首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
Human interferon α2b gene was transiently expressed in Nicotiana excelsior plants. Fusion with N. plumbaginifolia calreticulin signal peptide for improved apoplast targeting and carrying out the expression under optimized conditions resulted in maximal interferon activity of 3.2 × 103 IU/g fresh weight (FW) with an average of 2.1 ± 0.8 × 103 IU/g FW. It proves that N. excelsior is a suitable host for Agrobacterium-mediated transient expression of genes encoding physiologically active human proteins. The transient expression conditions optimized for GFP marker protein were confirmed to be preferable for hIFN α2b.  相似文献   

2.
Molecularly imprinted polymers are used for creating a specific cavity and selective recognition sites for the structure of a target molecule in a polymeric structure. In this study, specific molecularly imprinted cryogel cartridges were synthesized using two distinct functional monomers to compare imprinting efficiency for the selective recognition of Tyrosine (Tyr). Tyr-imprinted cryogel cartridge (MIP1) was prepared using metal-chelate coordination for the imprinting process by free-radical bulk polymerization under frozen conditions, and Tyr-imprinted cryogel cartridge (MIP2) was prepared in the same way using hydrophobic effects for imprinting. After the characterization of the cryogel cartridges was carried out, the optimum adsorption conditions of both were determined according to the different parameters such as flow rate (0.5–2.5 ml/min), pH of the medium (4.0–8.0), initial Tyr concentration (0.1–3.0 mg/ml), and temperature (4–45°C). Selectivity experiments of Tyr-imprinted and non-imprinted cryogel cartridges were carried out by using phenylalanine, tryptophan, and cysteine. Besides, the eluted Tyr from MIP1 and MIP2 cryogel cartridge were applied to FPLC system. Also, the reusability experiments of Tyr-imprinted cryogel cartridges was observed no significant decrease in the adsorption capacity.  相似文献   

3.
In recent years, many research on the quantity of lignocellulosic waste have been developed. The production, partial purification, and characterisation of ligninolytic enzymes from various fungi are described in this work. On the 21st day of incubation in Potato Dextrose (PD) broth, Hypsizygus ulmarius developed the most laccase (14.83 × 10−6 IU/ml) and manganese peroxidase (24.11 × 10−6 IU/ml), while Pleurotus florida produced the most lignin peroxidase (19.56 × −6 IU/ml). Laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP), all generated by selected basidiomycetes mushroom fungi, were largely isolated using ammonium sulphate precipitation followed by dialysis. Laccase, lignin peroxidase, and manganese peroxidase purification findings indicated 1.83, 2.13, and 1.77 fold purity enhancements, respectively. Specific activity of purified laccase enzyme preparations ranged from 305.80 to 376.85 IU/mg, purified lignin peroxidase from 258.51 to 336.95 IU/mg, and purified manganese peroxidase from 253.45 to 529.34 IU/mg. H. ulmarius laccase (376.85 IU/mg) with 1.83 fold purification had the highest specific activity of all the ligninolytic enzymes studied, followed by 2.13 fold purification in lignin peroxidase (350.57 IU/mg) and manganese peroxidase (529.34 IU/mg) with 1.77-fold purification. Three notable bands with molecular weights ranging from 43 to 68 kDa and a single prominent band with a molecular weight of 97.4 kDa were identified on a Native PAGE gel from mycelial proteins of selected mushroom fungus. The SDS PAGE profiles of the mycelial proteins from the selected mushroom fungus were similar to the native PAGE. All three partially purified ligninolytic isozymes display three bands in native gel electrophoresis, with only one prominent band in enzyme activity staining. The 43 kDa, 55 kDa, and 68 kDa protein bands correspond to laccase, lignin peroxidase, and manganese peroxidase, respectively.  相似文献   

4.
In this study, iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) (PHEMAGA/Fe3+) cryogel discs were prepared. The PHEMAGA/Fe3+ cryogel discs were characterized by elemental analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, swelling tests, and surface area measurements. The PHEMAGA/Fe3+ cryogel discs had large pores ranging from 10 to 100?µm with a swelling degree of 9.36?g H2O/g cryogel. Effects of pH, temperature, initial catalase concentration, and flow rate on adsorption capacity of the PHEMAGA/Fe3+ cryogel discs were investigated. Maximum catalase adsorption capacity (62.6?mg/g) was obtained at pH 7.0, 25°C, and 3?mg/ml initial catalase concentration. The PHEMAGA/Fe3+ cryogel discs were also tested for the purification of catalase from rat liver. After tissue homogenization, purification of catalase was performed using the PHEMAGA/Fe3+ cryogel discs and catalase was obtained with a yield of 54.34 and 16.67 purification fold.  相似文献   

