首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Syringa pinnatifolia is an endangered endemic species in China with important ornamental and medicinal value, and it needs urgent protection. Here, we report the complete chloroplast (cp) genome structure of S. pinnatifolia and its evolution is inferred through comparative studies with related species. The S. pinnatifolia cp genome was 155 326 bp and contained a large single copy region (LSC) of 86 167 bp and a small single copy region (SSC) of 17 775 bp, as well as a pair of inverted repeat regions (IRs) of 25 692 bp. A total of 113 unique genes were annotated, including 79 protein‐coding genes, 30 tRNA genes and four rRNA genes. The GC content of the S. pinnatifolia cp genome was 37.9%, and the corresponding values in the LSC, SSC and IR regions were 36.0, 32.1, 43.2% respectively. Repetitive sequences analysis revealed that the S. pinnatifolia cp genome contained 38 repeats. Microsatellite marker detection analysis identified 253 simple sequence repeats (SSRs), which provides opportunities for future studies of the population genetics and phylogenetic relationships of Syringa. Phylogenetic analysis of 29 selected cp genomes revealed that S. pinnatifolia is closely related to Syringa vulgaris and all 27 Lamiales species formed a clade separate from the two outgroup species. This newly characterized S. pinnatifolia chloroplast genome will provide a useful genomic resource of phylogenetic inference and the development of more genetic markers for species discrimination and population studies in the genus Syringa.  相似文献   

2.
This current study presents, for the first time, the complete chloroplast genome of two Cleomaceae species: Dipterygium glaucum and Cleome chrysantha in order to evaluate the evolutionary relationship. The cp genome is 158,576 bp in length with 35.74% GC content in D. glaucum and 158,111 bp with 35.96% GC in C. chrysantha. Inverted repeats IR 26,209 bp, 26,251 bp each, LSC of 87,738 bp, 87,184 bp and SSC of 18,420 bp, 18,425 bp respectively. There are 136 genes in the genome, which includes 80 protein coding genes, 31 tRNA genes and four rRNA genes were observed in both chloroplast genomes. 117 genes are unique while the remaining 19 genes are duplicated in IR regions. The analysis of repeats shows that the cp genome includes all types of repeats with more frequent occurrences of palindromic; Also, this analysis indicates that the total number of simple sequence repeats (SSR) were 323 in D. glaucum, and 313 in C. chrysantha, of which the majority of the SSRs in these plastid genomes were mononucleotide repeats A/T which are located in the intergenic spacer. Moreover, the comparative analysis of the four cp sequences revealed four hotspot genes (atpF, rpoC2, rps19, and ycf1), these variable regions could be used as molecular makers for the species authentication as well as resources for inferring phylogenetic relationships of the species. All the relationships in the phylogenetic tree are with high support, this indicate that the complete chloroplast genome is a useful data for inferring phylogenetic relationship within the Cleomaceae and other families. The simple sequence repeats identified will be useful for identification, genetic diversity, and other evolutionary studies of the species. This study reported the first cp genome of the genus Dipterygium and Cleome. The finding of this study will be beneficial for biological disciplines such as evolutionary and genetic diversity studies of the species within the core Cleomaceae.  相似文献   

3.
Magnolia grandiflora is an important medicinal,ornamental and horticultural plant species.The chloroplast(cp) genome of M.grandiflora was sequenced using a 454 sequencing platform and the genome structure was compared with other related species.The complete cp genome of M.grandiflora was 159623 bp in length and contained a pair of inverted repeats(IR) of 26563 bp separated by large and small single copy(LSC,SSC) regions of 87757 and 18740 bp,respectively.A total of 129 genes were successfully annotated,18 of which included introns.The identity,number and GC content of M.grandiflora cp genes were similar to those of other Magnoliaceae species genomes.Analysis revealed 218 simple sequence repeat(SSR) loci,most composed of A or T,contributing to a bias in base composition.The types and abundances of repeat units in Magnoliaceae species were relatively conserved and these loci will be useful for developing M.grandiflora cp genome vectors.In addition,results indicated that the cp genome size in Magnoliaceae species and the position of the IR border were closely related to the length of the ycf1 gene.Phylogenetic analyses based on 66 shared genes from 30 species using maximum parsimony(MP) and maximum likelihood(ML) methods provided strong support for the phylogenetic position of Magnolia.The availability of the complete cp genome sequence of M.grandiflora provides valuable information for breeding of desirable varieties,cp genetic engineering,developing useful molecular markers and phylogenetic analyses in Magnoliaceae.  相似文献   

