首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Poly(lactate-co-3-hydroxybutyrate) (P(LA-co-3HB)) was previously produced from xylose in engineered Escherichia coli. The aim of this study was to increase the polymer productivity and LA fraction in P(LA-co-3HB) using two metabolic engineering approaches: (1) deletions of competing pathways to lactate production and (2) overexpression of a galactitol transporter (GatC), which contributes to the ATP-independent xylose uptake. Engineered E. coli mutants (ΔpflA, Δpta, ΔackA, ΔpoxB, Δdld, and a dual mutant; ΔpflA?+?Δdld) and their parent strain, BW25113, were grown on 20 g l?1 xylose for P(LA-co-3HB) production. The single deletions of ΔpflA, Δpta, and Δdld increased the LA fraction (58–66 mol%) compared to BW25113 (56 mol%). In particular, the ΔpflA?+?Δdld strain produced P(LA-co-3HB) containing 73 mol% LA. Furthermore, GatC overexpression increased both polymer yields and LA fractions in ΔpflA, Δpta, and Δdld mutants, and BW25113. The ΔpflA?+?gatC strain achieved a productivity of 8.3 g l?1, which was 72 % of the theoretical maximum yield. Thus, to eliminate limitation of the carbon source, higher concentration of xylose was fed. As a result, BW25113 harboring gatC grown on 40 g l?1 xylose reached the highest P(LA-co-3HB) productivity of 14.4 g l?1. On the other hand, the ΔpflA?+?Δdld strain grown on 30 g l?1 xylose synthesized 6.4 g l?1 P(LA-co-3HB) while maintaining the highest LA fraction (73 mol%). The results indicated the usefulness of GatC for enhanced production of P(LA-co-3HB) from xylose, and the gene deletions to upregulate the LA fraction in P(LA-co-3HB). The polymers obtained had weight-averaged molecular weights in the range of 34,000–114,000.  相似文献   

2.
Woody extract-derived hemicellulosic hydrolysate, which was obtained from dissolving pulp manufacturing, was utilized as feedstock for the production of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] in engineered Escherichia coli. The hydrolysate was composed of mainly xylose and galactose, and contained impurities mainly acetate, which was found to inhibit the polymer synthesis rather than the cell growth. Thus, acetate and other impurities were removed through active charcoal and ion-exchange columns. Using the purified hydrolysate, P(LA-co-3HB) was successfully produced (cell dry weight 8.6 g/L, polymer concentration 5.4 g/L, LA fraction 5.5 mol%, polymer content 62.4%), the amount of which was comparable to that obtained using reagent grade xylose and galactose. Therefore, the hydrolysate from woody extract is considered as an abundant, inexpensive and efficient feedstock applicable to consolidated process for P(LA-co-3HB) production, when the removal of acetic acid was satisfactorily accomplished.  相似文献   

3.
Class I polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha (PhaCRe) was engineered so as to acquire an unusual lactate (LA)-polymerizing activity. To achieve this, the site-directed saturation mutagenesis of PhaCRe was conducted at position 510, which corresponds to position 481 in the initially discovered class II LA-polymerizing PHA synthase (PhaC1PsSTQK), a mutation in which (Gln481Lys) was shown to be essential to its LA-polymerizing activity (Taguchi et al., Proc Natl Acad Sci USA 105(45):17323–17327, 2008). The LA-polymerizing activity of the PhaCReA510X mutants was evaluated based on the incorporation of LA units into the P[3-hydroxybutyrate(3HB)] backbone in vivo using recombinant Escherichia coli LS5218. Among 19 PhaCRe(A510X) mutants, 15 synthesized P (LA-co-3HB), indicating that the 510 residue plays a critical role in LA polymerization. The polymer synthesized by PhaCReA510S was fractionated using gel permeation chromatography in order to remove the low molecular weight fractions. The 13C and 1H NMR analyses of the high molecular weight fraction revealed that the polymer was a P(7 mol% LA-co-3HB) copolymer with a weight-averaged molecular weight of 3.2?×?105 Da. Interestingly, the polymer contained an unexpectedly high ratio of an LA-LA*-LA triad sequence, suggesting that the polymer synthesized by PhaCRe mutant may not be a random copolymer, but presumably had a block sequence.  相似文献   