5.
In this study, we report the obtaining of carrot plants expressing human interferon alpha-2b via Agrobacterium-mediated transformation using two vector constructs containing the sequence coding for interferon gene fused with Nicotiana plumbagenifolia calreticulin apoplast targeting signal driven by 35S CaMV promoter and root-specific Mll promoter. The human interferon alpha-2b gene was correctly translated in carrot plants according to Western blot analysis. The recombinant protein exhibited antiviral activity in vitro by inhibition of vesicular stomatitis virus replication in established piglet testicular cells. The results demonstrated the higher activity of interferon accumulated in carrot plants for young leaves (up to 50.7 × 103 IU/g FW) compared to the mature ones probably due to the degradation-susceptible nature of this protein. The taproot-expressing system could have also provided the sufficient protein amounts (up to 16.5 × 103 IU/g FW) and could possibly be used for generating interferon alpha-2b protein in planta for preventing and curing infectious diseases.  相似文献   

6.
Purification and molecular characterization of human fibroblast interferon   总被引:5,自引:0,他引:5  
Human fibroblast interferon was purified from serum-containing culture medium by a combination of concanavalin A or Blue Dextran Sepharose affinity chromatography with high-performance liquid chromatography to material exhibiting a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The interferon could be chromatographed and purified at acidic pH in volatile buffers on RP-8, RP-18, cyclohexyl, phenylalkyl, diphenyl, cyanopropyl, and diol supports. A specific activity averaging around 4 × 108 units/mg was found for the pure material with a molecular weight of 20,000–21,000 after 20,000- to 50,000-fold purifications. In some preparations, low activity levels were also found at positions corresponding to 10,000, 17,000–18,000, 35,000, and 40,000 daltons. Amino acid and amino sugar analysis, partial NH2- and COOH-terminal sequences, and tryptic peptide patterns determined at the picomole level are reported for the purified interferon.  相似文献   

7.
N-Methacryloyl-l-tryptophan (MATrp) containing poly(2-hydroxyethyl methacrylate) based supermacroporous cryogel [PHEMATrp] was prepared for lysozyme purification form chicken egg white. MATrp was synthesized by reacting methacryloyl chloride with l-tryptophan methyl ester and provided hydrophobic functionality to the cryogel. PHEMATrp cryogel with 60–100 μm pore size was obtained by free radical polymerization of HEMA and MATrp having a specific surface area of 50 m2/g. PHEMATrp cryogel was characterized by swelling studies, FTIR and SEM. The equilibrium swelling ratios of the cryogels were 7.18 g H2O/g for PHEMA and 6.99 g H2O/g for PHEMATrp. Lysozyme adsorption experiments were investigated under different conditions in continuous system (i.e., medium pH, flow-rate, protein concentration, temperature, salt type). Lysozyme adsorption capacity of PHEMA and PHEMATrp cryogels from aqueous solutions was estimated as 2.9 and 46.8 mg/g (0.49 and 7.85 mg/mL), respectively. Lysozyme molecules were desorbed with 0.5 M ethylene glycol solution with 91% recovery. It was observed that PHEMATrp cryogel can be used without significant decrease in lysozyme adsorption capacity after five adsorption–desorption cycles. PHEMATrp cryogel was used for the purification of lysozyme from chicken egg white. Purity of lysozyme was estimated by SDS-PAGE. Possible denaturation of purified lysozyme was checked with fluorimetric measurements. Specific activity of the purified lysozyme was found as 43,140 U/mg using Micrococcus lysodeikticus as substrate.  相似文献   

8.
Human interferon α2b gene was cloned in the methylotrophic yeast Pichia pastoris under the control of the AOX1 methanol inducible promoter. To optimise the volumetric productivity, we performed different fed-batch studies in a 5-L bioreactor. We demonstrated that hIFNα2b was highly sensitive to proteases activity during high cell density culture. The target protein was totally degraded 20h after the start of methanol feeding. Replacement of culture medium with fresh medium after glycerol fed-batch culture mode as well as medium enrichment with casamino acids at 0.1% and EDTA at 10mM, had significantly improved hIFNα2b expression and prevented its proteolysis. Moreover, to further improve hIFNα2b production, three different methanol fed-batch strategies had been assayed in high cell density culture. The optimal strategy resulted in a production level of 600mg/l while residual methanol level was maintained below 2g/l. Clarification of culture supernatant through a 0.1μm hollow fiber cartridge showed that almost 95% of the target protein was retained within the retentate. Triton X-100 or NaCl addition to the culture harvest before microfiltration had improved the recovery yield of this step. rhIFNα2b was further purified by cation exchange on Sepharose SP resin followed by gel permeation on Sephacryl S-100. The overall yield of the process was equal to 30% (180mg/l). The biological activity of the purified protein based on the antiviral activity test was 1.5×10(8)IU/mg. The optimised process has a great potential for large scale production of fully functional hIFNα2b.  相似文献   