4.
Alyssum desertorum (Alysseae, Brassicaceae) is an annual spring ephemeral plant whose life cycle is only 2–3 months. It typically has high photosynthetic capacity and a high growth rate. However, little was known about the chloroplast (cp) genome structure of this species. Furthermore, the phylogenetic position of the tribe Alysseae relative to other tribes in the Brassicaceae has not been established and there appear to be inconsistences between different DNA markers. This study is the first report on a cp genome of the genus Alyssum and discusses the phylogenetic relationships of the tribe Alysseae relative to other tribes in the family. The complete cp genome of A. desertorum was 151 677 bp in size and is thus the smallest cp genome of Brassicaceae sequenced to date. The genome includes a large single‐copy region of 81 551 bp, a small single‐copy region of 17 804 bp, and two inverted repeats of 26 161 bp each. The genome contains 132 genes, including 86 protein‐coding genes (PCGs), 38 tRNA genes and 8 rRNA genes. A total of 16 genes contained introns, including 10 PCGs and 6 tRNA genes; the ycf3 and clpP genes contained two introns, and the remaining genes each contained one. Compared to the cp genomes of 21 other Brassicaceae species, the cp genome of Alyssum desertorum was the smallest, as due to variation in gene content and gene length, such as a lack of the rps16 gene and the deletion of some coding genes. Additionally, deletions of introns and intergenic spacers were observed, but their total length was not significantly shorter than those of other taxa. Phylogenetic analysis at the tribal level based on a cp genome dataset revealed that the tribe Alysseae is an early‐diverging lineage that is sister to other species within subclade B of clade II.  相似文献   

5.
The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.  相似文献   

6.
Sporadic rains in the Atacama Desert reveal a high biodiversity of plant species that only occur there. One of these rare species is the “Red añañuca” (Zephyranthes phycelloides), formerly known as Rhodophiala phycelloides. Many species of Zephyranthes in the Atacama Desert are dangerously threatened, due to massive extraction of bulbs and cutting of flowers. Therefore, studies of the biodiversity of these endemic species, which are essential for their conservation, should be conducted sooner rather than later. There are some chloroplast genomes available for Amaryllidaceae species, however there is no complete chloroplast genome available for any of the species of Zephyranthes subgenus Myostemma. The aim of the present work was to characterize and analyze the chloroplast of Z. phycelloides by NGS sequencing. The chloroplast genome of the Z. phycelloides consists of 158,107 bp, with typical quadripartite structures: a large single copy (LSC, 86,129 bp), a small single copy (SSC, 18,352 bp), and two inverted repeats (IR, 26,813 bp). One hundred thirty-seven genes were identified: 87 coding genes, 8 rRNA, 38 tRNA and 4 pseudogenes. The number of SSRs was 64 in Z. phycelloides and a total of 43 repeats were detected. The phylogenetic analysis of Z. phycelloides shows a distinct subclade with respect to Z. mesochloa. The average nucleotide variability (Pi) between Z. phycelloides and Z. mesochloa was of 0.02000, and seven loci with high variability were identified: psbA, trnSGCU-trnGUCC, trnDGUC-trnYGUA, trnLUAA-trnFGAA, rbcL, psbE-petL and ndhG-ndhI. The differences between the species are furthermore confirmed by the high amount of SNPs between these two species. Here, we report for the first time the complete cp genome of one species of the Zephyranthes subgenus Myostemma, which can be used for phylogenetic and population genomic studies.  相似文献   