4.
P[(R)-lactate-co-(R)-3-hydroxybutyrate] [P(LA-co-3HB)] was produced in engineered Escherichia coli using lignocellulose-derived hydrolysates from Miscanthus × giganteus (hybrid Miscanthus) and rice straw. Hybrid Miscanthus-derived hydrolysate exhibited no negative effect on polymer production, LA fraction, and molecular weight of the polymer, whereas rice straw-derived hydrolysate reduced LA fraction. These results revealed that P(LA-co-3HB) was successfully produced from hybrid Miscanthus-derived sugars.  相似文献   

5.
Lipopolysaccharides free P[3-hydroxybutyrate (3HB)-co-3-hydroxyvalerate (3HV)] production was achieved using recombinant Corynebacterium glutamicum harboring polyhydroxyalkanoate (PHA) biosynthetic genes from Ralstonia eutropha. Cells grown on glucose with feeding of propionate as a precursor of 3HV unit accumulated 8-47 wt% of P(3HB-co-3HV). The 3HV fraction in the copolymer was varied from 0 to 28 mol% depending on the propionate concentrations.  相似文献   

6.
The first biosynthetic system for lactate (LA)-based polyesters was previously created in recombinant Escherichia coli (Taguchi et al. 2008). Here, we have begun efforts to upgrade the prototype polymer production system to a practical stage by using metabolically engineered Gram-positive bacterium Corynebacterium glutamicum as an endotoxin-free platform. We designed metabolic pathways in C. glutamicum to generate monomer substrates, lactyl-CoA (LA-CoA), and 3-hydroxybutyryl-CoA (3HB-CoA), for the copolymerization catalyzed by the LA-polymerizing enzyme (LPE). LA-CoA was synthesized by D-lactate dehydrogenase and propionyl-CoA transferase, while 3HB-CoA was supplied by β-ketothiolase (PhaA) and NADPH-dependent acetoacetyl-CoA reductase (PhaB). The functional expression of these enzymes led to a production of P(LA-co-3HB) with high LA fractions (96.8 mol%). The omission of PhaA and PhaB from this pathway led to a further increase in LA fraction up to 99.3 mol%. The newly engineered C. glutamicum potentially serves as a food-grade and biomedically applicable platform for the production of poly(lactic acid)-like polyester.  相似文献   

7.
Novel lactate (LA)-based terpolymers, P[LA-co-3-hydroxybutyrate(3HB)-co-3-hydroxyvalerate(3HV)]s (PLBVs), were produced in LA-overproducing mutant, Escherichia coli JW0885, which was found to be a superior host for the efficient production of LA-based polyesters. Recombinant E. coli JW0885 harboring the genes encoding LA-polymerizing enzyme (Ser325Thr/Gln481Lys mutant of polyhydroxyalkanoate synthase from Pseudomonas sp. 61-3) and three monomer supplying enzymes [propionyl-CoA transferase, β-ketothiolase, and nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH)-dependent acetoacetyl-CoA reductase] was aerobically grown on glucose with feeding of propionate as a precursor of 3-hydroxyvaleryl-CoA (3HV-CoA). Gas chromatography and nuclear magnetic resonance (NMR) analyses revealed that polymers accumulated in the cells were composed of LA, 3HB, and 3HV units, thus being identified as terpolymers, PLBVs. In addition, 1H-NMR analysis suggested the existence of LA-3HV sequence in the terpolymer. When 100 mg/l of sodium propionate was added into the medium, 3HV fraction in the terpolymer linearly reached up to 7.2 mol%, while LA fraction was inversely decreased. This phenomenon could be due to the change in metabolic fluxes of lactyl-CoA (LA-CoA) and 3HV-CoA depending on the concentration of propionate fed into the medium.  相似文献   