9.
The methylotrophic yeast Pichia pastoris has been used for the expression of many proteins. However, limitations such as protein degradation and aggregation became obvious when secreting heterologous protein-recombinant human consensus interferon-α mutant. Here, we investigate the effect of induction temperature on the yield and stability of interferon mutant expressed by P. patoris with buffered complex medium. The best results in terms of interferon mutant bioactivity and specific bioactivity were obtained when the microorganism was induced at 15°C, which were 2.91 × 108 ± 0.3 × 108 and 2.26 × 108 ± 0.23 × 108 IU mg−1, respectively. At the same time, the cells grew fast owing to high AOX1-specific activity, and interferon mutant expression level reached 1.23 g l−1, which was almost 30 times higher than that in the flask. Also, the proteolytic degradation of interferon mutant was inhibited completely because of lower protease bioactivity probably due to a reduced cell death rate at lower temperatures as well as protection of yeast extract and peptone in complex medium. In addition, interferon mutant aggregation was repressed significantly by the addition of Tween-80, and a specific bioactivity of 7.35 × 108 ± 0.56 × 108 IU mg−1 was obtained. These results should be applicable to other low-stability recombinant proteins expressed in P. pastoris.  相似文献   

10.
Partially purified human leukocyte interferons, partially purified human lymphoblastoid interferon, and human fibroblast interferon enhanced rat liver, kidney, and splenic guanylate cyclase {E.C.4.6.1.2.} activity 2–4 fold at 5 μIU concentration. Dose-response relationships revealed that the human leukocyte interferons enhanced splenic guanylate cyclase activity at concentrations as low as 0.01 μIU while a concentration of 1 μIU for partially purified human lymphoblastoid interferon and 10 μIU concentration for human fibroblast interferon were necessary to see any effect on guanylate cyclase activity.  相似文献   

11.
We have previously described the expression of a bacterial protein in the egg white of transgenic chickens using a replication-deficient retroviral vector. Here we report the expression of a glycosylated human protein, interferon -2b (hIFN), in the egg white of transgenic hens. The hIFN secreted into the egg white was biologically active as determined by a viral inhibition assay. Purification and carbohydrate analysis of the hIFN expressed in egg white revealed that two of the six major glycosylated hIFN species match the naturally occurring human hIFN glycovariants. These results support the potential of the hen as a bioreactor for the production of commercially valuable, biologically active, and glycosylated proteins in egg white.  相似文献   

12.
A method was developed for the production and purification of biologically active recombinant human interferon α-2b (rhIFN α-2b) synthesized by expression in Nicotiana benthamiana plants. A gene construct containing a modified hIFN α-2b gene was cloned in two vectors based on tobacco mosaic virus driven by an actin promoter from Arabidopsis thaliana (pA-IFN-A) and cauliflower mosaic virus driven by a 35S promoter (pA-IFN-S). The expression vectors were introduced into the plant cells by agroinfiltration. The maximum rates of synthesis achieved in the case of pA-IFN-A and pA-IFN-S 5 days after agroinfiltration were determined to be 200 and 20 mg per 1 kg of fresh leaves, respectively. The recombinant hIFN α-2b synthesized in the plant showed high antiviral and antitumor activity comparable with that of commercial drug.  相似文献   

13.
A method for the purification of natural human interferon alpha (HuIFN Alpha) is described. It involves adsorption of interferon on silicic acid and its elution with hydrophobic electrolyte solution. Thereafter, elimination of possible viruses is achieved using nonionic detergent and ultrafiltration. Interferon recovered in the ultrafiltrate is further purified on Sephacryl S-200. Fractions corresponding to molecular weights ranging from approximately 10,000 to approximately 40,000 daltons are collected and directly applied on immobilized zinc affinity gel. IFN Alpha which is eluted with the non adsorbed fraction is subjected to buffer exchange, concentration, and sterilization. The resulting solution shows high specific activity (1 x 10(7) IU) with an apparently natural composition of interferon isospecies. The uniform buffer employed through the entire purification process makes it simple, fast and reproducible.  相似文献   

