首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Interferons are important proteins for the immune system because of their antiviral, anti‐proliferating and immunomodulatory activities. Therapeutic value of these proteins against certain types of tumors caused interest and investigations aimed to obtain highly purified interferons. Molecular imprinting is an efficient method for purification with high selectivity, specificity and good reproducibility. In this study, we utilized advantages of molecular imprinting technique for the purification of interferon from human gingival fibroblast culture. For this purpose, interferon α‐2b imprinted poly(hydroxyethyl methacrylate) cryogel (hIFN‐α‐MIP) was prepared. Optimum adsorption conditions were determined, and maximum adsorption capacity of hIFN‐α‐MIP cryogel was found as 254.8 × 104 IU/g from aqueous solution. All interferon measurements are expressed as International Unit (IU), which is a unit measurement used to quantify biologically active substances like interferon based on their biological activity or effect. Selectivity experiments were performed using competitive proteins and repeated adsorption–desorption studies showed that the adsorption capacity maintained almost at a constant value after ten cycles. For the purification of interferon from human gingival fibroblast culture, fast protein liquid chromatography was used and the specific activity of the purified interferon α‐2b on HeLa cell line was found between the values 3.45 × 108 IU/mg and 3.75 × 108 IU/mg. The results are promising, and the molecular imprinting technique is effective for the purification of interferon α‐2b. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The preparation of a catecholamine receptor was carried out using a molecular imprinting method with silica-alumina gel to form complementary structures for template recognition. The molecularly imprinted polymer (MIP) was synthesized by the condensation of silicate from tetraethyl orthosilictate (TEOS) under hydrothermal conditions at 60 degrees C. Aluminum chloride was added as a functional monomer to increase the material's rebinding ability. The selectivity of the MIP receptor prepared with different ratios of template to Si and Al, was examined with seven analytes including: dopamine, epinephrine, norepinephrine, ascorbic acid, homovanillic acid, uric acid, and l-tyrosine. The results showed a size selective effect for the receptors with respect to the recognition of the catecholamines. Some factors affecting the recognition ability were investigated including: the solution pH of analytes, surface capping on the MIP, and the imprinting pH of the silica-alumina solution. Also, the catecholamine MIP films on quartz crystal microbalance (QCM) electrodes were fabricated as sensors for in situ monitoring of the analytes in a 2-propanol solution.  相似文献   

3.
A molecular recognition based L-glutamic acid (L-GLU) imprinted cryogel was prepared for L-GLU separation via chromatographic applications. The novel functional monomer N-methacryloyl-(L)-glutamic acid-Fe(3+) (MAGA-Fe(3+) ) was synthesized to be complex with L-GLU. The L-GLU imprinted cryogel was prepared by free radical polymerization under semifrozen conditions in the presence of a monomer-template complex MAGA-Fe(3+) -L-GLU. The binding mechanism of MAGA-Fe(3+) and L-GLU was characterized by Fourier transform infrared (FTIR) spectroscopy in detail. FTIR analyses on the synthesized MAGA-Fe(3+) -GLU complex reveals bridging bidentate and monodentate binding modes of Fe(3+) in complex with the carboxylate groups of the glutamate residues. The template L-GLU could be reversibly detached from the cryogel to form the template cavities using a 100 mM solution of HNO(3) . The amount of adsorbed L-GLU was detected using the phenyl isothiocyanate method. The L-GLU adsorption capacity of the cryogel decreased drastically from 11.3 to 6.4 μmol g(-1) as the flow rate increased from 0.5 to 4.0 mL min(-1) . The adsorption onto the L-GLU imprinted cryogel was highly pH dependent due to electrostatic interaction between the L-GLU and MAGA-Fe(3+) . The PHEMAGA-Fe(3+) -GLU cryogel exhibited high selectivity to the corresponding guest amino acids (i.e., D-GLU, L-ASN, L-GLN, L-, and D-ASP). Finally, the L-GLU imprinted cryogel was recovered and reused many times, with no significant decrease in their adsorption capacities.  相似文献   