8.
Cupriavidus sp. USMAA1020, a local isolate was able to biosynthesis poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer with various 4HB precursors as the sole carbon source. Manipulation of the culture conditions such as cell concentration, phosphate ratio and culture aeration significantly affected the synthesis of P(3HB-co-4HB) copolymer and 4HB composition. P(3HB-co-4HB) copolymer with 4HB compositions ranging from 23 to 75 mol% 4HB with various mechanical and thermal properties were successfully produced by varying the medium aeration. The physical and mechanical properties of P(3HB-co-4HB) copolymers were characterized by NMR spectroscopy, gel-permeation chromatography, tensile test, and differential scanning calorimetry. The number-average molecular weights (M n) of copolymers ranged from 260 × 103 to 590 × 103Da, and the polydispersities (M w/M n) were between 1.8 and 3.0. Increases in the 4HB composition lowered the molecular weight of these copolymers. In addition, the increase in 4HB composition affected the randomness of copolymer, melting temperature (T m), glass transition temperature (T g), tensile strength, and elongation to break. Enzymatic degradation of P(3HB-co-4HB) films with an extracellular depolymerase from Ochrobactrum sp. DP5 showed that the degradation rate increased proportionally with time as the 4HB fraction increased from 17 to 50 mol% but were much lower with higher 4HB fraction. Degradation of P(3HB-co-4HB) films with lipase from Chromobacterium viscosum exhibited highest degradation rate at 75 mol% 4HB. The biocompatibility of P(3HB-co-4HB) copolymers were evaluated and these copolymers have been shown to support the growth and proliferation of fibroblast cells.  相似文献   

9.
Polylactic acid (PLA) is a promising biomass‐derived polymer, but is currently synthesized by a two‐step process: fermentative production of lactic acid followed by chemical polymerization. Here we report production of PLA homopolymer and its copolymer, poly(3‐hydroxybutyrate‐co‐lactate), P(3HB‐co‐LA), by direct fermentation of metabolically engineered Escherichia coli. As shown in an accompanying paper, introduction of the heterologous metabolic pathways involving engineered propionate CoA‐transferase and polyhydroxyalkanoate (PHA) synthase for the efficient generation of lactyl‐CoA and incorporation of lactyl‐CoA into the polymer, respectively, allowed synthesis of PLA and P(3HB‐co‐LA) in E. coli, but at relatively low efficiency. In this study, the metabolic pathways of E. coli were further engineered by knocking out the ackA, ppc, and adhE genes and by replacing the promoters of the ldhA and acs genes with the trc promoter based on in silico genome‐scale metabolic flux analysis in addition to rational approach. Using this engineered strain, PLA homopolymer could be produced up to 11 wt% from glucose. Also, P(3HB‐co‐LA) copolymers containing 55–86 mol% lactate could be produced up to 56 wt% from glucose and 3HB. P(3HB‐co‐LA) copolymers containing up to 70 mol% lactate could be produced to 46 wt% from glucose alone by introducing the Cupriavidus necator β‐ketothiolase and acetoacetyl‐CoA reductase genes. Thus, the strategy of combined metabolic engineering and enzyme engineering allowed efficient bio‐based one‐step production of PLA and its copolymers. This strategy should be generally useful for developing other engineered organisms capable of producing various unnatural polymers by direct fermentation from renewable resources. Biotechnol. Bioeng. 2010; 105: 161–171. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
2-Hydroxyalkanoates (2HAs) have become the new monomeric constituents of bacterial polyhydroxyalkanoates (PHAs). PHAs containing 2HA monomers, lactate (LA), glycolate (GL), and 2-hydroxybutyrate (2HB) can be synthesized by engineered microbes in which the broad substrate specificities of PHA synthase and propionyl-CoA transferase are critical factors for the incorporation of the monomers into the polymer chain. LA-based polymers, such as P[LA-co-3-hydroxybutyrate (3HB)], have the properties of pliability and stretchiness which are distinctly different from those of the rigid poly(lactic acid) (PLA) and P(3HB) homopolymers. This versatile platform is also applicable to the biosynthesis of GL- and 2HB-based polymers. In the case of the synthesis of 2HB-based polymers, the enantiospecificity of PHA synthase enabled the production of isotactic (R)-2HB-based polymers, including P[(R)-2HB], from racemic precursors of 2HB. P(2HB) is a pliable material, in contrast to PLA. Furthermore, to obtain a new 2HA-polymerizing PHA synthase, the class I PHA synthase from Ralstonia eutropha was engineered so as to achieve the first incorporation of LA units. The analysis of the polymer synthesized using this new LA-polymerizing PHA synthase unexpectedly focused a spotlight on the studies on block copolymer biosynthesis.  相似文献   