7.
川柿(Diospyros sutchuensis)为极小种群和国家重点保护野生植物,分布范围狭窄,种群数量极少。目前,川柿基因组信息缺乏,在柿属(Diospyros)中的系统亲缘关系不明确。该研究通过Illumina平台对川柿叶绿体基因组进行测序,应用Getorganellev1.7.3.4和PGA软件对基因组进行组装和注释,使用DnaSP6.12.03软件进行多序列对比分析,并使用REPuter、Tandem Reapeats Finder和MISA软件进行重复序列分析,使用CodonW1.4和EasyCodemL软件分别进行密码子偏好性和选择压力分析。同时,基于4个不同的叶绿体基因组序列数据集,使用IQtree软件分析川柿与11个柿属物种的系统发育关系。结果表明:(1)川柿叶绿体基因组全长157 917 bp,包含1对26 111 bp的反向重复区、大单拷贝区(87 303 bp)和小单拷贝区(18 392 bp),GC碱基含量为37.4%。(2)川柿叶绿体基因组共注释到113个基因,包括79个蛋白编码基因、30个tRNA基因和4个rRNA基因; 共检测到49个长重复序列、27个串联重复序列和34个简单重复序列; 蛋白编码基因中高频密码子31个,多数密码子末位碱基为A或U,编码亮氨酸的密码子使用最多; 基因组编码区比非编码区更为保守,10个高变热点区域可作为潜在的分子标记; 蛋白编码基因中有8个基因(ndhBndhGndhIrbcLrpoBpetBpetDrps12)受到正选择压力。(3)系统发育分析显示,川柿与老鸦柿(D. rhombifolia)和乌柿(D. cathayensis)亲缘关系最为密切,它们与海南柿(D. hainanensis)共同形成一个单系分支。该研究结果既为川柿及柿属种质资源鉴定、遗传多样性保护以及种群恢复等提供了叶绿体基因组资源,也为阐明川柿的系统进化提供了重要的分子信息。  相似文献   

8.
Radish (Raphanus sativus L.) is an edible root vegetable crop that is cultivated worldwide and whose genome has been sequenced. Here we report the complete nucleotide sequence of the radish cultivar WK10039 chloroplast (cp) genome, along with a de novo assembly strategy using whole genome shotgun sequence reads obtained by next generation sequencing. The radish cp genome is 153,368 bp in length and has a typical quadripartite structure, composed of a pair of inverted repeat regions (26,217 bp each), a large single copy region (83,170 bp), and a small single copy region (17,764 bp). The radish cp genome contains 87 predicted protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence analysis revealed the presence of 91 simple sequence repeats (SSRs) in the radish cp genome.  相似文献   

9.
Datura stramonium is a widely used poisonous plant with great medicinal and economic value. Its chloroplast (cp) genome is 155,871 bp in length with a typical quadripartite structure of the large (LSC, 86,302 bp) and small (SSC, 18,367 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,601 bp). The genome contains 113 unique genes, including 80 protein-coding genes, 29 tRNAs and four rRNAs. A total of 11 forward, 9 palindromic and 13 tandem repeats were detected in the D. stramonium cp genome. Most simple sequence repeats (SSR) are AT-rich and are less abundant in coding regions than in non-coding regions. Both SSRs and GC content were unevenly distributed in the entire cp genome. All preferred synonymous codons were found to use A/T ending codons. The difference in GC contents of entire genomes and of the three-codon positions suggests that the D. stramonium cp genome might possess different genomic organization, in part due to different mutational pressures. The five most divergent coding regions and four non-coding regions (trnH-psbA, rps4-trnS, ndhD-ccsA, and ndhI-ndhG) were identified using whole plastome alignment, which can be used to develop molecular markers for phylogenetics and barcoding studies within the Solanaceae. Phylogenetic analysis based on 68 protein-coding genes supported Datura as a sister to Solanum. This study provides valuable information for phylogenetic and cp genetic engineering studies of this poisonous and medicinal plant.  相似文献   