14.
David E. Kenny 《Zoo biology》2001,20(4):245-250
After the loss of an African elephant (Loxodonta africana) in February 1989 at the Denver Zoological Gardens (DZG) with very low circulating serum α‐tocopherol, a long‐term study was initiated with three Asian elephants (Elephas maximus) to evaluate the effect of an oral micellized, water‐soluble, natural source d‐α‐tocopherol supplement. Baseline α‐tocopherol levels were evaluated and found to be approximately 3.75‐fold less than those reported for semi‐free‐ranging Asian Nepalese work camp and free‐ranging African elephants. The DZG elephants were then administered a liquid d‐α‐tocopherol (Emcelle®) at 2.2 IU/kg body weight orally once daily. Serum samples were obtained and analyzed at 1, 2, 8, and 12 months and then annually for 96 months. The oral vitamin E supplement significantly elevated serum levels above baseline and were found to be comparable with levels reported for semi–free‐ranging and free‐ranging elephants. Zoo Biol 20:245–250, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

15.
In this study, we developed a new purification method using chondroitin sulfate C (CSC) and protamine sulfate (PS) to concentrate lentivirus. To evaluate the efficiency of this new method, we compared it with several previously described purification protocols, including virus concentrated by ultracentrifugation (Ultra), precipitated by polyethylene glycol (PEG), and sedimented by CSC combined with polybrene (PB). After using the different methods to purify and concentrate equivalent amounts of lentivirus supernatant, the virus pellets precipitated by the different methods were resuspended using the equivalent volumes of DMEM. Subsequently, 10 μl of each lentivirus stock carrying EGFP gene was used to transduce two types of cells, human embryonic kidney 293T (HEK293T) cells and mouse mesenchymal stem cells (mMSC). It was obvious that HEK293T and mMSC appeared much intensiver green fluorescence through virus transduction from PS method than from other methods. To quantitate the transduction efficiency of the viruses, we examined virus titer in the cells after transduction using a real-time PCR-based analysis. Accordingly, we verified that PS precipitation could generate virus with a higher titer (4.39 × 108 IU/ml) than PB (2.43 × 108 IU/ml), Ultra (1.16 × 108 IU/ml), and PEG (0.56 × 108 IU/ml) in HEK293T cells. As for HEK293T cells in mMSC, the PS method also generated virus with a higher titer (4.66 × 108 IU/ml) than the Ultra method (2.36 × 108 IU/ml), and a much higher titer than those of the other chemical-based precipitation methods using PB (4.82 × 106 IU/ml) and PEG (8.98 × 104 IU/ml). Furthermore, the HEK293T cells and mMSC transduced by PS(1X)-virus appeared to have higher cell growth ratios, respectively, than the HEK293T cells and mMSC transduced by lentivirus using the other methods. We conclude that our new method for purifying lentivirus is cost-effective, time-saving, and highly efficient, and that lentivirus purification by this means could possibly be used to transduce a variety of cells, including stem cells.  相似文献   

16.
Immunoglobulin G (IgG) purification from human plasma with protein A attached supermacroporous poly(hydroxyethyl methacrylate) [PHEMA] cryogel has been studied. PHEMA cryogel was prepared by bulk polymerization which proceeds in aqueous solution of monomer frozen inside a plastic syringe (cryo-polymerization). After thawing, the PHEMA cryogel contains a continuous matrix having interconnected pores of 10–200 μm size. Protein was covalently attached onto the PHEMA cryogel via cyanogen bromide (CNBr) activation. The maximum IgG adsorption on the PHEMA/protein A cryogel was found to be 83.2 mg/g at pH 7.4 from aqueous solutions. The non-specific IgG adsorption onto the PHEMA cryogel was about 0.38 mg/g. The macropore size of the cryogel makes it possible to process blood cells without blocking the column. Higher adsorption capacity was observed from human plasma (up to 88.1 mg/g). Adsorbed IgG was eluted using 0.1 M glycine–HCl buffer (pH 3.5) with a purity of 85%. PHEMA–protein A cryogel was used for repetitive adsorption/desorption of IgG without noticeable loss in IgG adsorption capacity after 10 cycles. PHEMA–protein A cryogel showed several advantages such as simpler preparation procedure, good selectivity for IgG purification from human plasma and good stability throughout repeated adsorption–desorption cycles.  相似文献   

