首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Goncalves  B Shi  X Yang    D Gabuzda 《Journal of virology》1995,69(11):7196-7204
Human immunodeficiency virus type 1 (HIV-1) encodes a Vif protein which is important for virus replication and infectivity. Vif is a cytoplasmic protein which exists in both membrane-associated and soluble forms. The membrane-associated form is an extrinsic membrane protein which is tightly associated with the cytoplasmic side of membranes. We have analyzed the mechanism of membrane targeting of Vif and its role in HIV-1 replication. Mutagenesis studies demonstrate that C-terminal basic domains are required for membrane association. Vif mutations which disrupt membrane association also inhibit HIV-1 replication, indicating that membrane localization of Vif is likely to be required for its biological activity in vivo. Membrane binding of Vif is almost completely abolished by trypsin treatment of membranes. These results demonstrate that membrane localization of Vif requires C-terminal basic domains and interaction with a membrane-associated protein(s). This interaction may serve to direct Vif to a specific cellular site, since immunofluorescence staining and plasma membrane fractionation studies show that Vif is localized predominantly to an internal cytoplasmic compartment rather than to the plasma membrane. The mechanism of membrane targeting of Vif is different in some respects from that of other extrinsic membrane proteins, such as Ras, Src, and MARCKS, which utilize a basic domain together with a lipid modification for membrane targeting. Membrane targeting of Vif is likely to play an important role in HIV-1 replication and thus may be a therapeutic target.  相似文献   

2.
The human immunodeficiency virus type 1 (HIV-1) Vif protein has an important role in the regulation of virus infectivity. This function of Vif is cell type specific, and virions produced in the absence of Vif in restrictive cells have greatly reduced infectivity. We show here that the intracellular localization of Vif is dependent on the presence of the intermediate filament vimentin. Fractionation of acutely infected T cells or transiently transfected HeLa cells demonstrates the existence of a soluble and a cytoskeletal form and to a lesser extent the presence of a detergent-extractable form of Vif. Confocal microscopy suggests that in HeLa cells, Vif is predominantly present in the cytoplasm and closely colocalizes with the intermediate filament vimentin. Treatment of cells with drugs affecting the structure of vimentin filaments affect the localization of Vif accordingly, indicating a close association of Vif with this cytoskeletal component. The association of Vif with vimentin can cause the collapse of the intermediate filament network into a perinuclear aggregate. In contrast, analysis of Vif in vimentin-negative cells reveals significant staining of the nucleus and the nuclear membrane in addition to diffuse cytoplasmic staining. In addition to the association of Vif with intermediate filaments, analyses of virion preparations demonstrate that Vif is incorporated into virus particles. In sucrose density gradients, Vif cosediments with capsid proteins even after detergent treatment of virus preparations, suggesting that Vif is associated with the inner core of HIV particles. We propose a model in which Vif has a crucial function as a virion component either by regulating virus maturation or following virus entry into a host cell possibly involving an interaction with the cellular cytoskeletal network.  相似文献   

3.
4.
Viral infectivity factor (Vif) is one of the human immunodeficiency virus (HIV) accessory proteins and is conserved in the primate lentivirus group. This protein is essential for viral replication in vivo and for productive infection of nonpermissive cells, such as peripheral blood mononuclear cells (PBMC). Vif counteracts an antiretroviral cellular factor in nonpermissive cells named CEM15/APOBEC3G. Although HIV type 1 (HIV-1) Vif protein (Vif1) can be functionally replaced by HIV-2 Vif protein (Vif2), its identity is very small. Most of the functional studies have been carried out with Vif1. Characterization of functional domains of Vif2 may elucidate its function, as well as differences between HIV-1 and HIV-2 infectivity. Our aim was to identify the permissivity of different cell lines for HIV-2 vif-minus viruses. By mutagenesis specific conserved motifs of HIV-2 Vif protein were analyzed, as well as in conserved motifs between Vif1 and Vif2 proteins. Vif2 mutants were examined for their stability, expression, and cellular localization in order to characterize essential domains of Vif2 proteins. Viral replication in various target cells (PBMC and H9, A3.01, U38, and Jurkat cells) and infectivity in single cycle assays in the presence of APOBEC3G were also analyzed. Our results of viral replication show that only PBMC have a nonpermissive phenotype in the absence of Vif2. Moreover, the HIV-1 vif-minus nonpermissive cell line H9 does not show a similar phenotype for vif-negative HIV-2. We also report a limited effect of APOBEC3G in a single-cycle infectivity assay, where only conserved domains between HIV-1 and HIV-2 Vif proteins influence viral infectivity. Taken together, these results allow us to speculate that viral inhibition by APOBEC3G is not the sole and most important determinant of antiviral activity against HIV-2.  相似文献   

