首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of tropane alkaloids in organs of Anthocercis littorea and A. viscosa is reported. The following alkaloids have been isolated: atropine (hyoscyamine), apoatropine, noratropine (norhyoscyamine), littorine, hyoscine, norhyoscine, meteloidine, 3α, 6β-ditigloyloxytropan-7β-ol, 6β-tigloyloxytropan-3α-ol, 3α-tigloyloxytropane, tigloidine, tropine, ψ-tropine, (?)-tropan-3α-6β-diol, cuscohygrine and unknown bases.  相似文献   

2.
Datura meteloides plants were fed with tropine-[N-14Me] and the same compound together with the competitive inhibitors 3α-tigloyloxytropane: tropan-3α,6β-diol: 6β-hydroxy-3α-tigloyloxytropane: 3α,6β-ditigloyloxytropane: teloidine: meteloidine and 3α,6β-ditigloyloxytropan-7β-ol. The results obtained favour two distinct routes for the biosynthesis of the tigloyl esters of tropan-3α,6β-diol and teloidine (tropan-3α,6β,7β-triol); the first, either tropine → tropan-3α,6β-diol-3α,6β-ditigloyloxytropane or more probably, tropine→3α-tigloyloxytropane→6β-hydroxy-3α-tigloyloxytropane→3α,6β-ditigloyloxytropane; and second, tropine→3α,-tigloyloxytropane→“7β-hydroxy-3α-tigloyloxytropane”→meteloidine→3α,6β-ditigloyloxytropan-7β-ol.  相似文献   

3.
Datura meteloides; plants were fed with tiglic acid-[-14C] via the roots and after 2 days the percentage incorporation into the alkaloids 3α-tigloyloxytropane, 3α,6β-ditigloyloxytropane, meteloidine and 3α,6β-ditigloyloxytropan-7β-ol were 15·2, 1·82, 2·2 and 1·8 respectively. 3α,6β-Ditigloyloxytropane was partially hydrolysed to 6β-hydroxy-3α-tigloyloxytropane which contained 58·1% of the radioactivity of the original base, whereas 3α,6β-ditigloyloxytropan-7β-ol gave meteloidine containing only 9·2% of the original activity. The results suggest that the di- and tri-hydroxytropanes may be formed by different routes.  相似文献   

4.
Five-month-old Datura meteloides plants were fed via the roots with 3-hydroxy-2-methylbutanoic acid-[1-14C] and isoleucine-[U-14C] as a positive control. After 5 days the plants were collected and in each case the root alkaloids 3α,6β-ditigloyloxytropane, 3α,6β-ditigloyloxytropan-7β-ol, meteloidine, hyoscine and hyoscyamine were isolated. Whereas isoleucine served as a precursor for the tiglic acid moieties 3-hydroxy-2-methylbutanoic acid did not.  相似文献   

5.
Five-month-old Datura innoxia plants were fed via the roots with either d(+)-hygrine-[2′-14C] or l(?)-hygrine-[2′-14C]. After 7 days the root alkaloids 3α,6β-ditigloyloxytropane, 3α,6β-ditigloyloxytropan-7β-ol, hyoscine, hyoscyamine and cuscohygrine were isolated from both groups of plants. d(+) but not l(?)-hygrine acts as a precursor for the tropane alkaloids whereas both enantiomers appeared to serve equally well in the biosynthesis of cuscohygrine.  相似文献   

6.
5α,6-3H2-Solacongestidine and 5α,6-3 H2-(22S)-dihydrosolacongestidine administered to Solanum dulcamara as well as 16-3H2-(22S: 25R)-22,26-epimino- cholest-5-en-3β-ol (25-isodihydroverazine) and 7α-3H-(22S: 25R)-22,26-epimino-cholest-5-en-3β,16β-diol administered to Solanum laciniatum were converted to coladulcidine and solasodine, respectively. These results are discussed in relation to spirosolane alkaloid biosynthesis.  相似文献   