17.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

18.
The human adenovirus 2 (Ad2) transformation genes are located in early region E1a (map position (mp) 1.3–4.5) and E1b (mp 4.6–11.2) on the linear duplex Ad2 DNA genome of Mr 23 × 106 (viral DNA is divided into 100 map units). E1b codes for three major proteins of apparent molecular weights 53,000 (53K), 19K, and 20K; smaller quantities of 21K, 22K, and 23K proteins that are related to 53K are also synthesized in Ad2-infected cells. Because the resolution and purification of these Ad2 candidate transformation proteins proved very difficult by conventional protein purification methods, the applicability of high-performance liquid chromatography (HPLC) methodology was examined. Starting with a crude cytoplasmic S100 fraction of Ad2-infected human cells, the resolution of the Ad2 E1b-coded 19K, 20K, 21K, 22K, and 23K proteins by reverse-phase HPLC using a C8 column and a linear 0–60% 1-propanol gradient in 0.5 m pyridine formate was achieved, E1b proteins purified under these conditions retained their immunological reactivity. By anion-exchange HPLC using a linear 10 mm to 1 m NaCl gradient in 10 mm 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 7.6, the same five Ad2 E1b-coded 19K–23K proteins were separated, with improved resolution of the 19K protein. Based on these findings, protocols for the extensive purification of the E1b-19K and E1b-20K proteins have been developed. These results illustrate the potential of HPLC methodology for the rapid purification of biologically interesting proteins from complex cellular mixtures of proteins.  相似文献   

19.
The uptake, binding, and subcellular sites of accumulation of [3H]-cyclosporine (CS) in two human gingival fibroblast strains, GN 23 and GN 54, have been examined. GN 23 responds to CS treatment with a decrease in collagenolysis, while GN 54 does not. Binding of the drug was determined using [3H]-CS concentrations ranging from 10?5 to 10?8 M in the absence or presence of excess unlabeled CS (1 mM). The binding of the drug to both strains was specific and reached a plateau within 10 min, remaining at that level for up to 1 h. Scatchard analysis of the specific binding of [3H]-CS to the responsive GN 23 strain revealed two dissociation constants: KD = 5 × 10?8 M (1.2 × 107 sites/cell) and KD = 1.4 × 10?6 M (2.2 × 108 sites/cell). GN 54, on the other hand, had only one class of low affinity binding site (KD = 0.47 × 10?6 M [1.2 × 108 sites/cell]). Unlabeled CS (0.01–1 mM) inhibited the binding of [3H]-CS in a dose-dependent manner to both strains, as did the calmodulin antagonist W-7, to a lesser extent. However, W-7 inhibited CS binding much more efficiently in GN 54 than in GN 23, suggesting that calmodulin may be the predominant CS receptor in GN 54. In both strains, 70% of the drug accumulated in the crude nuclear fraction after a 1 min incubation, with very little (? 4%) being membrane associated, and the remainder was in the cytosol. In GN 23, CS levels in the crude nuclear fraction reached 80% by 20 min, and remained at this level for up to 1 h. In contrast, in GN 54, at incubation times of more than 1 min, the drug did not selectively accumulate in the crude nuclear fraction, but appeared to be in equilibrium between the nuclear and cytosolic fractions. These data show that the CS resistance of human gingival fibroblasts was not due to their inability to take up and bind CS. Rather, the different effects of CS on the collagenolysis of the responder and non-responder fibroblast strains may be related to the types of CS receptors they possess and differences in the cellular metabolism of CS occurring after binding, including the subcellular sites of drug accumulation. © 1993 Wiley-Liss, Inc.  相似文献   

20.
A useful approach was proposed to easily synthesize molecularly imprinted adsorbent for the purification of tylosin from broth. Firstly, by molecular simulation based on density functional theory, methacrylic acid was chosen as a functional monomer by comparing the binding energy. Second, a novel method of polymerization based on precipitation polymerization with added seeds was used in water-mixed solvent for the preparation of water-compatible micron-sized MIP. Its static adsorption capacity for tylosin in aqueous solution was estimated to be 106.5 mg/g with the highest imprinting factor (IF) of 3.6. The selectivity coefficient (α) of tylosin to desmycosin was 3.3. The antibiotic in fermentation broth could be purified by means of molecularly imprinted solid phase extraction (MISPE), which allows MIP to be used for the purification of tylosin from a complex sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号