5.
X Y Ma  P Sova  W Chao    D J Volsky 《Journal of virology》1994,68(3):1714-1720
The infectivity factor of human immunodeficiency virus type 1 (HIV-1), Vif, contains two cysteine residues which are highly conserved among animal lentiviruses. We introduced substitutions of leucine for cysteine residues in the vif gene of a full-length HIV-1 clone to analyze their roles in viral infection. Mutant viruses containing substitutions in either Cys-114, Cys-133, or both displayed a vif-negative infection phenotype similar to that of an isogeneic vif deletion mutant, namely, a cell-dependent complete to partial loss of infectivity. The vif defect could be complemented by cotransfection of mutant viral DNA with a Vif expression vector, and there was no evidence that recombination contributed to the repair of the vif deficiency. The viral protein profile, as determined by immunoblotting, in cells infected with cysteine substitution mutants and that in wild-type virus were similar, including the presence of the 23-kDa Vif polypeptide. In addition, immunoblotting with an antiserum directed against the carboxyl terminus of gp41 revealed that gp41 was intact in cells infected with either wild-type or vif mutant HIV-1, excluding that Vif cleaves the C terminus of gp41. Our results indicate that the cysteines in HIV-1 Vif are critical for Vif function in viral infectivity.  相似文献   

6.
The virus infectivity factor (Vif) protein facilitates the replication of human immunodeficiency virus type 1 (HIV-1) in primary lymphocytes and macrophages. Its action is strongly dependent on the cellular environment, and it has been proposed that the Vif protein counteracts cellular activities that would otherwise limit HIV-1 replication. Using a glutathione S-transferase pull-down assay, we identified that Vif binds specifically to the Src homology 3 domain of Hck, a tyrosine kinase from the Src family. The interaction between Vif and the full-length Hck was further assessed by co-precipitation assays in vitro and in human cells. The Vif protein repressed the kinase activity of Hck and was not itself a substrate for Hck phosphorylation. Within one single replication cycle of HIV-1, Hck was able to inhibit the production and the infectivity of vif-deleted virus but not that of wild-type virus. Accordingly, HIV-1 vif- replication was delayed in Jurkat T cell clones stably expressing Hck. Our data demonstrate that Hck controls negatively HIV-1 replication and that this inhibition is suppressed by the expression of Vif. Hck, which is present in monocyte-macrophage cells, represents the first identified cellular inhibitor of HIV-1 replication overcome by Vif.  相似文献   

7.
The Vif protein of human immunodeficiency virus type 1 (HIV-1) is a potent regulator of viral infectivity. Current data posit that Vif functions late in replication to modulate assembly, budding, and/or maturation. Consistent with this model, earlier indirect immunofluorescence analyses of HIV-1-infected cells demonstrated that Vif and Gag colocalize to a substantial degree (J. H. M. Simon, R. A. M. Fouchier, T. E. Southerling, C. B. Guerra, C. K. Grant, and M. H. Malim, J. Virol. 71:5259-5267, 1997). Here, we describe a series of subcellular fractionation studies which indicate that Vif and the p55(Gag) polyprotein are present in membrane-free cytoplasmic complexes that copurify in sucrose density gradients and are stable in nonionic detergents. Both Vif and Gag are targeted to these complexes independent of each other, and their association with them appears to be mediated by protein-protein interactions. We propose that these complexes may represent viral assembly intermediates and that Vif is appropriately localized to influence the final stages of the viral life cycle and, therefore, the infectivity of progeny virions.  相似文献   