7.
Datura innoxia plants were wick fed with (±)-2-methylbutyric acid-[1-14C] and harvested after 7 days. The root alkaloids 3α,6β-ditigloyloxytropane and 3α,6β-ditigloyloxytropan-7β-ol were isolated and degraded. In each case the radioactivity was located in the ester carbonyl group indicating that this acid is an intermediate in the biosynthesis of tiglic acid from l-isoleucine. On the other hand, (±)-2-hydroxy-2-methylbutyric acid-[1-14C], which was fed to hydroponic cultures of Datura innoxia alongside isoleucine[U-14C] positive control plants, is not an intermediate.  相似文献   

8.
The air-dried stems and ripe fruit of Drypetes inaequalis Hutch. (Euphorbiaceae) were studied. Four triterpene derivatives, characterized as lup-20(29)-en-3β,6α-diol, 3β-acetoxylup-20(29)-en-6α-ol, 3β-caffeoyloxylup-20(29)-en-6α-ol and 28-β d-glucopyranosyl-30-methyl 3β-hydroxyolean-12-en-28,30-dioate along with 10 known compounds were isolated from the whole stems. One triterpene, characterized as 3α-hydroxyfriedelan-25-al along with six known compounds were isolated from the ripe fruit. Their structures were established on the basis of spectroscopic analysis and chemical evidence. The triterpenes were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria, and two of them appeared to be modestly active.  相似文献   

9.
I. Belič  R. Komel  H. Sočič 《Steroids》1977,29(2):271-276
(22S,25S)-5α-tomatanin-3β-ol, N-acetyl-(22S,25S)-5α-tomatanin-3β-ol, (22R,25R)-5α-tomatanin-3β-ol and (22R,25S)-22,26-epimino-5α-cholestane-3β,16β-diol are transformed by Nocardia restrictus into corresponding 3α-ol compounds with yields from 70 to 5%.  相似文献   

10.
Datura innoxia plants were wick fed with angelic acid-[1-14C] and l-isoleucine-[U-14C] to act as a positive control. After 7 days the root alkaloids 3α-tigloyloxytropane, 3α,6β-ditigloyloxytropane, and 3α,6β-ditigloyloxytropan-7β-ol were isolated and it was determined that angelic acid is not a precursor for the tigloyl moiety of these alkaloids. Tiglic acid-[1-14C] which was fed via the roots to hydroponic cultures of Datura innoxia, was incorporated to a considerable degree after 8 days.  相似文献   

11.
本文对采自海南三亚海域的疏枝刺柳珊瑚(Echinogorgia pseudossapo)化学成分进行研究,分离到11个甾醇类化合物。经波谱数据分析,分别鉴定为cholest-5-en-3β-ol(1),24-methylene-cholest-4-ene-3β,6β-diol(2),24-norcholesta-22-en-3β-ol(3),acanthovagasteroid A(4),calicoferol E(5),calicoferol F(6),6-hydroxy-cholest-4-ene-3-one(7),echinoflorasterol(8),echissaposterol(9),24-methylcholest-5-en-3β,7α-diol(10)和24-methylcholest-5,22(E)-dien-3β,7α-diol(11)。除化合物8外,其余化合物均首次从该种海洋动物中分离得到。  相似文献   

12.
Tropine-3β-3H, N-methyl-14C was fed to Datura meteloides plants. After 7 days radioactive meteloidine, scopolamine, hyoscyamine, and 7β-hydroxy-3α,6β-ditigloyloxytropane were isolated from the plants and found to have essentially the same 3H/14C ratio as in the administered tropine. Degradation of the meteloidine established that all its tritium was located at C-3 and all the 14C was on the N-methyl group, indicating that tropine is a direct precursor of teloidine.  相似文献   

