首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 708 毫秒
1.
棕榈酰化是一种可逆的翻译后修饰,其对蛋白质的定位和功能具有重要的调节意义.离子型谷氨酸受体有N-甲基-D-天冬氨酸(NMDA)受体、α-氨基羟甲基恶唑丙酸(AMPA)受体和人海藻酸受体.近期研究发现,它们的棕榈酰化修饰对其膜表面分布和内化均具有重要的意义.其中NMDA受体在其C末端有2个不同的棕榈酰化位点.1个位于C末端近膜区(CysclusterⅠ),它的棕榈酰化可以增高酪氨酸的磷酸化水平,增加受体膜表面分布,影响神经元中NMDA受体的组构性内化;另1个位于C末端中部(CysclusterⅡ),它受到蛋白质酰基转移酶GODZ的调节,使得受体在高尔基体大量积聚,从而影响受体的膜表面分布.与NMDA受体相似,AMPA受体也存在2个棕榈酰化位点.1个位于在第2跨膜域,受蛋白质酰基转移酶GODZ的调节,能导致AMPA受体在高尔基体的积聚.另1个位点在受体C末端近膜区,它的棕榈酰化能降低AMPA受体和4.1N蛋白的相互作用,并调节受体的内化.这两种离子型谷氨酸受体在棕榈酰化机制上虽然存在差异,但均对受体的运输、膜表面分布和内化具有十分重要的作用.  相似文献   

2.
作者对雄激素R1881或DMSO处理的LNCaP细胞进行炔基棕榈酸代谢标记,之后利用点击化学反应形成的共价键富集棕榈酰化修饰蛋白,并对富集蛋白进行质谱定量分析,从而筛选、鉴定棕榈酰化修饰水平受雄激素诱导的蛋白。结果发现,雄激素在LNCaP细胞内促进核糖体蛋白RPL12、RPS4X和谷氨酰脯氨酰-tRNA合成酶(EPRS)棕榈酰化修饰,在细胞上清中促进甘氨酰-tRNA合成酶(GARS)棕榈酰化修饰。对RPL12、RPS4X和EPRS棕榈酰化调控机制的研究将为前列腺癌的治疗提供新的指导思路;雄激素诱导下细胞内RPL12、RPS4X和EPRS棕榈酰化修饰水平的升高可以作为相关的肿瘤标志物,细胞上清中GARS棕榈酰化修饰水平的升高对于前列腺癌的早期筛查具有重要的参考价值。  相似文献   

3.
病毒蛋白脂酰化及其功能   总被引:1,自引:0,他引:1       下载免费PDF全文
刘红  叶荣 《微生物与感染》2014,9(2):122-130
脂酰化是一种重要的蛋白翻译后修饰,主要包括棕榈酰化、豆蔻酰化、异戊烯化和糖基化磷脂酰肌醇(GPI)共价结合4种方式。不同的病毒蛋白可发生不同类型的脂酰化,其生物学功能也会发生相应改变。棕榈酰化通常能增强病毒跨膜蛋白的疏水性,调节这些蛋白的胞内运输及定位,进一步影响病毒感染过程中的膜融合、病毒颗粒装配及释放等步骤。豆蔻酰化则可调控病毒蛋白表面的正电荷强度,使病毒蛋白与脂质膜的亲和力改变,如preS1豆蔻酰化加强乙型肝炎病毒(HBV)和丁型肝炎病毒(HDV)的受体识别能力及感染性,而人类免疫缺陷病毒(HIV)Nef豆蔻酰化为病毒感染及免疫应答所必需。异戊烯化能使病毒游离的蛋白与膜结合,并介导蛋白间的相互作用,如大HDV抗原(L-HDAg)异戊烯化有利于其运输至内质网膜上,与HBV表面抗原(HBsAg)及HDV RNA共同形成HDV颗粒。此外,一些病毒蛋白与GPI通过共价结合形成复合物,GPI基团可改变感染细胞的膜结构及胞质内磷脂构成,如GPI与朊蛋白(PrP)结合导致细胞型朊蛋白(PrPc)交联或羊痒疫朊蛋白(PrPsc)聚集,与朊病毒引起的海绵样病变有关。进一步了解病毒蛋白脂酰化机制,有利于设计和开发以此为靶点的特异性抗病毒新药。  相似文献   