10.
赵渊祥  梁大曲  谢双琴  王好运  吴峰 《广西植物》2023,43(10):1921-1931
猴樟(Cinnamomum bodinieri)枝叶含有丰富的精油,是重要的园林绿化树种和经济树种,但目前有关猴樟基因组学的研究报道不多。为揭示猴樟叶绿体基因组特征及系统发育关系,该文基于高通量测序平台进行测序,从头组装了完整的猴樟叶绿体基因组,并对其基因组结构、基因构成及序列重复、密码子使用偏好性以及系统发育进行分析,结合樟亚科主要属物种叶绿体基因组数据构建系统发育树。结果表明:(1)猴樟叶绿体基因组全长152 727 bp,包括一对20 132 bp的反向重复(IRs)区、93 605 bp的大单拷贝(LSC)区和18 858 bp的小单拷贝(SSC)区,总GC含量为39.13%。(2)该基因组共编码127个基因,包括83个蛋白质编码基因(PCGs)、36个转运RNA基因(tRNAs)和8个核糖体RNA基因(rRNAs); 共鉴定出92个SSR位点,其中大部分是A/T组成的单核苷酸重复序列; 密码子适应指数(CAI)为0.166,有效密码子数(ENc)为54.68; 猴樟与近缘种的叶绿体基因组主要在IR区和2个SC区边界上存在一定的差异。(3)24种樟亚科植物的系统发育树显示,猴樟与樟树亲缘关系最近,同时支持了樟属-甜樟属分支(Cinnamomum-Ocotea Clade)、月桂属-新木姜子属分支(Laurus-Neolitsea Clade)、润楠属-鳄梨属分支(Machilus-Persea Clade)的建立。该研究丰富了猴樟遗传资源信息,进一步确定了樟亚科主要属的系统发育地位。  相似文献   

11.
为探究空心泡(Rubus rosaefolius)叶绿体基因组特征,本研究以空心泡为试验材料,采用Illumina NovaSeq平台进行高通量测序,获得空心泡完整的叶绿体基因组序列,并进行空心泡叶绿体基因序列特征和系统发育分析。结果表明:空心泡的完整叶绿体基因组总长度为155650 bp,具有典型的四分体结构,包括2个反向重复序列(各25748 bp)、1个大拷贝区(85443 bp)、1个小拷贝区(18711 bp)。空心泡叶绿体全基因组共鉴定出131个基因,包括86个蛋白质编码基因、37个tRNA基因和8个rRNA基因,全基因组的GC含量为36.9%。空心泡叶绿体基因组包含47个散在重复序列、72个简单重复序列(simple sequence repeating,SSR)位点,密码子偏好性为亮氨酸密码子,偏好使用A/U结尾的密码子。系统发育分析表明,空心泡与小叶悬钩子(Rubus taiwanicola)亲缘关系最近,其次是能高悬钩子(Rubus rubroangustifolius)和腺萼悬钩子(Rubus glandulosopunctatus)。空心泡的叶绿体基因组特征及其系统发育分析,为空心泡的遗传多样性研究和叶绿体开发利用提供理论依据。  相似文献   

12.
Mungbean is an economically important crop which is grown principally for its protein-rich dry seeds. However, genomic research of mungbean has lagged behind other species in the Fabaceae family. Here, we reported the complete chloroplast (cp) genome sequence of mungbean obtained by the 454 pyrosequencing technology. The mungbean cp genome is 151 271 bp in length which includes a pair of inverted repeats (IRs) of 26 474 bp separated by a small single-copy region of 17 427 bp and a large single-copy region of 80 896 bp. The genome contains 108 unique genes and 19 of these genes are duplicated in the IR. Of these, 75 are predicted protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. Relative to other plant cp genomes, we observed two distinct rearrangements: a 50-kb inversion between accD/rps16 and rbcL/trnK-UUU, and a 78-kb rearrangement between trnH/rpl14 and rps19/rps8. We detected sequence length polymorphism in the cp homopolymeric regions at the intra- and inter-specific levels in the Vigna species. Phylogenetic analysis demonstrated a close relationship between Vigna and Phaseolus in the phaseolinae subtribe and provided a strong support for a monophyletic group of the eurosid I.  相似文献   

13.
Liu  Fenxiang  Movahedi  Ali  Yang  Wenguo  Xu  Lei  Xie  Jigang  Zhang  Yu 《Molecular biology reports》2020,47(7):5013-5024

