首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
硝酸铵水凝胶分子印迹聚合物的制备   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:目前安全问题成为世界各国的首要问题,尤其是对炸药分子的检测。硝酸铵是硝铵炸药的主要成分。研究水凝胶分子印迹法对硝铵炸药分子的检测。方法:水凝胶分子印迹方法制备硝酸铵水凝胶分子印迹聚合物,运用静态结合实验对其结合率进行了测定。结果:聚合物对硝酸铵具有良好的识别和吸附性能。印迹聚合物的解离常数为4.08g/L,最大吸附量为3.51mg/g。结论:水凝胶分子印迹法可合成水溶性炸药分子印迹聚合物,并且识别及吸附性能良好。  相似文献   

2.
目的:合成异丙酚分子印迹聚合物,并用聚合物萃取人血浆中的异丙酚。方法:用热聚合法制备异丙酚分子印迹聚合物,考查聚合物的性能,并用它来萃取血浆中不同浓度的异丙酚。结果:模板分子和功能单体以氢键的方式结合;分子印迹聚合物选择性地吸附血浆中的异丙酚。结论:分子印迹聚合物可以从人血浆中吸附异丙酚,其吸附率受底物浓度的影响。  相似文献   

3.
以青霉素为模板分子,采用溶胶-凝胶法合成分子印迹膜,以浸泡的方法移除印迹分子,制备青霉素分子印迹膜电极。本印迹电极能有效地避免类似物对其测定的干扰。通过循环伏安法研究传感器对青霉素的响应特性,结果表明:富集时间为200 s,在0.1~1.8μg/L质量浓度范围内,青霉素在磷酸缓冲液(PBS)中的电流强度与其浓度呈良好的线性关系。吸附后的膜电极用甲醇洗脱后再生,可以重复利用3次,可以应用到实际检测中。  相似文献   

4.
本研究制备了1-脱氧野尻霉素分子印迹聚合物微球,考察溶剂、反应时间对分子印迹聚合物产率以及性能的影响。以1-脱氧野尻霉素为模板分子,α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,采用沉淀聚合法合成分子印迹微球,采用静态吸附及扫描电镜(SEM)的方法对微球进行表征。结果表明,当反应时间为24 h、乙腈为溶剂时,所制得印迹聚合物微球的形貌和吸附性能较好,对1-脱氧野尻霉素与N-甲基-1-脱氧野尻霉素的选择性分离因子α为2.26,说明分子印迹聚合物微球对1-脱氧野尻霉素分子有特异性吸附和识别能力。  相似文献   

5.
分子印迹技术应用于血清中地高辛的快速检测   总被引:1,自引:0,他引:1  
应用分子印迹的方法制备对地高辛有特异性吸附性能的印迹聚合物颗粒,再将颗粒与琼脂糖混合并固定于玻碳电极上制备成地高辛分子印迹聚合膜传感器,传感器可以特异性地结合模板分子地高辛且其电化学信号与模板浓度相关,再用它来检测血清中地高辛的含量。结果表明:分子印迹传感器具有制作简便、成本低、检测快速、特异性高、稳定性好等优点,检测下限为1.28 nmol/L,检测时间为5 min。  相似文献   

6.
采用沉淀聚合法制备孔雀石绿分子印迹聚合物(MG-MIPs),以洗脱效率及吸附量为指标,考察超声波辅助抽提法对MIPs中MG洗脱效果及吸附性能的影响,通过扫描电镜观察MIPs的表面形态,并对其吸附性能进行研究。结果表明:模板分子MG在超声30 min、超声10次、料液比m(MG-MIPs)∶V(甲醇-乙酸溶液)为1∶10(g/m L)、温度为25℃、超声功率为270 W的条件下,洗脱效果最好,MIPs在固相萃取柱中的吸附效率较高,达到198μg/g。  相似文献   

