首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Syringa pinnatifolia is an endangered endemic species in China with important ornamental and medicinal value, and it needs urgent protection. Here, we report the complete chloroplast (cp) genome structure of S. pinnatifolia and its evolution is inferred through comparative studies with related species. The S. pinnatifolia cp genome was 155 326 bp and contained a large single copy region (LSC) of 86 167 bp and a small single copy region (SSC) of 17 775 bp, as well as a pair of inverted repeat regions (IRs) of 25 692 bp. A total of 113 unique genes were annotated, including 79 protein‐coding genes, 30 tRNA genes and four rRNA genes. The GC content of the S. pinnatifolia cp genome was 37.9%, and the corresponding values in the LSC, SSC and IR regions were 36.0, 32.1, 43.2% respectively. Repetitive sequences analysis revealed that the S. pinnatifolia cp genome contained 38 repeats. Microsatellite marker detection analysis identified 253 simple sequence repeats (SSRs), which provides opportunities for future studies of the population genetics and phylogenetic relationships of Syringa. Phylogenetic analysis of 29 selected cp genomes revealed that S. pinnatifolia is closely related to Syringa vulgaris and all 27 Lamiales species formed a clade separate from the two outgroup species. This newly characterized S. pinnatifolia chloroplast genome will provide a useful genomic resource of phylogenetic inference and the development of more genetic markers for species discrimination and population studies in the genus Syringa.  相似文献   

2.
Eugenia uniflora is a plant native to tropical America that holds great ecological and economic importance. The complete chloroplast (cp) genome sequence of Eugenia uniflora, a member of the Neotropical Myrtaceae family, is reported here. The genome is 158,445 bp in length and exhibits a typical quadripartite structure of the large (LSC, 87,459 bp) and small (SSC, 18,318 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 26,334 bp). It contains 111 unique genes, including 77 protein-coding genes, 30 tRNAs and 4 rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Comparison of the entire cp genomes of E. uniflora L. and three other Myrtaceae revealed an expansion of 43 bp in the intergenic spacer located between the IRA/large single-copy (LSC) border and the first gene of LSC region. Simple sequence repeat (SSR) analysis revealed that most SSRs are AT rich, which contribute to the overall AT richness of the cp genome. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the noncoding regions. Phylogenetic analysis among 58 species based on 57 cp genes demonstrated a closer relationship between E. uniflora L. and Syzygium cumini (L). Skeels compared to the Eucalyptus clade in the Myrtaceae family. The complete cp genome sequence of E. uniflora reported here has importance for population genetics, as well as phylogenetic and evolutionary studies in this species and other Myrtaceae species from Neotropical regions.  相似文献   

3.
This current study presents, for the first time, the complete chloroplast genome of two Cleomaceae species: Dipterygium glaucum and Cleome chrysantha in order to evaluate the evolutionary relationship. The cp genome is 158,576 bp in length with 35.74% GC content in D. glaucum and 158,111 bp with 35.96% GC in C. chrysantha. Inverted repeats IR 26,209 bp, 26,251 bp each, LSC of 87,738 bp, 87,184 bp and SSC of 18,420 bp, 18,425 bp respectively. There are 136 genes in the genome, which includes 80 protein coding genes, 31 tRNA genes and four rRNA genes were observed in both chloroplast genomes. 117 genes are unique while the remaining 19 genes are duplicated in IR regions. The analysis of repeats shows that the cp genome includes all types of repeats with more frequent occurrences of palindromic; Also, this analysis indicates that the total number of simple sequence repeats (SSR) were 323 in D. glaucum, and 313 in C. chrysantha, of which the majority of the SSRs in these plastid genomes were mononucleotide repeats A/T which are located in the intergenic spacer. Moreover, the comparative analysis of the four cp sequences revealed four hotspot genes (atpF, rpoC2, rps19, and ycf1), these variable regions could be used as molecular makers for the species authentication as well as resources for inferring phylogenetic relationships of the species. All the relationships in the phylogenetic tree are with high support, this indicate that the complete chloroplast genome is a useful data for inferring phylogenetic relationship within the Cleomaceae and other families. The simple sequence repeats identified will be useful for identification, genetic diversity, and other evolutionary studies of the species. This study reported the first cp genome of the genus Dipterygium and Cleome. The finding of this study will be beneficial for biological disciplines such as evolutionary and genetic diversity studies of the species within the core Cleomaceae.  相似文献   