Callistemon rigidus R.Br. one of the traditional Chinese medicinal plants, is acrid-flavored and mild-natured, with the prominent effects reducing swelling, resolving phlegm, and dispelling rheumatism. Clinically, it has been commonly used to treat cold, cough and asthma, pain and swelling from impact injuries, eczema, rheumatic arthralgia. The chloroplast genome study on Callistemon rigidus R.Br. is a few seen. This study demonstrates the data collected from the assembly and annotation of the chloroplast (cp) genome of Callistemon rigidus R.Br., followed by furthers comparative analysis with the cp genomes of closely related species. C. rigidus R.Br. showed a cp genome in the size of 158, 961 bp long with 36.78% GC content, among which a pair of inverted repeats (IRs) of 26, 671 bp separated a large single-copy (LSC) region of 87, 162 bp and a small single-copy (SSC) region of 18, 457 bp. Altogether 131 genes were hosted, including 37 transfer RNAs, 8 ribosomal RNAs, and 86 protein-coding genes. 284 simple sequence repeats (SSRs) were also marked out. A comparative analysis of the genome structure and the sequence data of closely related species unveiled the conserved gene order in the IR and LSC/SSC regions, a quite constructive finding for future phylogenetic research. Overall, this study providing C. rigidus R.Br. genomic resources could positively contribute to the evolutionary study and the phylogenetic reconstruction of Myrtaceae.

  相似文献   

14.
Pomegranate (Punica granatum L.) is one of the oldest known edible fruits. It has grown in popularity and is a profitable fruit crop due to its attractive features including a bright red appearance and its biological activities. Scientific exploration of the genetics and evolution of these beneficial traits has been hampered by limited genomic information. In this study, we sequenced the complete chloroplast (cp) genome of the native P. granatum (cultivar Helow) cultivated in the mountains of Jabal Al-Akhdar, Oman. The results revealed a P. granatum cp genome length of 158,630 bp, characterized by a relatively conserved structure containing 2 inverted repeat regions of 25,466 bp, an 18,686 bp small single copy regions, and an 89,015 bp large single copy region. The 86 protein-coding genes included 37 transfer RNA genes and 8 ribosomal RNA genes. Comparison of the P. granatum whole cp genome with seven Lagerstroemia species revealed an overall high degree of sequence similarity with divergence among intergenic spacers. The location, distribution, and divergence of repeat sequences and shared genes of the Punica and Lagerstroemia species were highly similar. Analyses of nucleotide substitution, insertion/deletions, and highly variable regions in these cp genomes identified potential plastid markers for taxonomic and phylogenetic studies in Myrtales. A phylogenetic study of the cp genomes and 76 shared coding regions generated similar cladograms. The complete cp genome of P. granatum will aid in taxonomical studies of the family Lythraceae.  相似文献   

15.
刘玉萍  吕婷  朱迪  周勇辉  刘涛  苏旭 《植物研究》2018,38(4):518-525
藏扇穗茅(Littledalea tibetica)是禾本科(Poaceae)雀麦族(Bromeae)中一个具有重要生态价值的多年生高山特有种,主要分布于青藏高原及其毗邻地区。本文采用基于第二代高通量测序平台的Illumina MiSeq技术,对青藏高原特有种—藏扇穗茅进行了叶绿体基因组测序,首次建立了雀麦族物种的标准测序流程;同时,以其近缘物种—黑麦草(Lolium perenne)的叶绿体基因组序列作为参考,组装获得它的叶绿体基因组序列。结果表明,藏扇穗茅叶绿体基因组序列全长136 852 bp,GC含量为38.5%,呈典型的四段式结构,其中大(LSC)、小(SSC)单拷贝区大小分别为80 970和12 876 bp,反向互补重复区(IR)大小为21 503 bp,共注释得到141个基因,包含95个蛋白编码基因、38个tRNA基因和8个rRNA基因,主要分布于大单拷贝区和小单拷贝区。同时,基于藏扇穗茅和其它30种禾本科植物叶绿体基因全序列构建的系统发育树显示,藏扇穗茅与早熟禾亚科中小麦族植物亲缘关系较近。  相似文献   

