首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 189 毫秒
1.
以西瓜尖镰孢菌诱导、提纯的豇豆抗真菌 I类几丁质酶 N端前 1 0个氨基酸序列测定的基础上 ,设计合成了引物 ,运用 PCR等分子生物学技术 ,从豇豆基因组中分离克隆了该特异几丁质酶成熟蛋白基因 ,测定分析了其全序列。该新基因全长 894bp,无内含子 ;具 Aat I、Aat II、Bgl I、Dpn I、Dpn II、Eco R II、Hae I、Hae II、Hae III、Hinf I、Hpa II、Mae II、Mae III、Nba I、Oxa I和 Sst IV酶切位点 43个 ;豇豆、Vigna unguiculata、菜豆、豌豆、烟草、小麦、水稻的同源性依次递减。扩增克隆了菜豆几丁质酶信号肽基因 ,并将其与豇豆几丁质酶成熟蛋白基因连接 ,再与 p BI1 2 1重组 ,成功构建了特异几丁质酶基因的植物表达载体 ,为进一步培育抗真菌病转基因西瓜新品种打下了坚实基础。  相似文献   

2.
植物几丁质酶按其蛋白氨基酸序列结构特征及同源性可分为六类,即:ClassI-Ⅵ。ClasI在蛋白氨基酸结构上包括三个功能区域,N-端是富含半胱氨酸的几丁质结合区,约40个氨基酸;C-端是酶的催化区,也是酶的主要功能区域,约300个氨基酸;二者通过一个多变的交联区连接在一起。ClassⅡ仅具有类似于ClassⅠ的酶催化区域,而没有几丁质结合区和交联区。ClassⅢ几丁质酶在氨基酸序列上与ClassⅠ和Ⅱ没有任何同源性,其中有些具有几丁质酶和溶菌酶双重活性。ClassⅣ类似于ClassⅠ,只是在几丁质结合区和催化区缺失了少数氨基酸。ClassV类似于ClassⅠ,但具有两个重复的几丁质结合区。ClasVI与前五类几丁质酶无同源性,但与微生物几丁质酶有同源性。所有的植物几丁质酶都是由一个小的多基因族编码的,一般基因中有二个内含子,都位于催化区内。几丁质酶的表达受病原物和植物激素的诱导而表达,也与植物的发育有关。通过转几丁质酶基因的工程植株分析几丁质酶基因的启动子,已鉴定出负责几丁质酶表达的调控序列。  相似文献   

3.
植物几丁质酶的结构,基因及其表达   总被引:18,自引:0,他引:18  
几丁质酶按其蛋白氨基酸序列结构的特征及同源性可分为六类,即:ClassⅠ-Ⅵ。ClassI在蛋白氨基酸结构上包括三个功能区域,N-端是富含半胱氨酸的几丁质结合工,约40个氨基酸;C-端是酶的催化区,也是酶的主要功能区域,约300个氨基酸;二者通过一个多变的交联区连接在一起。ClassⅡ仅具有类似于ClassⅠ的酶催化区域,而没有几丁质结构区和交联区。ClassⅢ几丁质酶在氨基酸序列上与ClassⅠ  相似文献   

4.
人致肺纤维化相关因子的克隆和生物信息学分析   总被引:1,自引:0,他引:1  
几丁质酶是自然界广泛存在的一类降解几丁质的水解酶类,但是直至近些年才在哺乳动物体内发现存在有几丁质酶样蛋白.早年曾于矽肺大鼠中纯化出矽诱导的支气管肺泡灌洗蛋白iSBLP58,体外具有促进人胚肺成纤维细胞2BS增殖的作用,N端测序显示与哺乳动物几丁质酶蛋白家族成员具有高度同源性.生物信息学分析表明,来源于人的结肠、肾和胃的几个表达序列标签(EST)克隆和大鼠的这一蛋白质序列匹配.随后成功地从人肾RNA样品中克隆到一组cDNA,其序列及相应的氨基酸序列彼此高度相似,并与GenBank中的几个人几丁质酶蛋白高度相似.和人基因组序列比较,揭示这些分子可能来自于同一基因,为可变剪切的产物.  相似文献   