4.
为探究华重楼(Paris polyphylla var. chinensis)的叶绿体基因组特征,利用叶绿体系统发育基因组学方法,对华重楼与其它百合目植物的叶绿体全基因组进行了比较。结果表明,华重楼的叶绿体全基因组长158307 bp,由4个区组成,包括2个反向重复区(IRA和IRB,27473 bp)、1个小单拷贝区(SSC,18175 bp)和1个大单拷贝区(LSC,85187 bp)。其叶绿体基因组有115个基因,包括81个编码蛋白质基因、30个转运RNA基因和4 个核糖体RNA基因。11种百合目植物的叶绿体全基因组的基因组成和基因顺序相似。华重楼的cemA基因是假基因,其起始密码子后有多聚核苷酸poly(A)及CA双核苷酸重复序列,编码序列中出现多个终止密码子, 且与北重楼(Paris verticillata)的cemA编码序列中的终止密码子位置不同。因此,华重楼叶绿体基因组比较保守;cemA结构及假基因化现象可能具有重要的进化与系统发育信息,其编码序列中的终止密码子可以区分华重楼和北重楼。  相似文献   

5.
Liu  Fenxiang  Movahedi  Ali  Yang  Wenguo  Xu  Dezhi  Jiang  Chuanbei  Xie  Jigang  Zhang  Yu 《Molecular biology reports》2021,48(11):7113-7125
Background

An ornamental plant often seen in gardens and farmhouses, Musa basjoo Siebold can also be used as Chinese herbal medicine. Its pseudostem and leaves are diuretic; its root can be decocted together with ginger and licorice to cure gonorrhea and diabetes; the decoct soup of its pseudostem can help relieve heat, and the decoct soup of its dried flower can treat cerebral hemorrhage. There have not been many chloroplast genome studies on M. basjoo Siebold.

Methods and results

We characterized its complete chloroplast genome using Novaseq 6000 sequencing. This paper shows that the length of the chloroplast genome M. basjoo Siebold is 172,322 bp, with 36.45% GC content. M. basjoo Siebold includes a large single-copy region of 90,160 bp, a small single-copy region of 11,668 bp, and a pair of inverted repeats of 35,247 bp. Comparing the genomic structure and sequence data of closely related species, we have revealed the conserved gene order of the IR and LSC/SSC regions, which has provided a very inspiring discovery for future phylogenetic research.

Conclusions

Overall, this study has constructed an evolutionary tree of the genus Musa species with the complete chloroplast genome sequence for the first time. As can be seen, there is no obvious multi-branching in the genus, and M. basjoo Siebold and Musa itinerans are the closest relatives.

  相似文献   

6.
虎杖(Reynoutria japonica Houtt.)为蓼科(Polygonaceae)蓼族(Polygoneae)虎杖属(Reynoutria Houtt.)植物,是一种传统的中草药,具有利湿退黄、清热解毒、散瘀止痛、止咳化痰的功效。本研究采取高通量测序技术获得5个虎杖品种的叶绿体全基因组序列,并与NCBI已公布的蓼族何首乌(Fallopia multiflora)和金线草(Antenoron filiforme)等植物的叶绿体全基因组序列进行了基因组学和系统发育分析。通过基因组学分析发现,5种虎杖的叶绿体基因组大小有163 376 bp和163 371 bp两种情况,并呈现出典型的环状四分体结构,85 784 bp的一条较长的单拷贝区(large single-copy region,LSC),18 616 bp的一条较短的单拷贝区(small single-copy region,SSC),还有两条长度一致的反向重复区,分别为IRa区和IRb区相间隔分布。通过注释得到161个基因,其中蛋白编码基因106个,rRNA编码基因10个,tRNA编码基因45个。总GC含量为36.7...  相似文献   