4.
β-抑制蛋白(β arrestins)是一类在β肾上腺素受体激酶(βARK)提纯过程中发现的重要支架蛋白和信号调控因子;G蛋白偶联受体(GPCRs)为7次跨膜受体,在细胞信号转导中发挥关键作用,是很多临床药物的作用靶点. β-抑制蛋白作为衔接蛋白,调控GPCRs相关的信号通路,介导GPCRs的脱敏、内化、循环、复敏等生理过程,影响多种疾病的进程. 本文总结了β-抑制蛋白参与GPCRs信号通路的研究进展,侧重阐明了其中的分子机制,以期为开发新一代调控GPCRs功能活性的相关药物提供理论基础.  相似文献   

5.
蛋白质棕榈酰化修饰是脂质修饰的一种,赋予了底物蛋白更加多样化的生物学功能.在哺乳动物细胞中,棕榈酰化修饰主要是由ZDHHC家族介导的.病毒入侵细胞后,可利用宿主的棕榈酰化修饰促进自身的复制和感染.宿主通过模式识别受体识别病原体相关分子模式诱发天然免疫应答以保护自身免受病毒的伤害并达到清除病原体的目的.天然免疫是宿主抵抗病毒感染的第一道防线,越来越多的研究表明,抗病毒蛋白的棕榈酰化修饰对其发挥功能非常重要.然而截至目前, ZDHHC家族蛋白参与病毒感染过程中的作用机制尚不完全清楚.本文综述了ZDHHC家族蛋白棕榈酰化修饰在病毒感染过程中的最新研究进展.  相似文献   

6.
蛋白质棕榈酰化(palmitoylation)是调节蛋白定位、稳定和功能的重要机制,这一过程通常受棕榈酰基转移酶的调控,编码这些酶的基因称为含锌指DHHC(zDHHC)。随着研究方法的深入,棕榈酰化修饰在多种离子通道生理功能方面发挥重要的调节作用,为深入了解离子通道结构和功能带来新的见解。本文主要就棕榈酰化修饰过程及其在常见离子通道中的研究进展做一综述。  相似文献   

7.
蛋白质棕榈酰化是指饱和十六碳的棕榈酸盐通过硫酯键或者酰胺键连接在蛋白质肽链的半胱氨酸上,属翻译后修饰,可影响蛋白质的相互作用、稳定性及定位等功能。热休克蛋白90(heat shock protein 90,Hsp90)是一种重要的分子伴侣,已证明其参与精子获能等生理过程。然而,哺乳动物精子中是否存在蛋白质棕榈酰化,Hsp90在精子不同生理状态下是否发生棕榈酰化,目前尚不清楚。本研究首先采用酰基-生物素置换法检测小鼠附睾尾部成熟精子总蛋白质棕榈酰化情况,然后通过CSS-Palm 4.0软件预测Hsp90的棕榈酰化位点,再进一步结合免疫沉淀方法检测附睾头部、附睾尾部精子的Hsp90棕榈酰化情况。结果显示,小鼠附睾尾部精子多种蛋白质存在棕榈酰化,其中分子量大小约50、65、72、85和130 k Da的蛋白质发生棕榈酰化最为显著;软件预测显示Hsp90两个亚型共有5个棕榈酰化位点;免疫沉淀结果也显示小鼠精子存在棕榈酰化的Hsp90,且其棕榈酰化水平与小鼠精子的生理状态有关:附睾尾部棕榈酰化水平比附睾头部高,而获能后的棕榈酰化水平比获能前明显升高。以上结果表明,哺乳动物精子中存在蛋白棕榈酰化,且Hsp90棕榈酰化可能参与精子生理状态的调节。  相似文献   

