首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Sir2 is a NAD+-dependent protein deacetylase that extends lifespan in yeast and worms. This study examines seven human proteins homologous to Sir2 (SIRT1 through SIRT7) for cellular localization, expression profiles, protein deacetylation activity, and effects on human cell lifespan. We found that: 1) three nuclear SIRT proteins (SIRT1, SIRT6, and SIRT7) show different subnuclear localizations: SIRT6 and SIRT7 are associated with heterochromatic regions and nucleoli, respectively, where yeast Sir2 functions; 2) SIRT3, SIRT4, and SIRT5 are localized in mitochondria, an organelle that links aging and energy metabolism; 3) cellular p53 is a major in vivo substrate of SIRT1 deacetylase, but not the other six SIRT proteins; 4) SIRT1, but not the other two nuclear SIRT proteins, shows an in vitro deacetylase activity on histone H4 and p53 peptides; and 5) overexpression of any one of the seven SIRT proteins does not extend cellular replicative lifespan in normal human fibroblasts or prostate epithelial cells. This study supports the notion that multiple human SIRT proteins have evolutionarily conserved and nonconserved functions at different cellular locations and reveals that the lifespan of normal human cells, in contrast to that of lower eukaryotes, cannot be manipulated by increased expression of a single SIRT protein.  相似文献   

3.
SIRT1与基因转录   总被引:1,自引:0,他引:1  
 SIRT1(silent mating type information regulation 2 homolog 1)是一种具有NAD-依赖的蛋白去乙酰化酶活性的多功能转录调节因子.在体内通过对几种控制代谢及内分泌信号的转录因子去乙酰化作用来调节其活性.从而广泛参与调控哺乳动物细胞寿命的不同信号通路及糖代谢,胰岛素分泌等多条代谢通路,预示着SIRT1在医学临床应用和研究中可能极具应用价值.  相似文献   

4.
Huang J  Gan Q  Han L  Li J  Zhang H  Sun Y  Zhang Z  Tong T 《PloS one》2008,3(3):e1710
Sir2, a NAD-dependent deacetylase, modulates lifespan in yeasts, worms and flies. The SIRT1, mammalian homologue of Sir2, regulates signaling for favoring survival in stress. But whether SIRT1 has the function to influence cell viability and senescence under non-stressed conditions in human diploid fibroblasts is far from unknown. Our data showed that enforced SIRT1 expression promoted cell proliferation and antagonized cellular senescence with the characteristic features of delayed Senescence-Associated beta-galactosidase (SA-beta-gal) staining, reduced Senescence-Associated Heterochromatic Foci (SAHF) formation and G1 phase arrest, increased cell growth rate and extended cellular lifespan in human fibroblasts, while dominant-negative SIRT1 allele (H363Y) did not significantly affect cell growth and senescence but displayed a bit decreased lifespan. Western blot results showed that SIRT1 reduced the expression of p16(INK4A) and promoted phosphorylation of Rb. Our data also exposed that overexpression of SIRT1 was accompanied by enhanced activation of ERK and S6K1 signaling. These effects were mimicked in both WI38 cells and 2BS cells by concentration-dependent resveratrol, a SIRT1 activator. It was noted that treatment of SIRT1-.transfected cells with Rapamycin, a mTOR inhibitor, reduced the phosphorylation of S6K1 and the expression of Id1, implying that SIRT1-induced phosphorylation of S6K1 may be partly for the decreased expression of p16(INK4A) and promoted phosphorylation of Rb in 2BS. It was also observed that the expression of SIRT1 and phosphorylation of ERK and S6K1 was declined in senescent 2BS. These findings suggested that SIRT1-promoted cell proliferation and antagonized cellular senescence in human diploid fibroblasts may be, in part, via the activation of ERK/ S6K1 signaling.  相似文献   

5.
The yeast Sir2 protein mediates chromatin silencing through an intrinsic NAD-dependent histone deacetylase activity. Sir2 is a conserved protein and was recently shown to regulate lifespan extension both in budding yeast and worms. Here, we show that SIRT1, the human Sir2 homolog, is recruited to the promyelocytic leukemia protein (PML) nuclear bodies of mammalian cells upon overexpression of either PML or oncogenic Ras (Ha-rasV12). SIRT1 binds and deacetylates p53, a component of PML nuclear bodies, and it can repress p53-mediated transactivation. Moreover, we show that SIRT1 and p53 co-localize in nuclear bodies upon PML upregulation. When overexpressed in primary mouse embryo fibroblasts (MEFs), SIRT1 antagonizes PML-induced acetylation of p53 and rescues PML-mediated premature cellular senescence. Taken together, our data establish the SIRT1 deacetylase as a novel negative regulator of p53 function capable of modulating cellular senescence.  相似文献   

