首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli
Authors:Jung Yu Kyung  Lee Sang Yup
Institution:a Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 305-701, Republic of Korea
b BioProcess Engineering Research Center and Bioinformatics Research Center, KAIST, Daejeon 305-701, Republic of Korea
Abstract:Polylactic acid (PLA) is one of the promising biodegradable polymers, which has been produced in a rather complicated two-step process by first producing lactic acid by fermentation followed by ring opening polymerization of lactide, a cyclic dimer of lactic acid. Recently, we reported the production of PLA and its copolymers by direct fermentation of metabolically engineered Escherichia coli equipped with the evolved propionate CoA-transferase and polyhydroxyalkanoate (PHA) synthase using glucose as a carbon source. When employing these initially constructed E. coli strains, however, it was necessary to use an inducer for the expression of the engineered genes and to feed succinate for proper cell growth. Here we report further metabolic engineering of E. coli strain to overcome these problems for more efficient production of PLA and its copolymers. This allowed efficient production of PLA and its copolymers without adding inducer and succinate. The finally constructed recombinant E. coli JLXF5 strain was able to produce P(3HB-co-39.6 mol% LA) having the molecular weight of 141,000 Da to 20 g l−1 with a polymer content of 43 wt% in a chemically defined medium by the pH-stat fed-batch culture.
Keywords:Polylactic acid  PLA  P(3HB-co-LA)  Metabolic engineering  Escherichia coli  Fed-batch culture
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号