11.
The regulation of 4-hydroxybutyrate (4HB) molar fraction in the poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] of a local isolate Cupriavidus sp. USMAA1020 was attempted by employing a feeding strategy through fed-batch fermentation in 100-L fermenter. The growth of Cupriavidus sp. USMAA1020 was enhanced by frequently feeding carbon and nitrogen at a ratio of 5 (C/N 5) using a DO-stat with cascade mode at 20% (v/v) dissolved oxygen (DO). The feeding of C/N 5 and the use of the DO-stat mode were able to regulate the 4HB composition from 0–67 mol% by sequential feeding of γ-butyrolactone and supplementing oleic acid. A high 4HB molar fraction of 67 mol% with a PHA concentration of 5.2 g/L was successfully obtained by employing this feeding strategy. Notably, enzymatic degradation carried out enhanced the 4HB composition of the copolymer synthesized. PHB depolymerase enzyme from Acidovorax sp. was used to degrade this P(3HB-co-70-mol%4HB) copolymer and the 4HB composition could be increased up to 83 mol%. The degradation process was observed by monitoring the time-dependent change in the weight loss of copolymer films. The percentage of weight loss of solvent-cast film increased proportionally up to 19% within 3 h, whereas salt-leached films showed 90% of weight loss within 3 h of incubation and were completely degraded by 4 h. The molecular weight (M n ) of the films treated with enzyme demonstrated a slight decrease. SEM observation exhibited a rough surface morphology of the copolymer degraded with depolymerase enzyme.  相似文献   

12.
Pseudomonas sp. 61-3 (isolated from soil) produced a polyester consisting of 3-hydroxybutyric acid (3HB) and of medium-chain-length 3-hydroxyalkanoic acids (3HA) of C6, C8, C10 and C12, when sugars of glucose, fructose and mannose were fed as the sole carbon source. The polyester produced was a blend of homopolymer and copolymer, which could be fractionated with boiling acetone. The acetone-insoluble fraction of the polyester was a homopolymer of 3-hydroxybutyrate units [poly (3HB)], while the acetone-soluble fraction was a copolymer [poly(3HB-co-3HA)] containing both short- and medium-chain-length 3-hydroxyalkanoate units ranging from C4 to C12:44 mol% 3-hydroxybutyrate, 5 mol% 3-hydroxyhexanoate, 21 mol% 3-hydroxyoctanoate, 25 mol% 3-hydroxydecanoate, 2 mol% 3-hydroxydodecanoate and 3 mol% 3-hydroxy-5-cis-dodecenoate. The copolyester was shown to be a random copolymer of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoate units by analysis of the 13C-NMR spectrum. The poly(3HB) homopolymer and poly (3HB-co-3HA) copolymer were produced simultaneously within cells from glucose in the absence of any nitrogen source, which suggests that Pseudomonas sp. 61-3 has two types of polyhydroxy-alkanoate syntheses with different substrate specificities. Received: 9 June 1995/Received last revision: 30 October 1995/Accepted: 6 November 1995  相似文献   

13.
Bacterial outer membrane (OM) is a self-protective and permeable barrier, while having many non-negligible negative effects in industrial biotechnology. Our previous studies revealed enhanced properties of Halomonas bluephagenesis based on positive cellular properties by OM defects. This study further expands the OM defect on membrane compactness by completely deleting two secondary acyltransferases for lipid A modification in H. bluephagenesis, LpxL and LpxM, and found more significant advantages than that of the previous lpxL mutant. Deletions on LpxL and LpxM accelerated poly(3-hydroxybutyrate) (PHB) production by H. bluephagenesis WZY229, leading to a 37% increase in PHB accumulation and 84-folds reduced endotoxin production. Enhanced membrane permeability accelerates the diffusion of γ-butyrolactone, allowing H. bluephagenesis WZY254 derived from H. bluephagenesis WZY229 to produce 82wt% poly(3-hydroxybutyrate-co-23mol%4-hydroxybutyrate) (P(3HB-co-23mol%4HB)) in shake flasks, showing increases of 102% and 307% in P(3HB-co-4HB) production and 4HB accumulation, respectively. The 4HB molar fraction in copolymer can be elevated to 32 mol% in the presence of more γ-butyrolactone. In a 7-l bioreactor fed-batch fermentation, H. bluephagenesis WZY254 supported a 84 g l−1 dry cell mass with 81wt% P(3HB-co-26mol%4HB), increasing 136% in 4HB molar fraction. This study further demonstrated that OM defects generate a hyperproduction strain for high 4HB containing copolymers.  相似文献   