8.
Lentivirus Vif proteins are potent regulators of virus infectivity. However, relatively little is known about the functional domains, peptide motifs, or residues of any Vif protein. In this report, we present the first extensive mutagenesis analysis of the 192-amino-acid human immunodeficiency virus type 1 (HIV-1) Vif protein. A large number of scanning missense (mostly alanine substitution) and deletion mutations were introduced into the HIV-1HXB3 vif gene, and the resulting proteins were evaluated for the induction of virus infectivity as well as subcellular localization. The results show that amino acids dispersed throughout Vif's linear sequence are important for function. However, because many of the inactive proteins also appear to be mislocalized, we suggest that many of them may actually be misfolded rather lacking an intracellular targeting signal. Interestingly, disruptions within an internal region spanning residues 114 to 146 give rise to mutant proteins that either retain function or are inactive but are not substantially mislocalized. We therefore speculate that this region, which harbors two essential cysteine residues and one essential serine residue, may contain aspects of a putative Vif effector domain.  相似文献   

9.
To study how HIV-1 viral infectivity factor (Vif) mediates proteasome-dependent depletion of host factor APOBEC3G, functional and nonfunctional Vif-APOBEC3G interactions were correlated with subcellular localization. APOBEC3G localized throughout the cytoplasm and co-localized with gamma-tubulin, 20 S proteasome subunit, and ubiquitin at punctate cytoplasmic bodies that can be used to monitor the Vif-APOBEC3G interaction in the cell. Through immunostaining and live imaging, we showed that a substantial fraction of Vif localized to the nucleus, and this localization was impaired by deletion of amino acids 12-23. When co-expressed, Vif exhibited more pronounced localization to the cytoplasm and reduced the total cellular levels of APOBEC3G but rarely co-localized with APOBEC3G at cytoplasmic bodies. On the contrary, Vif(C114S), which is inactive but continues to interact with APOBEC3G, stably associated with APOBEC3G in the cytoplasm, resulting in complete co-localization at cytoplasmic bodies and a dose-dependent exclusion of Vif(C114S) from the nucleus. Following proteasome inhibition, cytoplasmic APOBEC3G levels increased, and both proteins co-accumulated nonspecifically into a vimentin-encaged aggresome. Furthermore in the presence or absence of APOBEC3G, Vif localization was significantly altered by proteasome inhibition, suggesting that aberrant localization may also contribute to the loss of Vif function. Finally mutations at Vif Ile(9) disrupted the ability of Vif or Vif(C114S) to coimmunoprecipitate and to co-localize with APOBEC3G, suggesting that the N terminus of Vif mediates interactions with APOBEC3G. Taken together, these results demonstrate that cytoplasmic Vif-APOBEC3G interactions are required but are not sufficient for Vif to modulate APOBEC3G and can be monitored by co-localization in vivo.  相似文献   

10.
The Vif (virion infectivity factor protein of human immunodeficiency virus type I (HIV-1) is essential for viral replication in vivo and productive infection of peripheral blood mononuclear cells, macrophages, and H9 T-cells. However, the molecular mechanism(s) of Vif remains unknown and needs to be further determined. In this report, we show that, like many other proteins encoded by HIV-1, Vif proteins possess a strong tendency toward self-association. In relatively native conditions, Vif proteins formed multimers in vitro, including dimers, trimers, or tetramers. Through in vivo binding assays such as coimmunoprecipitation and the mammalian two-hybrid system, we also demonstrated that Vif proteins could interact with each other within a cell, indicating that the multimerization of Vif proteins is not simply due to fortuitous aggregation. Further studies indicated that the domain affecting Vif self-association is located at the C terminus of this protein, especially the proline-enriched 151-164 region. Moreover, we found that a Vif mutant with deletion at amino acid 151-164 was unable to rescue the infectivity of vif-defective viruses generated from H9 T-cells, suggesting that the multimerization of Vif proteins could be important for Vif function in the viral life cycle. Our studies identified a new feature of Vif and should accelerate our understanding of its role in HIV-1 pathogenesis.  相似文献   