5.
根据西伯利亚蓼抑制消减文库(SSH)中获得的几丁质酶(CHI)基因的部分序列,采用RACE技术克隆了具完整编码区的cDNA序列,基因全长1017bp,开放阅读框编码270个氨基酸。序列分析表明,该基因的编码蛋白(PsCHI1)以前体形式存在,N端分别有22个氨基酸的信号肽和35个氨基酸的几丁质结合域(CBD),C端199个氨基酸为催化区(CD),连接CBD与CD的14个氨基酸为可变交联区,成熟蛋白为不含信号肽部分,呈碱性,带正电荷。PsCHI1与所选其它植物classⅣCHI前体序列具有高度的同源性(53%-69%),而与classⅠ和classⅡCHI的氨基酸序列同源性较低,推测为植物classⅣCHI。根据日本水稻CHI晶体结构构建了PsCHI1三维分子模型,分析显示PsCHI1可以识别比classⅠ和classⅡCHI短的几丁质片段,并以其它植物CHI的已知结构域和功能为基础,确定PsCHI1具有能够水解真菌细胞壁的结构,推测其可能有抗病原微生物的功能。  相似文献   

6.
一株Sanguibacter sp.C4产几丁质酶基因的克隆与表达   总被引:1,自引:0,他引:1  
陶勇  金虹  龙章富  张丽  丁秀琼  陶科  刘世贵 《遗传学报》2006,33(11):1037-1046
Chi58是Sanguibacter sp.strain C4产生的一种胞外几丁质酶。通过chiA的特异性PCR引物探测到菌株C4中存在几丁质酶,并将扩增到的几丁质酶基因片段(chiA-F)克隆、测序后,提交GenBank数据库进行同源性搜索。对从GenBank中获得的高同源性序列进行比对,并根据保守区域设计2对PCR引物进行嵌套PCR,扩增出Chi58基因的开放阅读框(ORF)。测序结果表明该酶的ORF由1692个核苷酸组成,编码563个氨基酸,在N端有23个氨基酸的信号肽,其成熟蛋白的分子量应为58.544kDa。对其推导氨基酸的序列分析表明Chi58与沙雷氏菌的几丁质酶(如徂)有高度同源性(88.9%-99.6%),其结构主要包括信号肽序列、PKD结构域和18家族糖苷水解酶结构域。将该基因克隆到pET32a(+)载体构建重组质粒pChi58,转入大肠杆菌BL-21(DE3)进行融合表达。经IPTG诱导后,可见分子量约81.1kDa的融合蛋白的表达。  相似文献   

7.
通过设计基因保守区的特异性简并引物,运用SMARTRACERT-PCR技术,首次从粉棒束孢中克隆出完整的几丁质酶基因。该基因cDNA全长1549bp,5'端非翻译区89bp,3'端非翻译区有188bp,开放阅读框(ORF)1272bp,编码423个氨基酸。信号肽长度为22个氨基酸。信号肽很可能需要两次剪切。成熟的蛋白理论分子量为43.9kDa,理论等电点为5.67。氨基酸序列具有几丁质酶18族的两个高度保守的活性区域,一个是酶作用活性位点,另一个是几丁质结合区域。该蛋白可归于几丁质酶18族V类。成熟蛋白的氨基酸序列与裂虫壳AAV98691、白色扁丝霉CAA45468、菌生轮枝孢AAP45631、莱氏野村菌AAP04616和球孢白僵菌AAN41261的同源性分别为91%,89%,80%,76%和75%。  相似文献   

8.
应用简并RT-PCR及RACE技术,从高羊茅中克隆了1个Ⅰ类几丁质酶基因cDNA全长序列,命名为FaChit1.结果表明,该cDNA具有1个951 bp的完整编码框,编码316个氨基酸,其编码产物和其它植物的Ⅰ类几丁质酶在氨基酸序列上具有较高的同源性,包含典型的几丁质结合区、催化区以及脯氨酸、半胱氨酸富集的铰链区,但缺少定位到植物液泡所必须的C末端延伸区靶向信号.Northern杂交显示,FaChit1对真菌激发子有较强的响应,乙烯和干旱胁迫均能有效诱导FaChit1基因的表达,而对机械损伤处理的反应比较微弱,只在叶片中积累少量的mRNA.  相似文献   