4.
A newly designed molecularly imprinted polymer (MIP) material was fabricated and successfully utilized as recognition element to develop a quantum dots (QDs) based MIP-coated composite for selective recognition of the template cytochrome c (Cyt). The composites were synthesized by sol-gel reaction (imprinting process). The imprinting process resulted in an increased affinity of the composites toward the corresponding template. The fluorescence of MIP-coated QDs was stronger quenched by the template versus that of non-imprinted polymer (NIP)-coated QDs, which indicated the composites could recognize the corresponding template. The results of specific experiments further exhibited the recognition ability of the composites. Under optimum conditions, the linear range for Cyt is from 0.97 μM to 24 μM, and the detection limit is 0.41 μM. The new composites integrated the high selectivity of molecular imprinting technology and fluorescence property of QDs and could convert the specific interactions between imprinted cavities and corresponding template to the obvious changes of fluorescence signal. Therefore, a simple and selective sensing system for protein recognition has been realized.  相似文献   

5.
A simplified computational model was proposed to simulate the synthesis of molecularly imprinted polymers (MIP), removal of template and recognition of the template and its analogues by MIP. The MIPs with nicotinamide and iso-nicotinamide as templates were prepared using methacrylic acid as functional monomer. Based on our computational model, the interaction energies between the monomer and the template or its analogues were calculated, which were well correlated with the retention factors and imprinting factors obtained on HPLC columns packed with the corresponding MIP particles. The imprinting effects of the template and its analogues were also investigated from the viewpoint of conformational analysis. The computational data were successfully used to predict the chromatographic behaviour of some chemicals in separation on HPLC columns. We believe that the computational method will find application in designing monomers for MIP synthesis and in studying recognition of templates and their analogues on MIP.  相似文献   

6.
Purification and analyzing of proteins is an essential means for understanding their function and diseases associated with their lack or defect. In this research, a new lanthanide-chelate based molecularly imprinted polymer (MIP) was synthesized for selective separation of Hemoglobin (Hb) from human serum in the presence of various interference molecules. The Hb-imprinted polymer was prepared by using complex functional monomer N-methacryloylamido antipyrine (MAAP)-Ce(III) and 2-Hydroxyethyl methacrylate (HEMA) in accordance of cryopolymerization techniques. The nonimprinted cryogel (NIP) was also prepared at same polymerization conditions in the absence of template Hb molecule. The effects of pH, initial Hb concentration, flow rate, temperature and ionic strength on the binding capacity of both imprinted and nonimprinted cryogels was investigated. The maximum binding capacity for the MIP column was found to be as 79.41 mg g−1 dry cryogel, that is four times higher than the NIP column under the optimum conditions (pH 5.0, flow rate: 1.0 mL min−1, T: 25 °C). Moreover, selectivity experiments were performed by using two interference proteins as myoglobin (Mb) and cytochrome c (Cyt-c) and the relative selectivity coefficients (k') for Hb/Mb and Hb/Cyt-c pairs were determined as 36.59 and 37.22, respectively.  相似文献   

7.
A molecularly imprinted polymer (MIP) has been prepared using levonorgestrel (LEV) as template. The polymer was synthesised in a non-covalent approach using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linking monomer via a free radical polymerization. An equivalent blank polymer was also synthesised in the absence of the template compound. Batch adsorption experiments were used to evaluate the binding affinity of the imprinted polymer. After packing MIP into a stainless steel column (150 mm x 4.6 mm i.d.), retention and elution of the template and related compounds were evaluated by high-performance liquid chromatography (HPLC). This LEV imprinted polymer was further applied for selective solid phase extraction (SPE) of LEV from human serum. It was confirmed that the binding ability of the prepared MIP for LEV was essentially sufficient in the presence of other compounds coexisting in serum sample. Therefore, as a selective and efficient solid phase material, LEV imprinted polymer has a high potential application in analysis of this steroidal hormone in clinical purposes.  相似文献   

8.
A combinatorial screening procedure was used for the selection of polymer precursors in the preparation of molecularly imprinted polymer (MIP), which is useful in the detection of the air pollution marker molecule benzo[a]pyrene (BAP). Molecular imprinting is a technique for the preparation of polymer materials with specific molecular recognition receptors. The preparation of imprinted polymers requires polymer precursors such as functional monomer, cross-linking monomer, solvent, an initiator of polymerization and thermal or UV radiation. A virtual library of functional monomers was prepared based on interaction binding scores computed using HyperChem Release 8.0 software. Initially, the possible minimum energy conformation of the monomers and BAP were optimized using the semi-empirical (PM3) quantum method. The binding energy between the functional monomer and the template (BAP) was computed using the Hartree-Fock (HF) method with 6-31 G basis set, which is an ab initio approach based on Moller-Plesset second order perturbation theory (MP2). From the computations, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were selected for preparation of BAP imprinted polymer. The larger interaction energy (ΔE) represents possibility of more affinity binding sites formation in the polymer, which provides high binding capacity. The theoretical predictions were complimented through adsorption experiments. There is a good agreement between experimental binding results and theoretical computations, which provides further evidence of the validity of the usefulness of computational screening procedures in the selection of appropriate MIP precursors in an experiment-free way.  相似文献   