8.
蛋白脂肪酰化修饰是蛋白翻译修饰的重要形式,在细胞信号转导、生长发育和代谢等过程中发挥着重要的作用。N-肉豆蔻酰化和S-酰化是脂肪酰化修饰的两种主要形式,长链的脂肪酸被共价结合到蛋白质上,使蛋白结构发生变化,从而影响细胞的一系列生理作用。近年来,相比于真菌和动物细胞中蛋白脂肪酰化修饰的功能研究而言,植物蛋白质脂酰化修饰及其生物学功能的研究相对较少,且两者并不完全相同,引起了研究人员的广泛关注。研究发现,植物蛋白质N-肉豆蔻酰化和S-酰化修饰过程中分别需要相对应的豆蔻酰基转移酶和S-酰基转移酶来催化,通过对两种转移酶缺失的突变体的研究发现,这两种酰基转移酶的活性与植物种子萌发、花期长短及表型正常化有关;N-肉豆蔻酰化和S-酰化蛋白通过疏水性的酰基键插入膜上相应的位置,进行膜锚定;参与调控植物生长、信号转导及免疫应答等过程。综述了近年来N-肉豆蔻酰化和S-酰化在植物细胞生物学功能中的研究进展,并对植物G蛋白偶联受体(GPCRs)脂质修饰在感知细菌信号分子N-酰基高丝氨酸内脂(AHLs)过程中的作用进行了讨论,旨在为采用遗传干预技术提高农作物生产、优质及抗逆提供理论指导。  相似文献   

9.
G蛋白偶联受体激酶6(G protein-coupled receptor kinase 6,GRK6)依赖去棕榈酰化修饰及特定核定位序列(nuclear localization sequence,NLS)实现胞核定位,但NLS的关键基团及其对激酶活性的影响尚不清楚。该研究首先通过构建一系列缺失突变子,初筛去棕榈酰化条件下GRK6的NLS结构域;然后采用点突变技术进一步确定NLS结构域中Lys(K)~(389)、Lys(K)~(390)、Lys(K)~(3913)个关键基团;最后通过检测内源性毒蕈碱M3受体介导的细胞内钙流,证实NLS突变子对M3受体介导的细胞内钙流信号的抑制作用无明显影响。该研究为进一步揭示GRK6胞核转运机制及其功能提供了有价值的信息。  相似文献   

10.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是具有7个跨膜螺旋的蛋白质受体,是人体内最大的蛋白质超家族.GPCRs能调控细胞周期,参与多种植物信号通路以及影响一系列的代谢和分化活动.简要介绍了GPCR和G蛋白介导的信号转导机制,GPCRs的结构和植物GPCR及其在植物跨膜信号转导中的作用,并对GPCR的信号转导机制及植物抗病反应分子机制的研究提出展望.  相似文献   

11.
Protein S‐palmitoylation is a reversible post‐translational modification that alters the localization, stability, and function of hundreds of proteins in the cell. S‐palmitoylation is essential for the function of both oncogenes (e.g., NRAS and EGFR) and tumor suppressors (e.g., SCRIB, melanocortin 1 receptor). In mammalian cells, the thioesterification of palmitate to internal cysteine residues is catalyzed by 23 Asp‐His‐His‐Cys (DHHC)‐family palmitoyl S‐acyltransferases while the removal of palmitate is catalyzed by serine hydrolases, including acyl‐protein thioesterases (APTs). These enzymes modulate the function of important oncogenes and tumor suppressors and often display altered expression patterns in cancer. Targeting S‐palmitoylation or the enzymes responsible for palmitoylation dynamics may therefore represent a candidate therapeutic strategy for certain cancers.  相似文献   

12.
Protein palmitoylation is the post-translational addition of the 16-carbon fatty acid palmitate to specific cysteine residues by a labile thioester linkage. Palmitoylation is mediated by a family of at least 23 palmitoyl acyltransferases (PATs) characterized by an Asp-His-His-Cys (DHHC) motif. Many palmitoylated proteins have been identified, but PAT-substrate relationships are mostly unknown. Here we present a method called palmitoyl-cysteine isolation capture and analysis (or PICA) to identify PAT-substrate relationships in a living vertebrate system and demonstrate its effectiveness by identifying CKAP4/p63 as a substrate of DHHC2, a putative tumor suppressor.  相似文献   

