首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A one-step cultivation process for the production of biodegradable polymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] by Cupriavidus sp. USMAA2-4 was carried out using various carbon sources. It was found that Cupriavidus sp. USMAA2-4 could produce approximately 44 wt.% copolymer of P(3HB-co-4HB) with 27 mol% 4HB composition when the combination of oleic acid and 1,4-butanediol are used as carbon sources in 60 h cultivation. The manipulation of carbon-to-nitrogen ratio (C/N) resulted in the increase of dry cell weight, PHA content as well as 4HB composition. A new strategy of introducing oleic acid and 1,4-butanediol together and separately at different concentration demonstrated different yield in PHA content ranging from 47 to 58 wt.%. The molecular weight obtained was 234 kDa (by adding 1,4-butanediol and oleic acid together) and 212 kDa (by adding 1,4-butanediol separately). The copolymer of P(3HB-co-4HB) produced by Cupriavidus sp. USMAA2-4 was detected statistically as a random copolymer when analysed by nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

2.
Cupriavidus sp. USMAA1020, a local isolate was able to biosynthesis poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer with various 4HB precursors as the sole carbon source. Manipulation of the culture conditions such as cell concentration, phosphate ratio and culture aeration significantly affected the synthesis of P(3HB-co-4HB) copolymer and 4HB composition. P(3HB-co-4HB) copolymer with 4HB compositions ranging from 23 to 75 mol% 4HB with various mechanical and thermal properties were successfully produced by varying the medium aeration. The physical and mechanical properties of P(3HB-co-4HB) copolymers were characterized by NMR spectroscopy, gel-permeation chromatography, tensile test, and differential scanning calorimetry. The number-average molecular weights (M n) of copolymers ranged from 260 × 103 to 590 × 103Da, and the polydispersities (M w/M n) were between 1.8 and 3.0. Increases in the 4HB composition lowered the molecular weight of these copolymers. In addition, the increase in 4HB composition affected the randomness of copolymer, melting temperature (T m), glass transition temperature (T g), tensile strength, and elongation to break. Enzymatic degradation of P(3HB-co-4HB) films with an extracellular depolymerase from Ochrobactrum sp. DP5 showed that the degradation rate increased proportionally with time as the 4HB fraction increased from 17 to 50 mol% but were much lower with higher 4HB fraction. Degradation of P(3HB-co-4HB) films with lipase from Chromobacterium viscosum exhibited highest degradation rate at 75 mol% 4HB. The biocompatibility of P(3HB-co-4HB) copolymers were evaluated and these copolymers have been shown to support the growth and proliferation of fibroblast cells.  相似文献   

3.
Summary Random copolymers of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) with a wide range of compositions varying from 0 to 83 mol% 4HB were produced by Alcaligenes latus from the mixed carbon substrates of 3-hydroxybutyric and 4-hydroxybutyric acids. The structure and physical properties of P(3HB-co-4HB) were characterized by1H and13C NMR spectroscopy, gel-permeation chromatography, and differential scanning calorimetry. The isothermal radial growth rates of spherulites of P(3HB-co-4HB) were much slower than the rate of P(3HB) homopolymer. The enzymatic degradation rates of P(3HB-co-4HB) films by a PHB depolymerase were strongly influenced by the copolymer composition.  相似文献   

4.
Ecological deterioration and human health concerns arising from the usage of non-biodegradable plastics have prompted mankind to search for greener alternatives which are biodegradable, biocompatible and easily produced from renewable sources. Polyhydroxyalkanoates (PHA), among other biopolymers, are emerging as a viable replacement for fossil fuel-based synthetic plastics. A PHA-producing strain, identified as Cupriavidus sp. (designated Cupriavidus sp. USMAA2-4) was isolated from a soil sample from western peninsular Malaysia. Heterologous expression of the PHA synthase gene (phaC USMAA2-4) in mutant C. necator PHB4 complemented its PHA-producing ability. More than 60 wt% of P(3HB) was synthesized from various plant oils. The highest P(3HB) production of 2.38 g/l at 68 wt% was attained when crude palm kernel oil was fed as the sole carbon source. The 3HV molar fraction in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was significantly affected by the type of the precursor used and their respective feeding time. The 3HV molar fraction ranged from 4 to 31 mol% when sodium propionate/valerate was fed at different cultivation times. In addition, with the supplementation of 4HB-monomer precursors, approximately 67 wt% P(3HB-co-4HB) with 4–5 mol% of 4-hydroxybutyrate monomer was synthesized, regardless of the precursor feeding time used. Variation in the molar fraction of the second monomer along with its biodegradability and biocompatibility characteristics promotes the potential of these copolymers as replacements for traditional commodity plastics.  相似文献   