9.
In this study, molecularly imprinted polymers (MIPs) prepared using a multifunctional and a monofunctional monomer were compared with respect to their affinities, selectivities, and imprinting efficiencies for organophosphates. This is of interest because multifunctional monomers have higher affinities than traditional monofunctional monomers for their target analytes and thus should yield MIPs with higher affinities and selectivities. However, polymers containing multifunctional monomer may also have a higher number of unselective, non-templated binding sites. This increase in background binding sites could lead to a decrease in the magnitude of the imprinting effect and in the selectivity of the MIP. Therefore, phosphate selective imprinted and non-imprinted polymers (NIPs) were prepared using a novel multifunctional triurea monomer. The binding properties of these polymers were compared with polymers prepared using a monofunctional monourea monomer. The binding affinities and selectivities of the monomers, imprinted polymers, and NIPs were characterized by NMR titration, binding uptake studies, and binding isotherms. MIPs prepared with the triurea monomer showed higher binding affinity and selectivity for the diphenylphosphate anion in organic solvents than the MIPs prepared with the monofunctional monomer. Surprisingly, the binding properties of the NIPs revealed that the polymers prepared using the multifunctional and monofunctional monomers were very similar in affinity and selectivity. Thus, the multifunctional monomers increase not only the affinity of the MIP but also enhance the imprinting effect.  相似文献   

10.
A novel molecularly imprinted polymer (MIP) system selective for D-phenylalanine is described where polymerization is performed in aqueous solution. The unique polymer system comprises a hydrophobic moiety-selective functional monomer, polymerizable beta-cyclodextrin, an electrostatic interacting functional monomer, 2-acryloylamido-2-methylpropane sulfonic acid (AMPSA), and the crosslinking agent N,N'-diacryloylpiperazine. Chromatographic evaluation of polymer-ligand recognition characteristics demonstrated ligand selectivity by the MIP and that optimal recognition was achieved through a balance of hydrophobic and electrostatic ligand-polymer interactions, indicating that recognition in these systems is regulated by enthalpy-entropy compensation. The imprinting effect was shown to be sufficient to reverse the inherent selectivity of cyclodextrin for L-phenylalanine.  相似文献   

11.
A quartz crystal nanobalance (QCN) biosensor was developed for the selective determination of phenylalanine (Phe) in aqueous solutions. A Phe imprinted copolymer was synthesized using polyacrylonitrile and acrylic acid [poly(AN-co-AA)]. The copolymer was then coated on quartz crystal electrode to form complementary structures for the template recognition of Phe. The composite electrode was then used to determine Phe levels in solution. Determinations were based on frequency shifts of molecularly imprinted polymer (MIP) modified quartz crystal electrode caused by Phe adsorption. The frequency shifts were linearly dependent on Phe concentration over the range 50∼500 mgL−1. The results obtained show that the imprinted poly(AN-co-AA) modified biosensor had higher sensitivity (0.5839 Hz/mgL−1) than a non-molecularly imprinted copolymer (0.2724 Hz/mgL−1). Furthermore, good reproducibility, R.S.D. = 1.84% (n = 7) was observed, and the detection limit was 45 mgL−1. The selectivity of the imprinted poly(AN-co-AA) modified biosensor was examined using a number of analytes similar to Phe, i.e., dopamine (DA), ascorbic acid (AscA), vanillylmandelic acid (VMA), uric acid (UA), tryptophan (Trp), and tyrosine (Tyr), and the results obtained showed a size dependent selective effect.  相似文献   