11.
Zuo T  Liu D  Lv W  Wang X  Wang J  Lv M  Huang W  Wu J  Zhang H  Jin H  Zhang L  Kong W  Yu X 《Journal of virology》2012,86(10):5497-5507
The HIV-1 viral infectivity factor (Vif) protein is essential for viral replication. Vif recruits cellular ElonginB/C-Cullin5 E3 ubiquitin ligase to target the host antiviral protein APOBEC3G (A3G) for proteasomal degradation. In the absence of Vif, A3G is packaged into budding HIV-1 virions and introduces multiple mutations in the newly synthesized minus-strand viral DNA to restrict virus replication. Thus, the A3G-Vif-E3 complex represents an attractive target for development of novel anti-HIV drugs. In this study, we identified a potent small molecular compound (VEC-5) by virtual screening and validated its anti-Vif activity through biochemical analysis. We show that VEC-5 inhibits virus replication only in A3G-positive cells. Treatment with VEC-5 increased cellular A3G levels when Vif was coexpressed and enhanced A3G incorporation into HIV-1 virions to reduce viral infectivity. Coimmunoprecipitation and computational analysis further attributed the anti-Vif activity of VEC-5 to the inhibition of Vif from direct binding to the ElonginC protein. These findings support the notion that suppressing Vif function can liberate A3G to carry out its antiviral activity and demonstrate that regulation of the Vif-ElonginC interaction is a novel target for small-molecule inhibitors of HIV-1.  相似文献   

12.
13.
The Vif protein of human immunodeficiency virus type 1 (HIV-1) regulates viral infectivity. Virions produced in cell culture after transfection by a Vif-negative molecular clone show a dramatic decrease in infectivity for susceptible CD4+ cell lines, although the Vif protein does not appear to be a constituent of the viral particle. The exact mechanism by which Vif affects HIV-1 infectivity is so far unknown. We report the existence of structural homologies between Vif and a family of cysteine proteases and present evidence which suggests that one of the targets of Vif is the Env protein and more precisely the cytoplasmic domain of gp41. Vif was found to modify both the processing and conformation of the Env protein. Ethyl(25, 35)- 3[(5)-3-methyl-1-(3-methylbutylcarbamoyl)]oxirane-2-carboxylate, a specific inhibitor of cysteine proteases, inhibits the effect of Vif, as does the mutation of Cys-114 to Leu in Vif. Furthermore, Cys-114 of Vif produced in Escherichia coli, interacts directly with trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane. These observations suggest that a cysteine protease activity is associated with Vif and that this activity plays a role in Env maturation.  相似文献   

14.
15.
The primate immunodeficiency virus Vif proteins are essential for replication in appropriate cultured cell systems and, presumably, for the establishment of productive infections in vivo. We describe experiments that define patterns of complementation between human and simian immunodeficiency virus (HIV and SIV) Vif proteins and address the determinants that underlie functional specificity. Using human cells as virus producers, it was found that the HIV-1 Vif protein could modulate the infectivity of HIV-1 itself, HIV-2 and SIV isolated from African green monkeys (SIVAGM). In contrast, the Vif proteins of SIVAGM and SIV isolated from Sykes' monkeys (SIVSYK) were inactive for all HIV and SIV substrates in human cells even though, at least for the SIVAGM protein, robust activity could be demonstrated in cognate African green monkey cells. These observations suggest that species-specific interactions between Vif and virus-producing cells, as opposed to between Vif and virus components, may govern the functional consequences of Vif expression in terms of inducing virion infectivity. The finding that the replication of murine leukemia virus could also be stimulated by HIV-1 Vif expression in human cells further supported this notion. We speculate that species restrictions to Vif function may have contributed to primate immunodeficiency virus zoonosis.  相似文献   

16.
17.
The HIV-1 protein Vif, essential for in vivo viral replication, targets the human DNA-editing enzyme, APOBEC3G (A3G), which inhibits replication of retroviruses and hepatitis B virus. As Vif has no known cellular homologs, it is an attractive, yet unrealized, target for antiviral intervention. Although zinc chelation inhibits Vif and enhances viral sensitivity to A3G, this effect is unrelated to the interaction of Vif with A3G. We identify a small molecule, RN-18, that antagonizes Vif function and inhibits HIV-1 replication only in the presence of A3G. RN-18 increases cellular A3G levels in a Vif-dependent manner and increases A3G incorporation into virions without inhibiting general proteasome-mediated protein degradation. RN-18 enhances Vif degradation only in the presence of A3G, reduces viral infectivity by increasing A3G incorporation into virions and enhances cytidine deamination of the viral genome. These results demonstrate that the HIV-1 Vif-A3G axis is a valid target for developing small molecule-based new therapies for HIV infection or for enhancing innate immunity against viruses.  相似文献   