5.
A locally isolated Gram-negative bacterium, Cupriavidus sp. USMAA2-4 was able to synthesize poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] when fed with the precursor carbon 1,4-butanediol using a two-stage cultivation process. When 1% (w/v) of 1,4-butanediol was used, 31 wt.% of P(3HB-co-4HB) copolymer with 41 mol.% of 4HB molar fraction was produced. Both the PHA content and 4HB composition of the copolymer increased as the concentration of 1,4-butanediol increased but the cell biomass did not show any significant changes. However, the 4HB fraction could be further increased using a combination of γ-butyrolactone and 1,4-butanediol. As high as 84 mol.% of 4HB composition was achieved with a combination of 0.35% (w/v) 1,4-butanediol and 1.4% (w/v) γ-butyrolactone. Nevertheless, it was found that Cupriavidus sp. USMAA2-4 cells were inhibited by high concentration of γ-butyrolactone. P(3HB-co-4HB) copolymer was also successfully synthesized using a simplified aerated tank.  相似文献   

6.
A locally isolated Gram-negative bacterium, Cupriavidus sp. USMAA2-4 was found capable of producing terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] using γ-butyrolactone or 1,4-butanediol with either valeric acid or 1-pentanol as the carbon source. The present of 3HB, 3HV and 4HB monomers were confirmed by gas chromatography (GC) and nuclear magnetic resonance (NMR) analysis. PHA concentration of 1.9 g/l was the highest value obtained using the combination of 1,4-butanediol and 1-pentanol through one-step cultivation process. PHA concentration obtained through two-step cultivation process was higher for all the combinations and the highest value achieved was 2.5 g/l using γ-butyrolactone and 1-pentanol as carbon source. Various molar fractions of 4HB and 3HV ranging from 6 to 14 mol% and 39 to 87 mol%, respectively were produced through two-step cultivation process by manipulating the concentration of γ-butyrolactone. As the culture aeration was reduced, the molar fraction of 3HV and 4HB increased from 40 to 67 mol% and 10 to 24 mol%, respectively while the dry cell weight and PHA content decreased. The terpolymer produced was characterized using gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The number-average molecular weight (M n) and the melting temperature (T m)) of the terpolymer were in the range of 177–484 kDa and 160–164°C, respectively.  相似文献   

7.
A locally isolated Gram negative bacterium, Cupriavidus sp. USMAA9-39 was able to produce various types of biodegradable polyesters through a two-step cultivation process. These are copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)]. These polymers were synthesized by this bacterium when grown with a combination of some carbon sources. The biosynthesis of P(3HB-co-4HB) was achieved by using carbon sources such as γ-butyrolactone or 1,4-butanediol or by a combination of oleic acid with either γ-butyrolactone or 1,4-butanediol. Meanwhile, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was produced using 1-pentanol or valeric acid or by a combination of oleic acid with either 1-pentanol or valeric acid. When γ-butyrolactone or 1,4-butanediol with either valeric acid or 1-pentanol were used as mixed carbon sources, P(3HB-co-3HV-co-4HB) terpolymer were produced. The presence of 3HB, 3HV or/and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