6.
7.
SIRT3 is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene, which mediates the effect of caloric restriction on life span extension in yeast and Caenorhabditis elegans. Because adipose tissue is essential in energy homeostasis and also plays a role in life span determination, we decided to investigate the function of sirtuin members in fat. We report here that murine SIRT3 is expressed in brown adipose tissue and is localized on the mitochondria inner membrane. Caloric restriction activates SIRT3 expression in both white and brown adipose. Additionally, cold exposure up-regulates SIRT3 expression in brown fat, whereas elevated climate temperature reduces the expression. Enforced expression of SIRT3 in the HIB1B brown adipocytes enhances the expression of the uncoupling protein PGC-1alpha, UCP1, and a series of mitochondria-related genes. Both ADP-ribosyltransferase and deacetylase activities of SIRT3 are required for this action. Furthermore, the SIRT3 deacetylase mutant exhibits a dominant negative effect by inhibiting UCP1 expression. This inhibitive effect can be abolished by the coexpression of PGC-1alpha, indicating a major role of PGC-1alpha in the SIRT3 action. In addition, SIRT3 stimulates CREB phosphorylation, which reportedly activates PGC-1alpha promoter directly. Functionally, sustained expression of SIRT3 decreases membrane potential and reactive oxygen species production while increasing cellular respiration. Finally, SIRT3, along with genes related to mitochondrial function, is down-regulated in the brown adipose tissue of several genetically obese mice. In summary, our results demonstrate that SIRT3 activates mitochondria functions and plays an important role in adaptive thermogenesis in brown adipose.  相似文献   

8.
9.
10.
Werner syndrome is an autosomal recessive disorder associated with premature aging and cancer predisposition caused by mutations of the WRN gene. WRN is a member of the RecQ DNA helicase family with functions in maintaining genome stability. Sir2, an NAD-dependent histone deacetylase, has been proven to extend life span in yeast and Caenorhabditis elegans. Mammalian Sir2 (SIRT1) has also been found to regulate premature cellular senescence induced by the tumor suppressors PML and p53. SIRT1 plays an important role in cell survival promoted by calorie restriction. Here we show that SIRT1 interacts with WRN both in vitro and in vivo; this interaction is enhanced after DNA damage. WRN can be acetylated by acetyltransferase CBP/p300, and SIRT1 can deacetylate WRN both in vitro and in vivo. WRN acetylation decreases its helicase and exonuclease activities, and SIRT1 can reverse this effect. WRN acetylation alters its nuclear distribution. Down-regulation of SIRT1 reduces WRN translocation from nucleoplasm to nucleoli after DNA damage. These results suggest that SIRT1 regulates WRN-mediated cellular responses to DNA damage through deacetylation of WRN.  相似文献   

11.
12.
13.
SIRT1 is a NAD-dependent deacetylase that regulates a variety of pathways including the stress protection pathway. SIRT1 deacetylates a number of protein substrates, including histones, FOXOs, PGC-1α, and p53, leading to cellular protection. We identified a functional interaction between cJUN N-terminal kinase (JNK1) and SIRT1 by coimmunoprecipitation of endogenous proteins. The interaction between JNK1 and SIRT1 was identified under conditions of oxidative stress and required activation of JNK1 via phosphorylation. Modulation of SIRT1 activity or protein levels using nicotinamide or RNAi did not modify JNK1 activity as measured by its ability to phosphorylate cJUN. In contrast, human SIRT1 was phosphorylated by JNK1 on three sites: Ser27, Ser47, and Thr530 and this phosphorylation of SIRT1 increased its nuclear localization and enzymatic activity. Surprisingly, JNK1 phosphorylation of SIRT1 showed substrate specificity resulting in deacetylation of histone H3, but not p53. These findings identify a mechanism for regulation of SIRT1 enzymatic activity in response to oxidative stress and shed new light on its role in the stress protection pathway.  相似文献   

14.
15.
16.
Hormonal control of androgen receptor function through SIRT1   总被引:4,自引:0,他引:4       下载免费PDF全文
The NAD-dependent histone deacetylase Sir2 plays a key role in connecting cellular metabolism with gene silencing and aging. The androgen receptor (AR) is a ligand-regulated modular nuclear receptor governing prostate cancer cellular proliferation, differentiation, and apoptosis in response to androgens, including dihydrotestosterone (DHT). Here, SIRT1 antagonists induce endogenous AR expression and enhance DHT-mediated AR expression. SIRT1 binds and deacetylates the AR at a conserved lysine motif. Human SIRT1 (hSIRT1) repression of DHT-induced AR signaling requires the NAD-dependent catalytic function of hSIRT1 and the AR lysine residues deacetylated by SIRT1. SIRT1 inhibited coactivator-induced interactions between the AR amino and carboxyl termini. DHT-induced prostate cancer cellular contact-independent growth is also blocked by SIRT1, providing a direct functional link between the AR, which is a critical determinant of progression of human prostate cancer, and the sirtuins.  相似文献   

17.
18.
Mammalian SIRT1 represses forkhead transcription factors   总被引:57,自引:0,他引:57  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号