18.
H Liu  X Wu  M Newman  G M Shaw  B H Hahn    J C Kappes 《Journal of virology》1995,69(12):7630-7638
The vif gene of human and simian immunodeficiency viruses (HIV and SIV) encodes a late gene product that is essential for viral infectivity in natural target cells. Virions produced in the absence of Vif are abnormal in their ultrastructural morphology and are severely impaired in the ability to complete proviral DNA synthesis upon entry into new target cells. Because previous studies failed to detect Vif protein in virus particles, Vif is believed to influence virus infectivity indirectly, by affecting virion assembly, release, and/or maturation. In this report, we reexamined the possibility that Vif is a virion-associated protein. Utilizing high-titer Vif-specific antibodies, a sensitive immunoblot technique, and highly concentrated virus preparations, we detected a 23-kDa Vif-reactive protein in wild-type HIV type 1 (HIV-1) and a 27-kDa Vif-reactive protein in wild-type SIVSM virions. Neither protein was present in virions derived from vif-deficient HIV-1 and SIVSM proviral constructs. Vif protein content was similar among different strains of HIV-1 and was independent of the cell type (permissive or nonpermissive) used to produce the virus. To determine the subvirion localization of Vif, HIV-1 virions were treated with proteinase K or Triton X-100 to remove virion surface proteins and the viral membrane, respectively, purified through sucrose, and analyzed by immunoblot analysis. Vif protein content was not affected by the removal of external surface proteins or by the removal of the viral membrane and submembrane p17Gag matrix protein. Instead, Vif colocalized with viral core structures which sedimented at a density of 1.25 g/ml on linear sucrose gradients (enveloped HIV-1 particles sediment at a density of 1.17 g/ml). Finally, the amount of Vif protein packaged into virions was estimated to be on the order of 1 molecule of Vif for every 20 to 30 molecules of p24Gag, or between 60 and 100 molecules of Vif per particle. These results indicate that Vif represents an integral component of HIV and SIV particles and raise the possibility that it plays a direct role in early replication events.  相似文献   

19.
The viral infectivity factor, Vif, of human immunodeficiency virus type 1, HIV-1, has long been shown to promote viral replication in vivo and to serve a critical function for productive infection of non-permissive cells, like peripheral blood mononuclear cells (PBMC). Vif functions to counteract an anti-retroviral cellular factor in non-permissive cells named APOBEC3G. The current mechanism proposed for protection of the virus by HIV-1 Vif is to induce APOBEC3G degradation through a ubiquitination-dependent proteasomal pathway. However, a new study published in Retrovirology by Strebel and colleagues suggests that Vif-induced APOBEC3G destruction may not be required for Vif's virus-protective effect. Strebel and co-workers show that Vif and APOBEC3G can stably co-exist, and yet viruses produced under such conditions are fully infectious. This new result highlights the notion that depletion of APOBEC3G is not the sole protective mechanism of Vif and that additional mechanisms exerted by this protein can be envisioned which counteract APOBEC3G and enhance HIV infectivity.  相似文献   

20.
The viral protein Nef and the cellular factor cyclophilin A are both required for full infectivity of human immunodeficiency virus type 1 (HIV-1) virions. In contrast, HIV-2 and simian immunodeficiency virus (SIV) do not incorporate cyclophilin A into virions or need it for full infectivity. Since Nef and cyclophilin A appear to act in similar ways on postentry events, we determined whether chimeric HIV-1 virions that contained either HIV-2 or SIV Nef would have a direct effect on cyclophilin A dependence. Our results show that chimeric HIV-1 virions containing either HIV-2 or SIV Nef are resistant to treatment by cyclosporine and enhance the infectivity of virions with mutations in the cyclophilin A binding loop of Gag. Amino acids at the C terminus of HIV-2 and SIV are necessary for inducing cyclosporine resistance. However, transferring these amino acids to the C terminus of HIV-1 Nef is insufficient to induce cyclosporine resistance in HIV-1. These results suggest that HIV-2 and SIV Nef are able to compensate for the need for cyclophilin A for full infectivity and that amino acids present at the C termini of these proteins are important for this function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号