8.
Samples from various natural environments in Peninsular Malaysia were screened for microorganisms that are capable of producing poly(3-hydroxybutyrate-co-4-hydroxybutyrate). A total of 663 isolates were isolated and 119 out of these isolates were identified as possible PHA producers based on Nile red staining methods. All these potential producers emitted pink fluorescence when grown on solid mineral salts medium (MSM) containing Nile red and exposed to UV light. The isolates obtained in this study were cultivated in MSM containing γ-butyrolactone as the carbon source. Gas chromatography (GC) analysis confirmed that 95 out of the 119 isolates were PHA producers. Among the 95 positive isolates, 77 isolates produced only P(3HB) homopolymer and 18 isolates produced PHA containing 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) monomers. Of these 18 isolates, USMAA1020 was screened as the best P(3HB-co-4HB) producer based on GC analysis. For further confirmation, PHA was extracted from the isolate and analyzed by GC as well as nuclear magnetic resonance (NMR). Results from both analyses confirmed that this isolate was capable of producing PHA containing 3HB and 4HB. Based on, biochemical characterization, 16S rRNA sequencing, DNA base composition, cellular fatty acids analysis and DNA–DNA hybridization, it is clearly indicated that this isolate belongs to the genus Cupriavidus. Poly(3HB-co-4HB) was synthesized by this bacterium in one-stage, two-stage and three-stage cultivation using γ-butyrolactone as the carbon source. The highest 4HB composition of 82 mol% was obtained through three-stage cultivation.  相似文献   

9.
Bacterial outer membrane (OM) is a self-protective and permeable barrier, while having many non-negligible negative effects in industrial biotechnology. Our previous studies revealed enhanced properties of Halomonas bluephagenesis based on positive cellular properties by OM defects. This study further expands the OM defect on membrane compactness by completely deleting two secondary acyltransferases for lipid A modification in H. bluephagenesis, LpxL and LpxM, and found more significant advantages than that of the previous lpxL mutant. Deletions on LpxL and LpxM accelerated poly(3-hydroxybutyrate) (PHB) production by H. bluephagenesis WZY229, leading to a 37% increase in PHB accumulation and 84-folds reduced endotoxin production. Enhanced membrane permeability accelerates the diffusion of γ-butyrolactone, allowing H. bluephagenesis WZY254 derived from H. bluephagenesis WZY229 to produce 82wt% poly(3-hydroxybutyrate-co-23mol%4-hydroxybutyrate) (P(3HB-co-23mol%4HB)) in shake flasks, showing increases of 102% and 307% in P(3HB-co-4HB) production and 4HB accumulation, respectively. The 4HB molar fraction in copolymer can be elevated to 32 mol% in the presence of more γ-butyrolactone. In a 7-l bioreactor fed-batch fermentation, H. bluephagenesis WZY254 supported a 84 g l−1 dry cell mass with 81wt% P(3HB-co-26mol%4HB), increasing 136% in 4HB molar fraction. This study further demonstrated that OM defects generate a hyperproduction strain for high 4HB containing copolymers.  相似文献   

10.
Ralstonia eutropha NCIMB 11599 and ATCC 17699 were grown, and their productions of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] compared. In flask cultures ofR. eutropha NCIMB 11599, cell concentration, P(3HB-co-4HB) concentration and polymer content decreased considerably with increases in the γ-butyrolactone concentration, and the 4HB fraction was also very low (maximum 1.74 mol%). In fed-batch cultures ofR. eutropha NCIMB 11599, glucose and γ-butyrolactone were fed as the carbon sources, under a phosphate limitation strategy. When glucose was fed as the sole carbon source, with its concentration controlled using an on-line glucose analyzer, 86% of the P(3HB) homopolymer was obtained from 201 g/L of cells. In a two-stage fed-batch culture, where the cell concentration was increased to 104 g/L, with glucose fed in the first step and constant feeding of γ-butyrolactone, at 6 g/h, in the second, final cell concentration at 67 h was 106 g/L, with a polymer content of 82%, while the 4HB fraction was only 0.7 mol%. When the same feeding strategy was applied to the fedbatch culture ofR. eutropha ATCC 17699, where the cell concentration was increased to 42 g/L, by feeding fructose in the first step and γ-butyrolactone (1.5 g/h) in the second, the final cell concentration, polymer content and 4HB fraction at 74 h were 51 g/L, 35% and 32 mol%, respectively. In summary,R. eutropha ATCC 17699 was better thanR. eutropha NCIMB 11599 in terms of P(3HB-co-4HB) production with various 4HB fractions.  相似文献   