7.
Datura stramonium is a widely used poisonous plant with great medicinal and economic value. Its chloroplast (cp) genome is 155,871 bp in length with a typical quadripartite structure of the large (LSC, 86,302 bp) and small (SSC, 18,367 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,601 bp). The genome contains 113 unique genes, including 80 protein-coding genes, 29 tRNAs and four rRNAs. A total of 11 forward, 9 palindromic and 13 tandem repeats were detected in the D. stramonium cp genome. Most simple sequence repeats (SSR) are AT-rich and are less abundant in coding regions than in non-coding regions. Both SSRs and GC content were unevenly distributed in the entire cp genome. All preferred synonymous codons were found to use A/T ending codons. The difference in GC contents of entire genomes and of the three-codon positions suggests that the D. stramonium cp genome might possess different genomic organization, in part due to different mutational pressures. The five most divergent coding regions and four non-coding regions (trnH-psbA, rps4-trnS, ndhD-ccsA, and ndhI-ndhG) were identified using whole plastome alignment, which can be used to develop molecular markers for phylogenetics and barcoding studies within the Solanaceae. Phylogenetic analysis based on 68 protein-coding genes supported Datura as a sister to Solanum. This study provides valuable information for phylogenetic and cp genetic engineering studies of this poisonous and medicinal plant.  相似文献   

8.
Chloroplast genome organization, gene order, and content are highly conserved among land plants. We sequenced the chloroplast genome of Trachelium caeruleum L. (Campanulaceae), a member of an angiosperm family known for highly rearranged genomes. The total genome size is 162,321 bp, with an inverted repeat (IR) of 27,273 bp, large single-copy (LSC) region of 100,114 bp, and small single-copy (SSC) region of 7,661 bp. The genome encodes 112 different genes, with 17 duplicated in the IR, a tRNA gene (trnI-cau) duplicated once in the LSC region, and a protein-coding gene (psbJ) with two duplicate copies, for a total of 132 putatively intact genes. ndhK may be a pseudogene with internal stop codons, and clpP, ycf1, and ycf2 are so highly diverged that they also may be pseudogenes. ycf15, rpl23, infA, and accD are truncated and likely nonfunctional. The most conspicuous feature of the Trachelium genome is the presence of 18 internally unrearranged blocks of genes inverted or relocated within the genome relative to the ancestral gene order of angiosperm chloroplast genomes. Recombination between repeats or tRNA genes has been suggested as a mechanism of chloroplast genome rearrangements. The Trachelium chloroplast genome shares with Pelargonium and Jasminum both a higher number of repeats and larger repeated sequences in comparison to eight other angiosperm chloroplast genomes, and these are concentrated near rearrangement endpoints. Genes for tRNAs occur at many but not all inversion endpoints, so some combination of repeats and tRNA genes may have mediated these rearrangements.  相似文献   

9.
Oregano (Origanum vulgare L., Lamiaceae) is a medicinal and aromatic plant maybe best known for flavouring pizza. New applications e.g. as natural antioxidants for food are emerging due to the plants' high antibacterial and antioxidant activity. The complete chloroplast (cp) genome of Origanum vulgare (GenBank/EBML/DDBJ accession number: JX880022) consists of 151,935 bp and includes a pair of inverted repeats (IR) of 25,527 bp separated by one small and one large single copy region (SSC and LSC) of 17,745 and 83,136 bp, respectively.  相似文献   

10.
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.  相似文献   

11.
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1–585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.  相似文献   

12.
长爪栘[木衣](Docynia longiunguis Q.Luo & J.L.Liu)是我国特有的栘[木衣]属植物,具有较高的食药用价值.对其叶绿体基因组进行分析,有助于阐明栘[木衣]属内的系统发育关系,为长爪栘[木衣]资源的开发利用及进一步研究奠定基础.结合其近缘种云南移[木衣]叶绿体基因组数据,在进行全序列比对后...  相似文献   