7.
白藜芦醇分子印迹聚合物微球的制备及特性评价(英文)   总被引:1,自引:0,他引:1  
以聚苯乙烯微球为种球,白藜芦醇为模板分子,采用单步溶胀聚合法在N,N-二甲基甲酰胺体系中制备了单分散分子印迹聚合物微球。用扫描电镜对微球的结构和形貌进行了表征,并研究了微球的制备条件和吸附特性。微球的凹陷可有效地增加微球的比表面积和结合位点,从而提高了模板分子的结合速率及微球的印迹容量。  相似文献   

8.
离子印迹聚合物(IIPs)是利用分子印迹技术对目标离子进行印迹、聚合进而得到对模板离子有选择性吸附的聚合物。核壳型离子印迹聚合物作为一种新型吸附材料被应用于样品的处理和实际检测中。本文对核壳型离子印迹聚合物的核壳类型、印迹聚合物的制备方法及实际检测应用等最新研究进展进行综述,为核壳型离子印迹聚合物的研究与应用提供参考。  相似文献   

9.
应用分子印迹技术,以邻苯二胺和对苯二酚为功能单体,心肌肌钙蛋白Ⅰ(cTnI)为模板分子,在pH 7.0磷酸盐缓冲液中,利用循环伏安法在玻碳电极表面聚合形成了分子印迹膜.该分子膜对cTnI有特异性识别作用,在0.01~2.00 μg/mL的范围内,cTnI的浓度与氧化峰电流的变化呈线性关系,检测下限为2 ng/mL,响应时间为15 min.该分子印迹传感器具有制备简单、特异性及稳定性好等优点.  相似文献   

10.
银杏内酯C分子烙印聚合物的制备   总被引:1,自引:0,他引:1  
以混合银杏内酯为模板分子,它们与单体AA预识别的过程中,利用其在识别性能上的差异,制备了对银杏内酯C有优先选择识别作用的分子烙印聚合物.用红外光谱表征了分子烙印聚合物,并通过紫外光谱和高效液相色谱对其选择吸附性能进行分析.结果表明,所制备的分子烙印聚合物的最大吸附量为15.5 mg/g,混合银杏内酯经MIP选择性吸附后,银杏内酯C的含量提高了12.16%.  相似文献   

11.
A molecularly imprinted material was developed from hydrogels of chitosan (CS) cross-linked with genipin (GNP) using o-xylene as the template molecule. Gelling time, mechanical, and diffusion properties of CS-GNP hydrogels were initially investigated to establish optimal conditions to prepare molecularly imprinted hydrogels (MIHs). The elastic modulus was found to be directly proportional to the degree of cross-linking (R = moles of genipin/moles of glucosamine) while the diffusion of water, as monitored by magnetic resonance imaging, decreased with R. CS-GNP hydrogels of varying R were imprinted with o-xylene (MIH(o-xylene)). The adsorption capacity of o-xylene by MIH(o-xylene) was greater than the corresponding control hydrogels, particularly at R = 0.25. Freundlich isotherms yielded a better fitness than Langmuir ones and afforded n and Q(max)values of 2.55 and 103.3 mg/g, respectively. The imprinted hydrogel showed the highest adsorption capacity for o-xylene; however, the material was not highly selective as it also exhibited the capacity to adsorb m- and p-xylene isomers. In turn, the MIH(o-xylene) showed a low adsorption when 2-fluorotoluene was used in rebinding experiments, suggesting that molecular recognition by the binding sites is influenced by the electronic and steric properties of the analyte molecule, thus effectively confirming the imprinting effect within the MIH(o-xylene) network. This work opens the possibility to future development of materials with the capacity to adsorb o-xylene analogue molecules such as contaminants bearing chlorinated aromatic structures.  相似文献   