14.
For the synthesis of polylactic acid (PLA) and its copolymers by one‐step fermentation process, heterologous pathways involving Clostridium propionicum propionate CoA transferase (PctCp) and Pseudomonas sp. MBEL 6‐19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1Ps6‐19) were introduced into Escherichia coli for the generation of lactyl‐CoA endogenously and incorporation of lactyl‐CoA into the polymer, respectively. Since the wild‐type PhaC1Ps6‐19 did not efficiently accept lactyl‐CoA as a substrate, site directed mutagenesis as well as saturation mutagenesis were performed to improve the enzyme. The wild‐type PctCp was not able to efficiently convert lactate to lactyl‐CoA and was found to exert inhibitory effect on cell growth, random mutagenesis by error‐prone PCR was carried out. By employing engineered PhaC1Ps6‐19 and PctCp, poly(3‐hydroxybutyrate‐co‐lactate), P(3HB‐co‐LA), containing 20–49 mol% lactate could be produced up to 62 wt% from glucose and 3HB. By controlling the 3HB concentration in the medium, PLA homopolymer and P(3HB‐co‐LA) containing lactate as a major monomer unit could be synthesized. Also, P(3HB‐co‐LA) copolymers containing various lactate fractions could be produced from glucose alone by introducing the Cupriavidus necator β‐ketothiolase and acetoacetyl‐CoA reductase genes. Fed‐batch cultures were performed to produce P(3HB‐co‐LA) copolymers having 9–64 mol% of lactate, and their molecular weights, thermal properties, and melt flow properties were determined. Biotechnol. Bioeng. 2010; 105: 150–160. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
A locally isolated Gram-negative bacterium, Cupriavidus sp. USMAA2-4 was able to synthesize poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] when fed with the precursor carbon 1,4-butanediol using a two-stage cultivation process. When 1% (w/v) of 1,4-butanediol was used, 31 wt.% of P(3HB-co-4HB) copolymer with 41 mol.% of 4HB molar fraction was produced. Both the PHA content and 4HB composition of the copolymer increased as the concentration of 1,4-butanediol increased but the cell biomass did not show any significant changes. However, the 4HB fraction could be further increased using a combination of γ-butyrolactone and 1,4-butanediol. As high as 84 mol.% of 4HB composition was achieved with a combination of 0.35% (w/v) 1,4-butanediol and 1.4% (w/v) γ-butyrolactone. Nevertheless, it was found that Cupriavidus sp. USMAA2-4 cells were inhibited by high concentration of γ-butyrolactone. P(3HB-co-4HB) copolymer was also successfully synthesized using a simplified aerated tank.  相似文献   

16.
A metabolically engineered Escherichia coli has been constructed for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from unrelated carbon sources. Genes involved in succinate degradation in Clostridium kluyveri and P(3HB) accumulation pathway of Ralstonia eutropha were co-expressed for the synthesis of the above copolyester. E. coli native succinate semialdehyde dehydrogenase genes sad and gabD were both deleted for eliminating succinate formation from succinate semialdehyde, which functioned to enhance the carbon flux to 4HB biosynthesis. The metabolically engineered E. coli produced 9.4 g l?1 cell dry weight containing 65.5% P(3HB-co-11.1 mol% 4HB) using glucose as carbon source in a 48 h shake flask growth. The presence of 1.5–2 g l?1 α-ketoglutarate or 1.0 g l?1 citrate enhanced the 4HB monomer content from 11.1% to more than 20%. In a 6 l fermentor study, a 23.5 g l?1 cell dry weight containing 62.7% P(3HB-co-12.5 mol% 4HB) was obtained after 29 h of cultivation. To the best of our knowledge, this study reports the highest 4HB monomer content in P(3HB-co-4HB) produced from unrelated carbon sources.  相似文献   