13.
本文对三种毒菌的化学成分进行了研究。从光盖伞(Psilocybe spp)分离鉴定了4个化合物,经波谱分析鉴定为:(22E,24R)-麦角甾-7,22-二烯-3β-十八烷酸酯(1)、β-胡萝卜苷(2)、(22E,24R)-5α,6α-环氧麦角甾-8,22-二烯-3β,7α-二醇(3)、色氨酸(4);从假褐云斑鹅膏(Amanita pseudoporphyria)分离鉴定了4个化合物:(22E,24R)-3β-羟基-5α,8α-过氧化麦角甾-6,22-二烯(5)、(22E,24R)-麦角甾-7,22-二烯-3β,5α,6β-三醇(6)、1-O-β-D-吡喃葡萄糖基-(2S,3R,4E,8E,2′R)-2-N-(2′-羟基棕榈酰)-9-甲基-4,8-脱氢鞘氨醇(7)、1-O-β-D-吡喃葡萄糖基-(2S,3R,4E,8E,2′R)-2-N-(2′-羟基十八烷酰)-9-甲基-4,8-脱氢鞘氨醇(8);大青褶伞(Chlorophyllum molybdites)发酵菌丝体分离鉴定了4个化合物:5、6、(22E,24R)-5α,6α-环氧麦角甾-8(14),22-二烯-3β,7α-二醇(9)、(22E,24R)-麦角甾-7,22-二烯-3β-醇(10)。除化合物9外其它化合物均为首次从以上相应毒菌中分离得到。  相似文献   

14.
The chemical syntheses of a number of 14α-alkyl substituted 15-oxygenated sterols have been pursued to permit evaluation of their activity in the inhibition of the biosynthesis of cholesterol and other biological effects. Described herein are the first chemical syntheses of 14α-ethyl-5α-cholest-7-en-3β-ol-15-one, bis-3β,15α-acetoxy-14α-ethyl-5α-cholest-7-ene, 3β-acetoxy-14α-ethyl-5α-cholest-7-en-15β-ol, 14α-ethyl-5α-cholest-7-en-3β,15β-diol, 14α-ethyl-5α-cholest-7-en-3β,15α-diol, 3β-hexadecanoyloxy-14α-ethyl-5α-cholest-7-en-15α-ol, 3β-hexadecanoyloxy-14α-ethyl-5α-cholest-7-en-15β-ol, bis-3β,15α-hexadecanoyloxy-14α-ethyl-5α-cholest-7-ene, 3β-hexadecanoyloxy-14α-ethyl-5α-cholest-7-en-15-one, 3α-benzoyloxy-14α-ethyl-5α-cholest-7-en-15-one, 14α-ethyl-5α-cholest-7-en-3α-ol-15-one, 14α-ethyl-5α-cholest-7-en-15-on-3β-yl pyridinium sulfate, 14α-ethyl-5α-cholest-7-en-15-on-3β-yl potassium sulfate (monohydrate), 14α-ethyl-5α-cholest-7-en-15-on-3α-yl pyridinium sulfate, 14α-ethyl-5α-cholest-7-en-15-on-3α-yl potassium sulfate (monohydrate), 3β-ethoxy-14α-ethyl-5α-cholest-7-en-15-one, 3β-acetoxy-14α-n-propyl-5α-cholest-7-en-15-one, 14α-n-propyl-5α-cholest-7-en-3β-ol-15-one, bis-3β, 15α-acetoxy-14α-n-propyl-5α-cholest-7-ene, 3β-acetoxy-14α-n-propyl-5α-cholest-7-en-15β-ol, 14α-n-propyl-5α-cholest-7-en-3β, 15α-diol, 14α-n-propyl-5α-cholest-7-en-3β, 15β-diol, 14α-n-butyl-5α-cholest-7-en-3β-ol-15-one, 3β-acetoxy-14-α-n-butyl-5α-cholest-7-en-15-one, bis-3β,15α-acetoxy-14α-n-butyl-5α-cholest-7-ene, 3β-acetoxy-14α-n-butyl-5α-cholest-7-en-15β-ol, 14α-n-butyl-5β-cholest-7-en-3β, 15β-diol, and 14α-n-butyl-5α-cholest-7-en-3β, 15α-diol.  相似文献   