9.
本文从生物信息学角度对克隆获得的金纹细蛾几丁质酶进行分析,通过课题组提交到GenBank的数据,采用在线分析及相应软件分析预测金纹细蛾几丁质酶(LrCHI)基因核苷酸和氨基酸序列的组成、理化性质、信号肽、糖基化位点、磷酸化位点、疏水性、二级结构和三级结构等,并构建系统发育树。结果表明:LrCHI开放阅读框由1737bp组成,推导578个氨基酸;此序列所编码的蛋白属于几丁质酶18家族,其N端含有信号肽和几丁质酶18家族活性位点,C端为几丁质结合区,无跨膜结构域区域;预测LrCHI为亲水性蛋白;金纹细蛾与鳞翅目的棉铃虫、甜菜夜蛾进化关系最近。分析结果可为LrCHI的科学研究提供有价值的信息,为进一步研究其高级结构与功能的关系提供理论依据。  相似文献   

10.
烟曲霉几丁质酶基因的克隆与表达   总被引:6,自引:0,他引:6  
Chi4 4是烟曲霉 (Aspergillusfumigatus)YJ-407产生的一种胞外几丁质酶。通过用真菌几丁质酶保守氨基酸序列与Chi44的N-端序列检索烟曲霉部分基因组序列数据库 ,获得一个编号为contig555的烟曲霉基因组序列 ,可能包含烟曲霉几丁质酶的基因。根据检索结果用RT-PCR方法从烟曲霉YJ-407中克隆到1.4kb的cDNA片段 ,该cDNA的ORF编码一个395个氨基酸的蛋白 ,分子量为43.6kD。对其推导氨基酸序列分析表明该蛋白与其它真菌来源的几丁质酶同源 ,而且活性中心与人巨噬细胞几丁质酶高度同源。该cDNA已在E .coliPichiapastorisGS115中获得表达 ,分别获得 43kD和44kD的重组蛋白 ,两种重组蛋白均有几丁质酶活性。与野生酶相比 ,大肠杆菌表达的43kD重组酶及Pichia酵母表达的44kD重组酶稳定性下降 ,说明Chi44的糖基化修饰可稳定酶蛋白.  相似文献   

11.
A chitinase was purified from the seeds of Benincasa hispida, a medicinal plant also called white gourd, and a member of the Cucurbitaceae family. Purification was done by using a procedure consisting of only two fractionation steps: an acid denaturation step followed by ion-exchange chromatography. The sequence of the N-terminal forty amino acid residues was analyzed and the sequence indicated that the enzyme is a class III chitinase. The enzyme, which is a basic chitinase, is one of at least five chitinases detected in the seed extract of B. hispida. Like other class III chitinases, this enzyme also has lysozyme activity. A genomic clone of the gene encoding the enzyme was isolated and sequenced. The gene has the potential to encode a protein of 301 amino acid residues. The deduced amino acid sequence of the protein, as expected from the N-terminal amino acid sequence, shares high degrees of similarity with other class III chitinases.  相似文献   

12.
Genomic DNA for a class IV chitinase was cloned from yam (Dioscorea opposita Thunb) leaves and sequenced. The deduced amino acid sequence shows 50 to 59% identity to class IV chitinases from other plants. The yam chitinase, however, has an additional sequence of 8 amino acids (a C-terminal extension) following the cysteine that was reported as the last amino acid for other class IV chitinases; this extension is perhaps involved in subcellular localization. A homology model based on the structure of a class II chitinase from barley was used as an aid to interpreting the available data. The analysis suggests that the class IV enzyme recognizes an even shorter segment of the substrate than class I or II enzymes. This observation might help to explain why class IV enzymes are better suited to attack against pathogen cell walls.  相似文献   

13.
Genomic DNA for a class IV chitinase was cloned from yam (Dioscorea opposita Thunb) leaves and sequenced. The deduced amino acid sequence shows 50 to 59% identity to class IV chitinases from other plants. The yam chitinase, however, has an additional sequence of 8 amino acids (a C-terminal extension) following the cysteine that was reported as the last amino acid for other class IV chitinases; this extension is perhaps involved in subcellular localization. A homology model based on the structure of a class II chitinase from barley was used as an aid to interpreting the available data. The analysis suggests that the class IV enzyme recognizes an even shorter segment of the substrate than class I or II enzymes. This observation might help to explain why class IV enzymes are better suited to attack against pathogen cell walls.  相似文献   