16.
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.  相似文献   

17.
The trnTtrnF region is located in the large single-copy region of the chloroplast genome. It consists of the trnL intron, a group I intron, and the trnTtrnL and trnLtrnF intergenic spacers. We analyzed the evolution of the region in the three genera of the gymnosperm lineage Gnetales (Gnetum, Welwitschia, and Ephedra), with especially dense sampling in Gnetum for which we sequenced 41 accessions, representing most of the 25–35 species. The trnL intron has a conserved secondary structure and contains elements that are homologous across land plants, while the spacers are so variable in length and composition that homology cannot be found even among the three genera. Palindromic sequences that form hairpin structures were detected in the trnLtrnF spacer, but neither spacer contained promoter elements for the tRNA genes. The absence of promoters, presence of hairpin structures in the trnLtrnF spacer, and high sequence variation in both spacers together suggest that trnT and trnF are independently transcribed. Our model for the expression and processing of the genes tRNAThr(UGU), tRNALeu(UAA), and tRNAPhe (GAA) therefore attributes the seemingly neutral evolution of the two spacers to their escape from functional constraints. [Reviewing Editor: Debashish Bhattacharya]  相似文献   

18.
Eugenia uniflora is a plant native to tropical America that holds great ecological and economic importance. The complete chloroplast (cp) genome sequence of Eugenia uniflora, a member of the Neotropical Myrtaceae family, is reported here. The genome is 158,445 bp in length and exhibits a typical quadripartite structure of the large (LSC, 87,459 bp) and small (SSC, 18,318 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 26,334 bp). It contains 111 unique genes, including 77 protein-coding genes, 30 tRNAs and 4 rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Comparison of the entire cp genomes of E. uniflora L. and three other Myrtaceae revealed an expansion of 43 bp in the intergenic spacer located between the IRA/large single-copy (LSC) border and the first gene of LSC region. Simple sequence repeat (SSR) analysis revealed that most SSRs are AT rich, which contribute to the overall AT richness of the cp genome. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the noncoding regions. Phylogenetic analysis among 58 species based on 57 cp genes demonstrated a closer relationship between E. uniflora L. and Syzygium cumini (L). Skeels compared to the Eucalyptus clade in the Myrtaceae family. The complete cp genome sequence of E. uniflora reported here has importance for population genetics, as well as phylogenetic and evolutionary studies in this species and other Myrtaceae species from Neotropical regions.  相似文献   

19.
为了深入发掘日本厚朴、厚朴、凹叶厚朴叶绿体基因组差异,筛选厚朴优良性状候选基因,开展三种厚朴的分子遗传研究,该文利用Illumina HiSeq高通量测序平台首次对日本厚朴叶绿体进行测序、组装,并与已有的厚朴、凹叶厚朴叶绿体基因组共同注释,获得三个物种叶绿体基因图谱,筛选出三个基因组中的差异基因,又与同科中11个亲缘物种进行叶绿体基因组比对,构建NJ遗传树。结果表明:(1)日本厚朴叶绿体基因组的Clean Reads为19 791 019,Q30为91.33%,组装后基因组全长160 051 bp,GC含量为39.2%,含tRNA 37个,rRNA 8个。(2)比对分析发现三种厚朴具有相似的IR、LSC和SSC结构,以及GC含量和tRNA数量,但编码基因种类和数量、内含子和外显子的数量和结构等存在差异。(3)日本厚朴的功能基因数目较厚朴、凹叶厚朴分别多6个和4个,主要分布于LSC区和IR区,涉及核糖体大亚基、核糖体小亚基和未知功能基因类群。(4)系统发育分析结果进一步显示日本厚朴与凹叶厚朴亲缘关系较近,其次是厚朴。该研究表明日本厚朴具有更丰富的叶绿体基因组结构、组成和变异特征,是其适应高纬度地区弱光、低温环境的分子机制,这为厚朴类优良品种的分子选育提供有力的指导。  相似文献   

20.
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1–585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号