12.
To remove lipopolysaccharide (LPS) from pure water, we developed polymer hydrogels that selectively recognize LPS. A molecular imprinting technique was used to prepare the polymer hydrogels. We prepared the polymer hydrogels with LPS-binding sites by using acryloyllysine and acryloylphenylalanine as functional monomers and used lipid A as a template because it is the biologically active part of LPS and contains two phosphate groups. Co-existence of n-octane during the polymerization process was highly effective in promoting the formation of LPS-accessible sites on the surface of the hydrogels. Both an electrostatic and a hydrophobic interaction between the lipid A portion of LPS and the recognition site of the imprinted hydrogel are necessary for LPS recognition. The adsorption isotherm of LPS to the lipid A-imprinted hydrogels was Langmuir-type; the saturated adsorption capacity and the adsorption constant, calculated by applying an equation for Langmuir-type adsorption isotherms, were 1.0×10(-11)mol/cm(2) and 2.5×10(5)M(-1), respectively. The imprinted hydrogels selectively recognized toxic LPS in a competition experiment in which two other kinds of LPS with similar chemical structures to that of the LPS of E. coli (toxic LPS) were adsorbed to the lipid A-imprinted hydrogels.  相似文献   

13.
Improved specificity and binding affinity by molecularly imprinted polymers is possible by development of novel functional materials. Furthermore, increasing the cross-link density of imprinted polymers by using cross-linking functional groups was anticipated to improve polymer molecular recognition. A novel cross-linking monomer derived from an L-aspartic acid precursor was synthesized and employed in molecularly imprinted polymers to mimic more closely the scaffolding of proteins, and thus provide more protein-like selectivity. Chromatographic results revealed a more than 7-fold improvement in polymers imprinted using the new monomer versus a traditionally formulated polymer imprinted with methacrylic acid as the functional monomer.  相似文献   

14.
A molecularly imprinted polymer specific for the mycotoxin ochratoxin A has been synthesised using a non-covalent approach. The polymer has shown an excellent affinity and specificity for the target template in aqueous solutions. The binding experiments, NMR study and molecular modelling have proven that the template recognition by polymer originates from the shape complementarity of binding sites. The binding mechanism is critically depended on factors that affect the polymer conformation. Thus the variation in buffer concentration, pH and presence of organic solvent, which affect the polymer swelling or shrinking, had a profound effect on the polymer recognition properties.  相似文献   

15.
Molecular imprinting is an attractive technique for preparing mimics of natural and biological receptors. Nevertheless, molecular imprinting for aqueous systems remains a challenge due to the hydrogen bonding between templates and functional monomers destroyed in the bulk water. The hydrogen bonding between templates and monomers are the most crucial factor governing recognition, particularly in non-covalent molecularly imprinted polymers. Using mesoporous materials for molecular imprinting is an effective approach to overcome this barrier and to remove the limitations of the traditional molecularly imprinted polymers which include incomplete template removal, small binding capacity, slow mass transfer, and irregular materials shape. Here, SBA-15 was used as a mesoporous silica material for synthesis of molecularly imprinted polypyrrole. The pyrrole monomers and template molecules were immobilized onto the SBA-15 hexagonal channels, and then polymerization occurred. The resulting nanocomposites were characterized by Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. In batch rebinding tests, the imprinted nanocomposites reached saturated adsorption within 100min and exhibited significant specific recognition toward the ascorbic acid (AA) with high adsorption capacity (83.7mgg(-1)). To further illustrate the recognition property of the imprinted nanocomposites, binary competitive and non-competitive adsorption experiments were performed with ascorbic acid, dopamine, paracetamol and epinephrine. The imprinting factors for these compounds in non-competitive adsorption experiments were 3.2, 1.5, 1.4 and 1.3, respectively. The results showed that the imprinted nanocomposites exhibited significant adsorption selectivity for the ascorbic acid against the related compounds.  相似文献   

16.
Glutathione imprinted polymer was prepared using 1-vinyl imidazole and ethylene glycol dimethacrylate as the functional monomer and crosslinker, respectively, in dimethyl sulfoxide. The adsorption selectivity of glutathione-imprinted polymer was tested by reduced glutathione, oxidized glutathione, and L-Gly-Leu-Tyr in 30% phosphate buffer (0.01 M, pH 5.0)–70% acetonitrile and binding affinity values were compared. Reusability of molecularly imprinted polymer particles was also investigated. Molecularly imprinted polymer particles were found to be stable and to maintain glutathione adsorption capacity at 95% when washed with methanol–acetic acid (10%) after seven usages. Functional monomer 1-vinyl imidazole and cross linker ethylene glycol dimethacrylate-based glutathione imprinted polymer could be used as solid phase extraction material for recognition of glutathione in biological samples.  相似文献   