11.
Cupriavidus sp. USMAA1020 was isolated from Malaysian environment and able to synthesize poly(3-hydroxybutyrate-co-4-hydroxybutyrate), [P(3HB-co-4HB)] when grown on gamma-butyrolactone as the sole carbon source. The polyester was purified from freeze-dried cells and analyzed by nuclear magnetic resonance (NMR) spectroscopy. 1H and 13C NMR results confirmed the presence of 3HB and 4HB monomers. In a one-step cultivation process, P(3HB-co-4HB) accumulation by Cupriavidus sp. USMAA1020 was affected by carbon to nitrogen ratio (C/N). A two-step cultivation process accumulated P(3HB-co-4HB) copolyester with a higher 4HB fraction (53 mol%) in nitrogen-free mineral medium containing gamma-butyrolactone. The biosynthesis of P(3HB-co-4HB) was also achieved by using 4-hydroxybutyric acid and alkanediol as 1,4-butanediol. The composition of copolyesters varied from 32 to 51 mol% 4HB, depending on the carbon sources supplied. The copolyester produced by Cupriavidus sp. USMAA1020 has a random sequence distribution of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) units when analyzed by nuclear magnetic resonance (NMR) spectroscopy. When gamma-butyrolactone was used as the sole carbon source, the 4HB fraction in copolyester increased from 25 to 60 mol% as the concentration of gamma-butyrolactone in the culture medium increased from 2.5 g/L to 20.0 g/L.  相似文献   

12.
Poly(d -lactate-co-glycolate-co-4-hydroxybutyrate) [poly(d -LA-co-GA-co-4HB)] and poly(d -lactate-co-glycolate-co-4-hydroxybutyrate-co-d -2-hydroxybutyrate) [poly(d -LA-co-GA-co-4HB-co-d -2HB)] are of interest for their potential applications as new biomedical polymers. Here we report their enhanced production by metabolically engineered Escherichia coli. To examine the polymer properties, poly(d -LA-co-GA-co-4HB) polymers having various monomer compositions (3.4–41.0mol% of 4HB) were produced by culturing the engineered E. coli strain expressing xylBC from Caulobacter crescentus, evolved phaC1 from Pseudomonas sp. MBEL 6-19 (phaC1437), and evolved pct from Clostridium propionicum (pct540) in a medium supplemented with sodium 4HB at various concentrations. To produce these polymers without 4HB feeding, the 4HB biosynthetic pathway was additionally constructed by expressing Clostridium kluyveri sucD and 4hbD. The engineered E. coli expressing xylBC, phaC1437, pct540, sucD, and 4hbD successfully produced poly(d -LA-co-GA-co-4HB-co-d -2HB) and poly(d -LA-co-GA-co-4HB) from glucose and xylose. Through modulating the expression levels of the heterologous genes and performing fed-batch cultures, the polymer content and titer could be increased to 65.76wt% and 6.19g/L, respectively, while the monomer fractions in the polymers could be altered as desired. The polymers produced, in particular, the 4HB-rich polymers showed viscous and sticky properties suggesting that they might be used as medical adhesives.  相似文献   

13.
Summary Poly(3-hydroxybutyrate) [P(3HB)] depolymerase was purified from a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)]-degrading fungus, Paecilomyces lilacinus F4-5 by hydrophobic and ion exchange column chromatography, and showed a molecular mass of 45 kDa. The optimum temperature and pH of the P(3HB) depolymerase were 50 °C and 7.0, respectively. The enzyme was stable for at least 30 min at temperatures below 40 °C, while the activity abruptly decreased over 55 °C. Enzymatic P(3HB-co-3HV) degradation showed a similar degradation pattern to that of film overlaid by fungal hyphae. It reflects that the fungal degradation of P(3HB-co-3HV) in soil is mainly caused by extracellular depolymerases.  相似文献   

