizing intraganglionic fibers of various diameters. In general, the largest fibers revealed at the peripheral end of lumbar and sacral dorsal root ganglia were larger, 6.49–9.35 μm in diameter, while those running centrally and proceeding into the dorsal roots were about 30% reduced, ranging between 5.32 and 8.67 μm in diameter. Peripherally, the occurrence of nitric oxide synthase detected in axonal profiles, and confirmed histochemically, in the specimens of the femoral and sciatic nerves, is the first indication of the presence of nitric oxide synthase in the peripheral processes of somata located in L4–S2 dorsal root ganglia. Large and thin central nitric oxide synthase immunoreactive processes of L1–S3 dorsal root ganglion neurons segregate shortly before entering the spinal cord, the former making a massive medial bundle in the dorsal root accompanied by a slim lateral bundle penetrating Lissauer's tract. Quantitative assessment of the distribution of bNOS-IR and/or NADPHd-stained neurons showed a peculiar pattern in relation to spinal levels. Apparent incongruity was found in the total number of NADPHd-stained versus bNOS-IR neurons, demonstrating a clear prevalence of small bNOS-IR somata in all lumbar ganglia, while medium-sized NADPHd-stained somata clearly prevailed all along the rostrocaudal axis with a peak in L5 ganglion. While the number of small bNOS-IR neurons clearly outnumbered NADPHd-stained and NADPHd-unstained somata in S1–S3 ganglia, an inverse relation appeared comparing the total number of medium-sized NADPHd-stained and NADPHd-unstained somata compared with the number of moderate and intense bNOS-IR neurons. Densitometry of bNOS-IR and NADPHd-stained neurons in lumbar and sacral ganglia revealed two distinct subsets of densitometric profiles, one relating to more often found medium-sized bNOS immunolabelled and the other, characteristic for moderately bNOS immunoreactive somata of the same cell size. Considerable differences in catalytic nitric oxide synthase activity, determined by conversion of [3H]arginine to [3H]citrulline were obtained in lumbosacral dorsal root ganglia all along the lumbosacral intumescence, the lowest (0.898± 0.2 dpm/min/μg protein) being in the L4 dorsal root ganglion and the highest (4.194± 0.2 dpm/min/μg protein) in the S2 dorsal root ganglion.  相似文献   

18.
Rats possess a sexually dimorphic neuromuscular system that controls penile reflexes critical for copulation. This system includes two motor nuclei in the lumbar cord and their target musculature in the perineum. The spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN) motoneuron populations and their target perineal muscles are much larger in males than in females. The sex difference in motoneuron number develops via androgen-regulated differential cell death during the perinatal period; androgen also regulates retention of the target muscles. The developmental pattern and steroid sensitivity of peripheral afferents to the SNB/DLN motor nuclei were previously unknown. In order to characterize the peripheral sensory component of the dimorphic SNB/DLN system, the neurons of the relevant dorsal root ganglia (DRGs) were quantified in terms of number, size, and androgen sensitivity at various perinatal ages. DRG neuron number is greatest prenatally, then decreases in both sexes after birth; the timing and pattern of neuron number development are similar to those seen in the SNB and DLN. Postnatally, males have more DRG neurons than females, as a result of greater neuron death in the DRGs of females. Females treated with testosterone propionate during the perinatal period exhibit masculine development of DRG neuron number. Thus, the normal development of DRG neuron number parallels that of the SNB/DLN motor nuclei and target muscles in pattern and timing, is sexually dimorphic, and is regulated by androgen. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Summary A study of the amygdala of the guinea pig was carried out on material stained by the Nissl, acetylcholinesterase (AChE) and monoamine oxidase (MAO) methods. The material stained for Nissl substance was used primarily as a reference in determining the distribution of the two enzymes. Regional differences in cell size and/or distribution were noted within the lateral, basal, medial and cortical nuclei. In the AChE preparations, it was observed that the large-celled part of the basal nucleus stained very intensely, the small-celled part of the basal nucleus and ventromedial part of the lateral nucleus more moderately, and the dorsolateral part of the lateral nucleus and cortical nucleus lightly. The central and medial nuclei showed almost no reaction. With the MAO method, the greatest staining reaction was seen in the medial nucleus, the medial part of the cortical nucleus, the anterior amygdaloid area and the ventromedial wedge of the putamen adjacent to the central nucleus. In addition, fibres of the stria terminalis stained very darkly.These findings are discussed in relation to the observations of previous authors employing the same methods.Supported in part by the Canadian Medical Research Council Grant No. M.T. 870 and U.S. Public Health Service Grant No. NS-07998. This aid is gratefully acknowledged. We are indebted to Dr. Gorm Danscher for additional material and to Mr. A. Meier, Mrs. L. Munkøe, Mrs. K. Sørensen, Miss M. Sørensen, Miss D. Valgaard, and Miss B. Ørum for skillful assistance.  相似文献   

20.
A monoclonal antibody against substance P was used for immunocytochemical staining of the central ganglia of the snail Helix aspersa and several peripheral tissues including the gut, reproductive system, cardiovascular system, tentacle and other muscles. Within the central ganglia many neurons, and many fibres in the neuropile and the nerves entering the ganglia, were stained for the SP-like material. The largest numbers of reactive cell bodies were in the pleural ganglia and on the dorsal surfaces of the pedal ganglia. A group of cells was also found, surrounding the right pedal-cerebral connective, that did not fluoresce, but were enveloped by reactive processes terminating directly onto the neurone somata. Specific staining was observed in all peripheral tissues examined and always appeared to be concentrated in nerve terminals. Most particularly these occurred in the heart and aorta, the pharyngeal retractor muscle and the tentacle. Although mostly present in muscular tissues, some fluorescence was also observed in the nervous layer surrounding the retina. The tentacular ganglion also contained immunoreactive cell bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号