17.
Biomimetic recognition elements employed for the detection of analytes are commonly based on proteinaceous affibodies, immunoglobulins, single-chain and single-domain antibody fragments or aptamers. The alternative supra-molecular approach using a molecularly imprinted polymer now has proven utility in numerous applications ranging from liquid chromatography to bioassays. Despite inherent advantages compared with biochemical/biological recognition (which include robustness, storage endurance and lower costs) there are few contributions that describe quantitative analytical applications of molecularly imprinted polymers for relevant small molecular mass compounds in real-world samples. There is, however, significant literature describing the use of low-power, portable piezoelectric transducers to detect analytes in environmental monitoring and other application areas. Here we review the combination of molecularly imprinted polymers as recognition elements with piezoelectric biosensors for quantitative detection of small molecules. Analytes are classified by type and sample matrix presentation and various molecularly imprinted polymer synthetic fabrication strategies are also reviewed.  相似文献   

18.
Semi-interpenetrating polymer network (semi-IPN) hydrogel was prepared to recognize hemoglobin, by molecularly imprinted method, in the mild aqueous media of chitosan and acrylamide in the presence of N,N'-methylenebisacrylamide as the cross-linking agent. The hydrogel obtained has been investigated by using thermal analysis, X-ray diffraction, differential scanning calorimetry (DSC), and environmental scanning electron microscope (ESEM). Langmuir analysis showed that an equal class of adsorption was formed in the hydrogel, and the adsorption equilibrium constant and the maximum adsorption capacity were evaluated to be 4.27 g/mL and 36.53 mg/g wet hydrogel, respectively. The imprinted semi-IPN hydrogel has a much higher adsorption capacity for hemoglobin than the nonimprinted hydrogel with the same chemical composition and also has a higher selectivity for the imprinted molecule.  相似文献   

19.
An analytical methodology for the analysis of methamidophos in water and soil samples incorporating a molecularly imprinted solid-phase extraction process using methamidophos-imprinted polymer was developed. Binding study demonstrated that the polymer exhibited excellent affinity and high selectivity to the methamidophos. Evidence was also found by FT-IR analysis that hydrogen bonding between the CO(2)H in the polymer cavities and the NH(2) and P=O of the template was the origin of methamidophos recognition. The use of molecularly imprinted solid-phase extraction improved the accuracy and precision of the GC method and lowered the limit of detection. The recovery of methamidophos extracted from a 10.0 g soil sample at the 100 ng/g spike level was 95.4%. The limit of detection was 3.8 ng/g. The recovery of methamidophos extracted from 100 mL tap and river water at 1 ng/mL spike level was 96.1% and 95.8%, and the limits of detection were 10 and 13 ng/L respectively. These molecularly imprinted solid-phase extraction procedures enabled selective extraction of polar methamidophos successfully from water and soil samples, demonstrating the potential of molecularly imprinted solid-phase extraction for rapid, selective, and cost-effective sample pretreatment.  相似文献   

20.
Monolithic molecularly imprinted columns were designed and prepared by anin-situ thermal-initiated copolymerization technique for rapid separation of tryptophan andN-CBZ-phenylalanine enantiomers. The influence of polymerization conditions and separation conditions on the specific molecular recognition ability for enantiomers and diastereomers was investigated. The specious molecular recognition was found to be dependent on the stereo structures and the arrangement of functional groups of the imprinted molecule and the cavities in the molecularly imprinted polymer (MIP). Moreover, hydrogen bonding interactions and hydrophobic interactions played an important role in the retention and separation. Compared to conventional MIP preparation procedures, the present method is very simple, and its macroporous structure has excellent separation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号