15.
From the neutral fraction of the hexane extract of Halimium viscosum the following components were isolated; 7-labdene-3β,l5-diol, 15-acetoxy-7-labden-3β-ol and a new diterpene-lactone with a rearranged ent-labdane skeleton, 13S-ent-9, 1-friedo-labd-1(10)-en-15-acetoxy-2R,18-olide. From the non-saponifiable part, beside 7-labdene-3β, 15-diol and 7, 13E-labdadiene-3β, 15-diol, the new diterpene 8(17)-labdene-3β, 7α, 15-triol was extracted. The structures were elucidated by spectroscopic methods, correlations or synthesis.  相似文献   

16.
Two oligofurostanosides and two spirostanosides, isolated from a methanol extract of Asparagus adscendens (leaves), were characterized as 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-22α-methoxy-(25S)-furost-5-en-3β,26-diol (Adscendoside A), 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-(25S)-furost-5-en-3β,22α,26-triol-(Adscendoside B), 3-O-[{α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin A) and 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyr anosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin B), respectively. Adscendin B and Adscendoside A are the artefacts of Adscendoside B formed through hydrolysis and methanol extraction respectively.bl]  相似文献   

17.
3α-Tigloyloxytropane-[14CO] [N-14Me], ratio 1·6:1 and valtropine-[14CO] [N-14Me], ratio 1·75:1 were separately fed via cotton wicks to 4-month-old Datura innoxia plants. After 8 days the root alkaloids 3α-tigloyloxytropane, 3α,6β-ditigloyloxytropane and 3α,6β-ditigloyloxytropan-7β-ol were isolated and the distribution of radioactivity in the acid and alkamine moieties was determined by hydrolysis. The precursor ratios were not maintained in the isolated ditigloyl esters, a result which does not support our hypothesis that the ditigloyl esters are formed by the progressive hydroxylation of 3α-tigloyloxytropane.  相似文献   

18.
Two D-homosteroids were isolated from the hydrolyzate of 5β-pregnane -3α,20α-diol disulfate (II) when it was refluxed in 3N hydrochloric acid. The structures of these steroids have been elucidated as 17α-methyl-D-homo-5β-androstane-3α, 17aβ-diol (VI) and 17α-methyl-17aγb-chloro-D-homo-5β-androstan-3α-ol (VIII) by instrumental analyses. The former was identical with a synthetic specimen derived from 5β-pregnane-3α,20β-diol di-sulfate (IV) by uranediol rearrangement. The main hydrolyzates obtained were 17α-ethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol (V) and 5β-pregnane-3α, 20α-diol (III).  相似文献   

19.
The configurations of (6′R)-β,ε-carotene, (3′R,6′R)-β,ε-caroten-3′-ol (α-cryptoxanthin), (3R,3′R,6′R)-β,ε-carotene-3,3′-diol (lutein), (3R)-β,β-caroten-3-ol (β-cryptoxanthin), (3R,3′R)-β,β-carotene-3,3′-diol (zeaxanthin) and all-trans (3S,5R,6S,3′R)-5,6-epoxy-5,6-dihydro-β,β-carotene-3,3′-diol (antheraxanthin) were established by CD and 1H NMR studies. The red algal carotenoids consequently possessed chiralities at each chiral center (C-3, C-5, C-6, C-3′, C-6′), corresponding to the chiralities established for the same carotenoids in higher plants. Two post mortem artifacts from Erythrotrichia carnea were assigned the chiral structures (3S,5R,8R,3′R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol [(8R)-mutatoxanthin] and (3S,5R,8S,3′R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol [(8S)-mutatoxanthin]. This is the first well documented report of a naturally occurring β,ε-caroten-3′-ol (1H NMR, CD, chemical derivatization).  相似文献   

20.
Three spirostanol and two furostanol glycosides were isolated from a methanol extract of the roots of Asparagus curillus and characterized as 3-O-[α-l-arabinopyranosyl (1→4)- β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{α-l-rhamnopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-(25S)-5β-spirostan- 3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β- d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- 22α-methoxy-(25S)-5β-furostan-3β, 26-diol and 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- (25S)-5β-furostan-3β, 22α, 26-triol respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号