14.
A metabolically engineered Escherichia coli has been constructed for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from unrelated carbon sources. Genes involved in succinate degradation in Clostridium kluyveri and P(3HB) accumulation pathway of Ralstonia eutropha were co-expressed for the synthesis of the above copolyester. E. coli native succinate semialdehyde dehydrogenase genes sad and gabD were both deleted for eliminating succinate formation from succinate semialdehyde, which functioned to enhance the carbon flux to 4HB biosynthesis. The metabolically engineered E. coli produced 9.4 g l?1 cell dry weight containing 65.5% P(3HB-co-11.1 mol% 4HB) using glucose as carbon source in a 48 h shake flask growth. The presence of 1.5–2 g l?1 α-ketoglutarate or 1.0 g l?1 citrate enhanced the 4HB monomer content from 11.1% to more than 20%. In a 6 l fermentor study, a 23.5 g l?1 cell dry weight containing 62.7% P(3HB-co-12.5 mol% 4HB) was obtained after 29 h of cultivation. To the best of our knowledge, this study reports the highest 4HB monomer content in P(3HB-co-4HB) produced from unrelated carbon sources.  相似文献   

15.
Burkholderia sp. synthase has been shown to polymerize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate, and 3-hydroxy-4-pentenoic acid monomers. This study was carried out to evaluate the ability of Burkholderia sp. USM (JCM 15050) and its transformant harboring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae to incorporate the newly reported 3-hydroxy-4-methylvalerate (3H4MV) monomer. Various culture parameters such as concentrations of nutrient rich medium, fructose and 4-methylvaleric acid as well as harvesting time were manipulated to produce P(3HB-co-3H4MV) with different 3H4MV compositions. The structural properties of PHA containing 3H4MV monomer were investigated by using nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). The relative intensities of the bands at 1,183 and 1,228 cm−1 in the FTIR spectra enabled the rapid detection and differentiation of P(3HB-co-3H4MV) from other types of PHA. In addition, the presence of 3H4MV units in the copolymer was found to considerably lower the melting temperature and enthalpy of fusion values compared with poly(3-hydroxybutyrate) (P(3HB)). The copolymer exhibited higher thermo-degradation temperature but similar molecular weight and polydispersity compared with P(3HB).  相似文献   

16.
Discharging the unrefined glycerine, a by-product from biodiesel production is the simplistic solution adopted for its management which has led to its price reduction in the market worldwide and created serious environmental impact. Therefore, we have explored the application of unrefined glycerine pitch as direct fermentative substrate in the biosynthesis of novel yellow-pigmented poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer by Cupriavidus sp. USMAHM13 through onestage cultivation. Utilization of glycerine pitch (10 g/L) together with 1,4-butanediol (5 g/L) had resulted in the highest achievement of 2.91 g/L of P(3HB-co-40%4HB) copolymer which was naturally dyed with the yellow pigment through the co-extraction process. Enhancement of 4HB monomer accumulation was also attained through the addition of ammonium acetate as nitrogen source. It was revealed that utilization of recovered crude glycerine from glycerine pitch was more preferred compared to the other recovered components. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) copolymer would not only contribute to the efficient waste management but also would promote the development of cost-efficiency microbial fermentation.  相似文献   

17.
Summary Production of copolymer consisting of 3-hydroxybutyrate and 3-hydroxyvalerate [poly(3HB-co-3HV)] by fed-batch culture of Alcaligenes sp. SH-69 was investigated using glucose as a sole carbon source. Synthesis of poly(3HB-co-3HV) during the polymer accumulation stage was favored under dissolved oxygen tension at 20% and C/N ratio (mol glucose/mol ammonium) of 23.1. When conditions were optimal, 36 g liter-1 of poly(3HB-co-3HV) containing 3.0 mol% of 3HV was produced. Decreasing C/N ratio resulted in an increase of 3HV fraction in the copolymer to a maximum level of 6.3 mol%.  相似文献   