13.
The nucleotide sequence of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome was completed (DQ119058). The circular double-stranded DNA, consisting of 155,527 bp, contained a pair of inverted repeat regions (IRa and IRb) of 25,187 bp each, which were separated by small and large single copy regions of 86,879 and 18,274 bp, respectively. The presence and relative positions of 113 genes (76 peptide-encoding genes, 30 tRNA genes, four rRNA genes, and three conserved open reading frames) were identified. The major portion (55.76%) of the C. sativus chloroplast genome consisted of gene-coding regions (49.13% protein coding and 6.63% RNA regions; 27.81% LSC, 9.46% SSC and 18.49% IR regions), while intergenic spacers (including 20 introns) made up 44.24%. The overall G-C content of C. sativus chloroplast genome was 36.95%. Sixteen genes contained one intron, while two genes had two introns. The expansion/contraction manner of IR at IRb/LSC and IR/SSC border in Cucumis was similar to that of Lotus and Arabidopsis, and the manner at IRa/LSC was similar to Lotus and Nicotiana. In total, 56 simple sequence repeats (more than 10 bases) were identified in the C. sativus chloroplast genome.  相似文献   

14.
Blumea balsamifera (L.) DC., a medicinal plant with high economic value in the Asteraceae family, is widely distributed in China and Southeast Asia. However, studies on the population structure or phylogenetic relationships with other related species are rare owing to the lack of genome information. In this study, through high-throughput sequencing, we found that the chloroplast genome of B. balsamifera was 151,170 bp in length, with a pair of inverted repeat regions (IRa and IRb) comprising 24,982 bp, a large single-copy (LSC) region comprising 82,740 bp, and a small single-copy (SSC) region comprising 18,466 bp. A total of 130 genes were identified in the chloroplast genome of B. balsamifera, including 85 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes; furthermore, sequence analysis identified 53 simple sequence repeats. Whole chloroplast genome comparison indicated that the inverted regions (IR) were more conserved than large single-copy and SSC regions. Phylogenetic analysis showed that B. balsamifera is closely related to Pluchea indica. Conclusively, the chloroplast genome of B. balsamifera was helpful for species identification and analysis of the genetic diversity and evolution in the genus Blumea and family Asteraceae.  相似文献   

15.
Oil palm (Elaeis guineensis Jacq.) is an economically important crop, which is grown for oil production. To better understand the molecular basis of oil palm chloroplasts, we characterized the complete chloroplast (cp) genome sequence obtained from 454 pyrosequencing. The oil palm cp genome is 156,973 bp in length consisting of a large single-copy region of?85,192 bp flanked on each side by inverted repeats of 27,071 bp with a small single-copy region of 17,639 bp joining the?repeats. The genome contains 112 unique genes: 79 protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. By aligning the cp?genome sequence with oil palm cDNA sequences, we observed 18 non-silent and 10 silent RNA editing events among 19 cp protein-coding genes. Creation of an initiation codon by RNA editing in rpl2 has been reported in several monocots and was also found in the oil palm cp genome. Fifty common chloroplast protein-coding genes from 33 plant taxa were used to construct ML and MP?phylogenetic trees. Their topologies are similar and strongly support for the position of E. guineensis as the sister of closely related species Phoenix dactylifera in Arecaceae (palm families) of monocot subtrees.  相似文献   

16.
17.
多花海棠(Malus floribunda Siebold.)是世界范围内广泛栽培的苹果属物种,具有较高的观赏价值和育种意义。对其进行叶绿体基因组比较分析,有利于完善苹果属系统进化以及种质利用的研究内容。基于全基因组测序数据,组装获得一个完整的具有四分体结构的多花海棠叶绿体基因组。该基因组包括大单拷贝区(88 142 bp)、反向重复区B (26 353 bp)、小单拷贝区(19 189 bp)与反向重复区A (26 353 bp),共计160 037 bp。多花海棠叶绿体全基因组共注释到111个基因,包括78个蛋白编码基因、29个tRNA基因和4个rRNA基因。此外,在其基因组中识别到大量的重复序列,与三叶海棠和变叶海棠略有差异。通过计算相对同义密码子使用度,发现其高频密码子共30种,并且密码子具有偏向A/T结尾的使用模式。种间序列比对、边界分析的结果表明,大单拷贝区序列变异较大,8种苹果属植物SC区与IR区扩张收缩情况整体上较为相似。基于叶绿体基因组序列的系统进化分析,将多花海棠、湖北海棠和变叶海棠聚为一类。多花海棠叶绿体基因组的研究可为今后遗传标记开发与种质资源利用等提供数据支持。  相似文献   