12.
Molecular imprinting is an attractive technique for preparing mimics of natural and biological receptors. Nevertheless, molecular imprinting for aqueous systems remains a challenge due to the hydrogen bonding between templates and functional monomers destroyed in the bulk water. The hydrogen bonding between templates and monomers are the most crucial factor governing recognition, particularly in non-covalent molecularly imprinted polymers. Using mesoporous materials for molecular imprinting is an effective approach to overcome this barrier and to remove the limitations of the traditional molecularly imprinted polymers which include incomplete template removal, small binding capacity, slow mass transfer, and irregular materials shape. Here, SBA-15 was used as a mesoporous silica material for synthesis of molecularly imprinted polypyrrole. The pyrrole monomers and template molecules were immobilized onto the SBA-15 hexagonal channels, and then polymerization occurred. The resulting nanocomposites were characterized by Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. In batch rebinding tests, the imprinted nanocomposites reached saturated adsorption within 100min and exhibited significant specific recognition toward the ascorbic acid (AA) with high adsorption capacity (83.7mgg(-1)). To further illustrate the recognition property of the imprinted nanocomposites, binary competitive and non-competitive adsorption experiments were performed with ascorbic acid, dopamine, paracetamol and epinephrine. The imprinting factors for these compounds in non-competitive adsorption experiments were 3.2, 1.5, 1.4 and 1.3, respectively. The results showed that the imprinted nanocomposites exhibited significant adsorption selectivity for the ascorbic acid against the related compounds.  相似文献   

13.
A new type of molecularly imprinted polymer (MIP)-based fluorescent artificial receptor was developed by anchoring MIP on the surface of denatured bovine serum albumin (dBSA) modified CdTe quantum dots (QDs) using the surface molecular imprinting process. The approach combined the merits of molecular imprinting technology and the fluorescent property of the CdTe QDs. The dBSA was used not only to modify the surface defects of the CdTe QDs, but also as assistant monomer to create effective recognition sites. Three different proteins, namely lysozyme (Lyz), cytochrome c (Cyt) and methylated bovine serum albumin (mBSA), were tested as the template molecules and then the receptors were synthesized by sol-gel reaction (imprinting process). The results of fluorescence and binding experiments demonstrated the recognition performance of the receptors toward the corresponding template. Under optimum conditions, the linear range for Lyz was from 1.4×10(-8) to 8.5×10(-6) M, and the detection limit was 6.8 nM. Moreover, the new artificial receptors were applied to separate and detect Lyz in real samples. This fluorescent artificial receptor may serve as a starting point in the design of highly effective synthetic fluorescent receptor for recognition of target protein.  相似文献   

14.
目的:目前安全问题成为世界各国的首要问题,尤其是对炸药分子的检测。硝酸铵是硝铵炸药的主要成分。研究水凝胶分子印迹法对硝铵炸药分子的检测。方法:水凝胶分子印迹方法制备硝酸铵水凝胶分子印迹聚合物,运用静态结合实验对其结合率进行了测定。结果:聚合物对硝酸铵具有良好的识别和吸附性能。印迹聚合物的解离常数为4.08g/L,最大吸附量为3.51mg/g。结论:水凝胶分子印迹法可合成水溶性炸药分子印迹聚合物,并且识别及吸附性能良好。  相似文献   

15.
Molecular dynamics simulations and computational screening were used to identify functional monomers capable of interacting with rhodamine B (RhB). A library of 24 kinds of common functional monomers for preparing molecular imprinted polymer (MIP) was built and their interactions with RhB in acetonitrile were calculated using the molecular dynamics software (Gromacs 3.3). It was anticipated that the monomers giving the highest binding energy are suitable for preparing the affinity polymers. According to the theoretical calculation results, the MIP microspheres with RhB as template was prepared by reverse microemulsion polymerization method using acrylamide (AAm) as functional monomer and divinylbenzene as cross-linker in acetonitrile. Microspheres have been characterized by scanning electron microscopy (SEM). The proper adsorption and selective recognition ability of the MIP were studied by an equilibrium-adsorption method. The MIP showed outstanding affinity towards RhB in aqueous solution and the optimum pH value for binding has been found around neutral range. The molecular recognition of RhB was analyzed in detail by using molecular modeling software (Gaussian03). In addition, the MIP reusability without obviously deterioration in performance was demonstrated at least five repeated cycles.  相似文献   