14.
A gene encoding chitinases from Aeromonas sp. No. 10S-24 was cloned into Escherichia coli DH5α using pUC19, and its nucleotides were sequenced. The chitinase gene was clustered in ORFs (open reading frame) 1 to 4, in a 8-kb fragment of DNA. ORF-1 consisted of 1608 bp encoding 535 amino acid residues, and ORF-2 consisted of 1425 bp encoding 474 amino acid residues. ORF-3 was 1617 bp long and encodes a protein consisting of 538 amino acids. ORF-4 encodes 287 amino acids of the N-terminal region. The amino acid sequences of ORF-1 and ORF-3 share sequence homology with chitinase D from Bacillus circulans, and chitinase A and B from Streptomyces lividans. The amino acid sequence of ORF-2 shared sequence homology with chitinase II from Aeromonas sp. No. 10S-24, and chitinase from Saccharopolyspora erythraea. A region of the sequence starting from Ala-28 of the amino acid sequence of ORF-3 coincided with the N-terminal amino acid sequence of chitinase III from Aeromonas sp. No. 10S-24.  相似文献   

15.
Extracellular chitinases of Streptomyces peucetius and a chitinase overproducing mutant, SPVI, were purified to homogeneity by ion exchange and gel filtration chromatography. The purified enzyme has a molecular mass of 42 kDa on SDS-PAGE, and the N-terminal amino acid sequence of the protein from the wild type showed homology to catalytic domains (Domain IV) of several other Streptomyces chitinases such as S. lividans 66, S. coelicolor A3(2), S. plicatus, and S. thermoviolaceus OPC-520. Purified SPVI chitinase cross-reacted to anti-chitinase antibodies of wild-type S. peucetius chitinase. A genomic library of SPVI constructed in E. coli using lambda DASH II was probed with chiC of S. lividans 66 to screen for the chitinase gene. A 2.7 kb fragment containing the chitinase gene was subcloned from a lambda DASH II clone, and sequenced. The deduced protein had a molecular mass of 68 kDa, and showed domain organization similar to that of S. lividans 66 chiC. The N-terminal amino acid sequence of the purified S. peucetius chitinase matched with the N-terminus of the catalytic domain, indicating the proteolytic processing of 68 kDa chitinase precursor protein to 42 kDa mature chitinase containing the catalytic domain only. A putative chiR sequence of a two-component regulatory system was found upstream of the chiC sequence.  相似文献   

16.
17.
The gene encoding an extracellular chitinase from marine Alteromonas sp. strain O-7 was cloned in Escherichia coli JM109 by using pUC18. The chitinase produced was not secreted into the growth medium but accumulated in the periplasmic space. A chitinase-positive clone of E. coli produced two chitinases with different molecular weights from a single chitinase gene. These proteins showed almost the same enzymatic properties as the native chitinase of Alteromonas sp. strain O-7. The N-terminal sequences of the two enzymes were identical. The nucleotide sequence of the 3,394-bp SphI-HindIII fragment that included the chitinase gene was determined. A single open reading frame was found to encode a protein consisting of 820 amino acids with a molecular weight of 87,341. A putative ribosome-binding site, promoter, and signal sequence were identified. The deduced amino acid sequence of the cloned chitinase showed sequence homology with chitinases A (33.4%) and B (15.3%) from Serratia marcescens. Regardless of origin, the enzymes of the two bacteria isolated from marine and terrestrial environments had high homology, suggesting that these organisms evolved from a common ancestor.  相似文献   

18.
AIMS: Isolation and characterization of chitinases from a halotolerant Bacillus pumilus. METHODS AND RESULTS: Bacillus pumilus strain SG2 was isolated from saline conditions. It is able to produce chitinase activity at high salt concentration. SDS-PAGE analysis of the B. pumilus SG2 culture supernatant showed two major bands that were induced by chitin. The amino acid sequence of the two proteins, designated ChiS and ChiL, showed a high homology with the chitinase of B. subtilis CHU26, and chitinase A of B. licheniformis, respectively. N-terminal signal peptide of both proteins was also determined. The molecular weight and isoelectric point of the chitinases were determined to be 63 and 74 kDa, and 4.5 and 5.1, for ChiS and ChiL respectively. The genes encoding for both chitinases were isolated and their sequence determined. The regulation of the chitinase genes is under the control of the catabolite repression system. CONCLUSIONS: Secreted chitinase genes and their flanking region on the genome of B. pumilus SG2 have been identified and sequenced. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of a multiple chitinases-producing B. pumilus halotolerant strain. We have identified two chitinases by using a reverse genetics approach. The chitinases show resistance to salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号