17.
Ralstonia eutropha NCIMB 11599 and ATCC 17699 were grown, and their productions of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] compared. In flask cultures ofR. eutropha NCIMB 11599, cell concentration, P(3HB-co-4HB) concentration and polymer content decreased considerably with increases in the γ-butyrolactone concentration, and the 4HB fraction was also very low (maximum 1.74 mol%). In fed-batch cultures ofR. eutropha NCIMB 11599, glucose and γ-butyrolactone were fed as the carbon sources, under a phosphate limitation strategy. When glucose was fed as the sole carbon source, with its concentration controlled using an on-line glucose analyzer, 86% of the P(3HB) homopolymer was obtained from 201 g/L of cells. In a two-stage fed-batch culture, where the cell concentration was increased to 104 g/L, with glucose fed in the first step and constant feeding of γ-butyrolactone, at 6 g/h, in the second, final cell concentration at 67 h was 106 g/L, with a polymer content of 82%, while the 4HB fraction was only 0.7 mol%. When the same feeding strategy was applied to the fedbatch culture ofR. eutropha ATCC 17699, where the cell concentration was increased to 42 g/L, by feeding fructose in the first step and γ-butyrolactone (1.5 g/h) in the second, the final cell concentration, polymer content and 4HB fraction at 74 h were 51 g/L, 35% and 32 mol%, respectively. In summary,R. eutropha ATCC 17699 was better thanR. eutropha NCIMB 11599 in terms of P(3HB-co-4HB) production with various 4HB fractions.  相似文献   

18.
A one-step cultivation process for the production of biodegradable polymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] by Cupriavidus sp. USMAA2-4 was carried out using various carbon sources. It was found that Cupriavidus sp. USMAA2-4 could produce approximately 44 wt.% copolymer of P(3HB-co-4HB) with 27 mol% 4HB composition when the combination of oleic acid and 1,4-butanediol are used as carbon sources in 60 h cultivation. The manipulation of carbon-to-nitrogen ratio (C/N) resulted in the increase of dry cell weight, PHA content as well as 4HB composition. A new strategy of introducing oleic acid and 1,4-butanediol together and separately at different concentration demonstrated different yield in PHA content ranging from 47 to 58 wt.%. The molecular weight obtained was 234 kDa (by adding 1,4-butanediol and oleic acid together) and 212 kDa (by adding 1,4-butanediol separately). The copolymer of P(3HB-co-4HB) produced by Cupriavidus sp. USMAA2-4 was detected statistically as a random copolymer when analysed by nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

19.
Polylactic acid (PLA) is one of the promising biodegradable polymers, which has been produced in a rather complicated two-step process by first producing lactic acid by fermentation followed by ring opening polymerization of lactide, a cyclic dimer of lactic acid. Recently, we reported the production of PLA and its copolymers by direct fermentation of metabolically engineered Escherichia coli equipped with the evolved propionate CoA-transferase and polyhydroxyalkanoate (PHA) synthase using glucose as a carbon source. When employing these initially constructed E. coli strains, however, it was necessary to use an inducer for the expression of the engineered genes and to feed succinate for proper cell growth. Here we report further metabolic engineering of E. coli strain to overcome these problems for more efficient production of PLA and its copolymers. This allowed efficient production of PLA and its copolymers without adding inducer and succinate. The finally constructed recombinant E. coli JLXF5 strain was able to produce P(3HB-co-39.6 mol% LA) having the molecular weight of 141,000 Da to 20 g l−1 with a polymer content of 43 wt% in a chemically defined medium by the pH-stat fed-batch culture.  相似文献   

20.
A locally isolated Gram negative bacterium, Cupriavidus sp. USMAA9-39 was able to produce various types of biodegradable polyesters through a two-step cultivation process. These are copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)]. These polymers were synthesized by this bacterium when grown with a combination of some carbon sources. The biosynthesis of P(3HB-co-4HB) was achieved by using carbon sources such as γ-butyrolactone or 1,4-butanediol or by a combination of oleic acid with either γ-butyrolactone or 1,4-butanediol. Meanwhile, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was produced using 1-pentanol or valeric acid or by a combination of oleic acid with either 1-pentanol or valeric acid. When γ-butyrolactone or 1,4-butanediol with either valeric acid or 1-pentanol were used as mixed carbon sources, P(3HB-co-3HV-co-4HB) terpolymer were produced. The presence of 3HB, 3HV or/and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号