18.
苹果叶绿体基因组特征分析   总被引:2,自引:0,他引:2  
苹果(Malus×domestica)是最重要的温带水果之一。为了能更好的了解本种的分子生物学基础.对已发布的苹果叶绿体全基因组序列进行了结构特征分析。结果显示苹果的叶绿体基因组全长为160068bp,具有典型的被子植物叶绿体基因组的环状四分体结构,包含大单拷贝区(LSC),小单拷贝区(SSC)和两个反向互补重复区(IRs),长度分别为88184bp,19180bp和26352bp。基因组共有135个基因(20个基因分布在反向互补重复区,因此整个基因组包含115个不同的基因)。按照功能进行分类,这115个基因包括81个蛋白质编码基因,4个rRNA编码基因和30个tRNA基因。其中,ycf15.ycf68和infA三个基因包含多个终止密码子,推测可能为假基因。苹果的基因组结构.基因顺序.GC含量和密码子使用偏好均与典型的被子植物叶绿体基因组类似。在苹果的叶绿体基因组中,共检测到30个大于30bp的重复序列,其中包括21串联重复,6个正向重复和3个反向重复序列;并检测到237个简单重复序列(SSR)位点,大部分的SSR位点都偏向于A或者T组成。此外,每10000bp非编码区平均分布有24个SSR位点,而编码区平均有5个SSR位点,表明SSRs在叶绿体基因组上的分布是不均匀的。本文对苹果叶绿体基因组序列特征的报道,将有助于促进该种的居群遗传学、系统发育和叶绿体基因工程的研究。  相似文献   

19.
Myriophyllum, among the most species‐rich genera of aquatic angiosperms with ca. 68 species, is an extensively distributed hydrophyte lineage in the cosmopolitan family Haloragaceae. The chloroplast (cp) genome is useful in the study of genetic evolution, phylogenetic analysis, and molecular dating of controversial taxa. Here, we sequenced and assembled the whole chloroplast genome of Myriophyllum spicatum L. and compared it to other species in the order Saxifragales. The complete chloroplast genome sequence of M. spicatum is 158,858 bp long and displays a quadripartite structure with two inverted repeats (IR) separating the large single copy (LSC) region from the small single copy (SSC) region. Based on sequence identification and the phylogenetic analysis, a 4‐kb phylogenetically informative inversion between trnE‐trnC in Myriophyllum was determined, and we have placed this inversion on a lineage specific to Myriophyllum and its close relatives. The divergence time estimation suggested that the trnE‐trnC inversion possibly occurred between the upper Cretaceous (72.54 MYA) and middle Eocene (47.28 MYA) before the divergence of Myriophyllum from its most recent common ancestor. The unique 4‐kb inversion might be caused by an occurrence of nonrandom recombination associated with climate changes around the K‐Pg boundary, making it interesting for future evolutionary investigations.  相似文献   

20.
Saraca asoca (Roxb.) Willd. (subfamily Detarioideae, family Fabaceae) is a perennial evergreen sacred medicinal tree classified under ‘vulnerable’ by the IUCN. The chloroplast (cp) genome/plastome which follows uniparental inheritance contains many useful genetic information because of its conservative rate of evolution. The assembled cp genome of S. asoca which maps as a conserved circular structure revealed extensive rearrangement in gene organization, comprising total length 160,003 bp including LSC, SSC, IRa, and IRb, and GC content was 35.26%. Herein a set of rbcL and matK gene were established using molecular phylogenetic analyses for molecular typing of S. asoca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号