18.
Pseudomonas sp. 61-3 (isolated from soil) produced a polyester consisting of 3-hydroxybutyric acid (3HB) and of medium-chain-length 3-hydroxyalkanoic acids (3HA) of C6, C8, C10 and C12, when sugars of glucose, fructose and mannose were fed as the sole carbon source. The polyester produced was a blend of homopolymer and copolymer, which could be fractionated with boiling acetone. The acetone-insoluble fraction of the polyester was a homopolymer of 3-hydroxybutyrate units [poly (3HB)], while the acetone-soluble fraction was a copolymer [poly(3HB-co-3HA)] containing both short- and medium-chain-length 3-hydroxyalkanoate units ranging from C4 to C12:44 mol% 3-hydroxybutyrate, 5 mol% 3-hydroxyhexanoate, 21 mol% 3-hydroxyoctanoate, 25 mol% 3-hydroxydecanoate, 2 mol% 3-hydroxydodecanoate and 3 mol% 3-hydroxy-5-cis-dodecenoate. The copolyester was shown to be a random copolymer of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoate units by analysis of the 13C-NMR spectrum. The poly(3HB) homopolymer and poly (3HB-co-3HA) copolymer were produced simultaneously within cells from glucose in the absence of any nitrogen source, which suggests that Pseudomonas sp. 61-3 has two types of polyhydroxy-alkanoate syntheses with different substrate specificities. Received: 9 June 1995/Received last revision: 30 October 1995/Accepted: 6 November 1995  相似文献   

19.
Antibiofilm polymers have the ability to inhibit bacterial biofilm formation, which is known to occur ubiquitously in the environment and pose risks of infection. In this study, production of P(3HB-co-4HB) copolymer and antimicrobial yellow pigment from Cupriavidus sp. USMAHM13 are enhanced through medium optimization. Before the improvement of yellow pigment production, screening for the best additional supplement was performed resulting in high-yield yellow pigmentation using yeast extract with optimum concentration of 2?g/L. Effects of different concentrations of 1,4-butanediol, ammonium acetate, and yeast extract were studied using central composite design. Under optimal conditions, 53?wt% of polyhydroxyalkanoate (PHA) content, 0.35?g/L of pigment concentration, and 5.87?g/L of residual biomass were achieved at 0.56?wt% C of 1,4-butanediol, 1.14?g/L of ammonium acetate, and 2?g/L of yeast extract. Antibiofilm tests revealed that the yellow pigment coated on P(3HB-co-4HB) copolymer had significant effect on the inhibition of bacteria proliferation and colonization from 6?hr onward reaching 100% inhibition by 12?hr, hence effectively inhibiting the biofilm formation.  相似文献   

20.
Bacterial classification on the basis of a polyphasic approach was conducted on three poly(3 hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] accumulating bacterial strains that were isolated from samples collected from Malaysian environments; Kulim Lake, Sg. Pinang river and Sg. Manik paddy field. The Gram-negative, rod-shaped, motile, non-sporulating and non-fermenting bacteria were shown to belong to the genus Cupriavidus of the Betaproteobacteria on the basis of their 16S rRNA gene sequence analyses. The sequence similarity value with their near phylogenetic neighbour, Cupriavidus pauculus LMG3413T, was 98.5%. However, the DNA–DNA hybridization values (8–58%) and ribotyping analysis both enabled these strains to be differentiated from related Cupriavidus species with validly published names. The RiboPrint patterns of the three strains also revealed that the strains were genetically related even though they displayed a clonal diversity. The major cellular fatty acids detected in these strains included C15:0 ISO 2OH/C16:1 ω7c, hexadecanoic (16:0) and cis-11-octadecenoic (C18:1 ω7c). Their G+C contents ranged from 68.0  to 68.6 mol%, and their major isoprenoid quinone was Ubiquinone Q-8. Of these three strains, only strain USMAHM13 (= DSM 25816 = KCTC 32390) was discovered to exhibit yellow pigmentation that is characteristic of the carotenoid family. Their assembled genomes also showed that the three strains were not identical in terms of their genome sizes that were 7.82, 7.95 and 8.70 Mb for strains USMAHM13, USMAA1020 and USMAA2-4, respectively, which are slightly larger than that of Cupriavidus necator H16 (7.42 Mb). The average nucleotide identity (ANI) results indicated that the strains were genetically related and the genome pairs belong to the same species. On the basis of the results obtained in this study, the three strains are considered to represent a novel species for which the name Cupriavidus malaysiensis sp. nov. is proposed. The type strain of the species is USMAA1020T (= DSM 19416T = KCTC 32390T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号