13.
Thio-palmitoylation is the post-translational addition of the 16-carbon fatty acid, palmitate, to the thiol side chain of cysteine residues by a labile thioester bond. Palmitoylation increases the lipophilicity of a protein resulting in dramatic changes in its subcellular distribution such as moving from the endoplasmic reticulum to the plasma membrane or in subtle changes like an increased affinity for cholesterol-rich lipid rafts in membranes. Palmitoylation is also dynamic, making it unique among post-translational protein lipid modifications. Discovering the molecular identity of palmitoyl acyltransferases (PATs) was a watershed event that dramatically accelerated the pace of discovery in the field. Likewise, there has been increased interest in palmitoylation partly because many of the genes encoding PATs have been linked to cancer and other diseases. Now, with a greater understanding of how palmitate is enzymatically attached to proteins, some of the most interesting questions include: What are the substrates of each PAT?; how does a PAT recognize and palmitoylate a substrate?; how are PATs regulated?; and, how is depalmitoylation regulated? The answers to these questions are beginning to unfold due to the recent development of novel assays as well as the expansion and refinement of existing assays. Our ability to understand palmitoylation and its importance to human health and disease is only as good as the methods we use to test our hypotheses. The continued development of methods with increased sensitivity and selectivity is critical to this venture.  相似文献   

14.
Nearly all alpha subunits of heterotrimeric GTP-binding regulatory proteins (G proteins) are palmitoylated at cysteine residues near the N terminus. A regulated cycle of palmitoylation could provide a mechanism for modulating G protein signaling by affecting protein interactions and localization of the subunit. In the present studies we utilized both [(3)H]palmitate incorporation and pulse-chase techniques to address the dynamics of alpha(i) palmitoylation in Chinese hamster ovary cells. Both techniques demonstrated a dose- and time-dependent change in [(3)H]palmitate labeling of alpha(i) upon activation of stably expressed 5-hydroxytryptamine-1A receptors by the agonist (+/-)-2-dipropylamino-8-hydroxy-1,2,3, 4-tetrahydronaphthalene hydrobromide (DPAT), with an EC(50) of approximately 10 nm. For the incorporation assay, DPAT elicited an approximate doubling in labeling at the earliest time point measured. For the pulse-chase assay, DPAT promoted a significant loss of radiolabel almost equally as fast. These data demonstrate that the exchange of palmitate on alpha(i) is increased upon stimulation of 5-hydroxytryptamine-1A receptors through the combined processes of depalmitoylation and palmitoylation. These results provide the basis for extending the concept of regulated exchange of palmitate beyond G(s) and provide a framework for exploring the specific functional attributes of the palmitoylated and depalmitoylated forms of subunit.  相似文献   

15.
Protein S-palmitoylation, the most common lipid modification with the 16-carbon fatty acid palmitate, provides an important mechanism for regulating protein trafficking and function. The unique reversibility of protein palmitoylation allows proteins to rapidly shuttle between intracellular membrane compartments. Importantly, this palmitate cycling can be regulated by some physiological stimuli, contributing to cellular homeostasis and plasticity. Although the enzyme responsible for protein palmitoylation had been long elusive, DHHC family proteins, conserved from plants to mammals, have recently emerged as palmitoyl acyl transferases. Integrated approaches including advanced proteomics, live-cell imaging, and molecular genetics are beginning to clarify the molecular machinery for palmitoylation reaction in diverse aspects of cellular functions.  相似文献   

16.
S-Palmitoylation of G protein-coupled receptors (GPCRs) is a prevalent modification, contributing to the regulation of receptor function. Despite its importance, the palmitoylation status of the β(1)-adrenergic receptor, a GPCR critical for heart function, has never been determined. We report here that the β(1)-adrenergic receptor is palmitoylated on three cysteine residues at two sites in the C-terminal tail. One site (proximal) is adjacent to the seventh transmembrane domain and is a consensus site for GPCRs, and the other (distal) is downstream. These sites are modified in different cellular compartments, and the distal palmitoylation site contributes to efficient internalization of the receptor following agonist stimulation. Using a bioorthogonal palmitate reporter to quantify palmitoylation accurately, we found that the rates of palmitate turnover at each site are dramatically different. Although palmitoylation at the proximal site is remarkably stable, palmitoylation at the distal site is rapidly turned over. This is the first report documenting differential dynamics of palmitoylation sites in a GPCR. Our results have important implications for function and regulation of the clinically important β(1)-adrenergic receptor.  相似文献   