16.
Molecularly imprinted polymers (MIPs) were combined to MALDI‐TOF‐MS to evaluate a selective enrichment (SE) method for the determination of clinically relevant biomarkers from complex biological samples. The concept was proven with the myocardial injury marker Troponin I (cTnI). In a first part, MIP materials entailed for the recognition of cTnI epitopes (three peptides selected) were prepared and characterized in dimensions (0.7–2μm), dissociation constants (58–817 nM), kinetics of binding (5–60 min), binding capacity (ca. 1.5 µg/mg polymer), imprinting factors (3 > IF > 5) and selectivity for the peptide epitope. Then, the MIPs, incubated with cTnI peptides and spotted on the target with the DHB matrix, were assayed for the desorption of the peptides in MALDI‐TOF‐MS. The measured detection limit was ca. 300 femtomols. Finally, the MIP‐SE MALDI‐TOF‐MS was tested for its ability to enrich in the cTnI peptides from a complex sample, mimic of serum (i.e. 81 peptides of digested albumin). The MIP‐SE MALDI‐TOF‐MS successfully enriched in cTnI peptides from the complex sample proving the technique could offer a flexible platform to prepare entailed materials suitable for diagnostic purposes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
It is a fact that molecular imprinting techniques have reached tremendous importance in the research of new artificial recognition systems. These methods resemble the mechanism of natural recognition, generally based on non-covalent interactions, but improving their stability by means of a simple and inexpensive technique. Molecular imprinting polymers (MIPs) are easily obtained by copolymerisation of suitable functional monomers and crosslinkers in the presence of the print molecule. Removal of the template leaves a polymer that selectively recognises it. In this work, different imprinted polymers for chloramphenicol (CAP) obtained using different monomers and polymerisation conditions were tested in a HPLC system, in order to obtain a highly selective material for CAP. The optimised MIP was then used as recognition phase in a fluorescent competitive flow assay to determine chloramphenicol.  相似文献   

18.
Molecularly imprinted polymers (MIPs) using p-hydroxybenzoic acid (p-HB), p-hydroxyphenylacetic acid (p-HPA) and p-hydroxyphenylpropionic acid (p-HPPA) as templates were synthesized. The performance of the templates and their analogues on polymer-based high performance liquid chromatography (HPLC) columns was studied. The imprinting effect of the MIP using p-HB as template is more obvious than that of MIP using either p-HPA or p-HPPA as template, and the mixture of p-HB and p-HPA can be well separated on the MIP using p-HB as template, but not on the blank. Interestingly, the recognition of MIP (p-HB as the template) to p-HB showed a synergistic effect. The retention factor of p-HB is not the sum of those of phenol and benzoic acid. We also found that the imprinting effect decreased when increasing the concentration of acetic acid in mobile phase. The possible reason is that acetic acid molecules occupied the binding sites of the polymer, thereby decreasing the concentration of binding sites. Furthermore, polymers, which showed specificity to 3,4-dihydroxybenzoic acid, can be prepared with p-HB as template. It is thus possible to synthesize a specific polymer for a compound that is either expensive or unstable by using a structurally similar compound as template.  相似文献   

19.
Although N-isopropylacrylamide (NIPAM) has previously been used in molecular imprinting, it has mostly been considered as an 'inert' monomer, or included for its temperature-responsive nature, rather than as a functional monomer responsible for the interactions with the template at the recognition site. A comparative study of NIPAM and other traditional, functional monomers for the imprinting of a hydrogen bond donor template, bisphenol A (BPA), is reported. Nuclear magnetic resonance titration data suggest that NIPAM forms a stronger complex with BPA than either acrylamide or methacrylic acid but a weaker complex than vinylpyridine. Molecular imprinted polymers (MIPs) were prepared using each functional monomer and compared as stationary phases for the separation of BPA from structural analogues. The NIPAM-containing MIP bound BPA with better selectivity than those prepared using acrylamide or methacrylic acid. Using NIPAM also reduces the nonspecific binding, which is found with MIPs using vinylpyridine as functional monomer.  相似文献   

20.
Novel molecularly imprinted polymers (MIPs) for the recognition of nitrofurantoin (NFT) were prepared by photoinitiated polymerisation in polar solvent using 2,6-bis(methacrylamido) pyridine (BMP) as the functional monomer and carboxyphenyl aminohydantoin (CPAH) as the analogue of the template. The binding constants of the complex between BMP and nitrofurantoin or CPAH in DMSO were determined with 1H NMR titration to be 630 ± 104 and 830 ± 146 M−1, respectively. To study the influence of the functional monomer, two polymer compositions were prepared containing the template, the functional monomer and the crosslinker in the molar ratio 1:1:12 for MIP1 and 1:4:20 for MIP2, respectively. The imprinting factor at saturation concentration of nitrofurantoin, which is the ratio of the amount bound to the MIP and the non-imprinted control polymer (NIP), was determined to be 2.47 for MIP1 and 2.49 for MIP2. The cross reactivity of the imprinted polymers seems to be determined by the ability to form hydrogen bonds to the functional monomer while the shape of the molecule has no real influence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号