17.
Palmitoylation (S-acylation) is the reversible conjugation of a fatty acid (usually C16 palmitate) to intracellular cysteine residues of proteins via a thioester linkage. Palmitoylation anchors intracellular regions of proteins to membranes because the palmitoylated cysteine is recruited to the lipid bilayer. NCX1 is palmitoylated at a single cysteine in its large regulatory intracellular loop. The presence of an amphipathic α-helix immediately adjacent to the NCX1 palmitoylation site is required for NCX1 palmitoylation. The NCX1 palmitoylation site is conserved through most metazoan phlya. Although palmitoylation does not regulate the normal forward or reverse ion transport modes of NCX1, NCX1 palmitoylation is required for its inactivation: sodium-dependent inactivation and inactivation by PIP2 depletion are significantly impaired for unpalmitoylatable NCX1. Here we review the role of palmitoylation in regulating NCX1 activity, and highlight future questions that must be addressed to fully understand the importance of this regulatory mechanism for sodium and calcium transport in cardiac muscle.  相似文献   

18.
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.  相似文献   

19.
Regulators of G-protein signaling (RGS) proteins down-regulate signaling by heterotrimeric G-proteins by accelerating GTP hydrolysis on the G alpha subunits. Palmitoylation, the reversible addition of palmitate to cysteine residues, occurs on several RGS proteins and is critical for their activity. For RGS16, mutation of Cys-2 and Cys-12 blocks its incorporation of [3H]palmitate and ability to turn-off Gi and Gq signaling and significantly inhibited its GTPase activating protein activity toward aG alpha subunit fused to the 5-hydroxytryptamine receptor 1A, but did not reduce its plasma membrane localization based on cell fractionation studies and immunoelectron microscopy. Palmitoylation can target proteins, including many signaling proteins, to membrane microdomains, called lipid rafts. A subpopulation of endogenous RGS16 in rat liver membranes and overexpressed RGS16 in COS cells, but not the nonpalmitoylated cysteine mutant of RGS16, localized to lipid rafts. However, disruption of lipid rafts by treatment with methyl-beta-cyclodextrin did not decrease the GTPase activating protein activity of RGS16. The lipid raft fractions were enriched in protein acyltransferase activity, and RGS16 incorporated [3H]palmitate into a peptide fragment containing Cys-98, a highly conserved cysteine within the RGS box. These results suggest that the amino-terminal palmitoylation of an RGS protein promotes its lipid raft targeting that allows palmitoylation of a poorly accessible cysteine residue that we show in the accompanying article (Osterhout, J. L., Waheed, A. A., Hiol, A., Ward, R. J., Davey, P. C., Nini, L., Wang, J., Milligan, G., Jones, T. L. Z., and Druey, K. M. (2003) J. Biol. Chem. 278, 19309-19316) was critical for RGS16 and RGS4 GAP activity.  相似文献   

20.
S-palmitoylation describes the reversible attachment of fatty acids (predominantly palmitate) onto cysteine residues via a labile thioester bond. This posttranslational modification impacts protein functionality by regulating membrane interactions, intracellular sorting, stability, and membrane micropatterning. Several recent findings have provided a tantalizing insight into the regulation and spatiotemporal dynamics of protein palmitoylation. In mammalian cells, the Golgi has emerged as a possible super-reaction center for the palmitoylation of peripheral membrane proteins, whereas palmitoylation reactions on post-Golgi compartments contribute to the regulation of specific substrates. In addition to palmitoylating and depalmitoylating enzymes, intracellular palmitoylation dynamics may also be controlled through interplay with distinct posttranslational modifications, such as phosphorylation and nitrosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号