首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to understand the variation of humoral and cellular immune responses to A16R live spore and AVA vaccine and to identify efficient immunological parameters for the early evaluation of post immunization in mice, we dynamically monitored the antibody production and cellular responses after the vaccination of Balb/C mice with the anthrax vaccines. The results show that both anti-AVA and anti-Spore antibodies were detectable in the A16R live spore vaccinated group while high titers of anti-AVA antibodies but not anti-Spore antibodies existed in the AVA-immunized group. IgG1 and IgG2 were the major subtypes of IgG in both of the two groups. However, the IgG2a level was significantly higher in the A16R group than in the AVA group. At the cellular level, responses of antigen-specific TH2, TH1 and plasma cells were detected. The peripheral TH2 responses could be seen on day 5 after vaccination, and remained at a high level throughout the experiment (from day 5 post primary immunization to day 60 post the tertiary immunization); the TH1 responses to A16R vaccine appeared on day 5, while the responses to AVA could only be detected by day 7 after the secondary immunization; a low level of TH1 responses could be observed at the end of the experiment. Antigen-specific plasma cells could be found in the peripheral blood of both the immunized groups, however, the responses in the A16R group appeared earlier, lasted longer, and shown an ascending tendency until the end of the experiment when the plasma cell responses in the AVA group were reduced to a very low level. The results suggest that the multiple antigen containing A16R live spore vaccine induces better immune responses than AVA. Combined with serum antibody titers, TH2, TH1 and plasma cell responses could be used as immunological parameters for the evaluation of vaccine efficacy. These findings may afford new insight into the early evaluation of vaccination as well as being a powerful strategy for vaccine development.  相似文献   

2.
炭疽活疫苗家兔免疫力与血清抗芽胞IgG关系的研究   总被引:1,自引:0,他引:1  
炭疽疫苗是预防炭疽流行和炭疽生物恐怖的重要手段。已有动物实验表明,炭疽活疫苗的保护力优于以保护性抗原为主要成份的无细胞疫苗,但两类现行疫苗都有待重新评价和改进。炭疽疫苗的效力必须用适当的实验室方法进行检测与分析才能了解其性质和细节。试验中力图探寻炭疽活疫苗家兔免疫力与血清抗芽胞抗体水平的关系。用“皮上划痕人用炭疽活疫苗”免疫家兔,以特定制备的炭疽芽胞抗原用ELISA法检测血清抗炭疽芽胞IgG抗体水平,并用强毒炭疽杆菌攻击进行效力试验。免疫家兔血清几何平均抗芽胞IgG滴度在免疫后一个月内持续升高,14d达到206,28d时达到776,这时其抵抗20MLD毒菌攻击的保护率为80%,符合中国生物制品规程要求的保护力。一个月后抗体水平开始下降,42d时滴度降至223。实验所揭示的炭疽减毒活疫苗诱导的家兔抗芽胞IgG抗体与抗炭疽保护力之间的关系,既为评价现行疫苗提供了资料,也为研制新型疫苗建立了参考性指标。  相似文献   

3.
目的:评价采用轮状病毒灭活疫苗进行初始免疫,减毒活疫苗进行加强免疫的序贯免疫方案的体液免疫应答效果。方法:将实验小鼠随机分为4组(口服疫苗组、序贯疫苗组、口服对照组及序贯对照组),按相应方案免疫后,ELISA检测血清轮状病毒特异性IgG和IgA、肠道轮状病毒特异性IgA;微量中和实验检测血清病毒特异性中和抗体;同时采用ELISA分析口服活疫苗后病毒排出情况。结果:与对照组相比,序贯疫苗组小鼠产生的轮状病毒特异性血清IgG、IgA、中和抗体及肠道IgA水平显著升高。与口服疫苗组相比,序贯疫苗组的免疫方案诱发的轮状病毒特异性血清IgG、IgA、中和抗体水平显著升高,肠道IgA水平两组间没有显著差异。同时,与口服疫苗组相比,序贯疫苗组中轮状病毒灭活疫苗进行的初始免疫未影响第一次口服活疫苗后病毒的排出量和排出时间,但序贯疫苗组第二次口服活疫苗后病毒的排出量迅速减少,排毒时间快速缩短,与口服疫苗组第三次服苗后病毒的排出量和排出时间相似。结论: 轮状病毒灭活疫苗和减毒活疫苗序贯免疫可有效诱发小鼠全身和黏膜局部的体液免疫应答,该方案将有可能成为轮状病毒疫苗临床应用的候选方案。  相似文献   

4.
单核细胞增生李斯特氏菌(Listeria monocytogenes,Lm)是重要的人兽共患李斯特氏菌病的致病菌,疫苗免疫是预防该病原菌感染的有效手段之一。本研究研制了添加矿物油佐剂MontanideTM ISA61VG的新型灭活细菌疫苗,并对其安全性和免疫应答特性进行了研究。结果表明,ISA 61 VG佐剂疫苗具有较好的安全性;诱导小鼠产生的抗李斯特氏菌溶血素O抗体滴度以及IgG2a/IgG1比值显著高于无佐剂免疫组;在致死剂量Lm攻毒下,能对小鼠提供100%的免疫保护。因此,ISA 61VG佐剂能显著增强灭活疫苗诱导宿主产生体液免疫和细胞免疫应答的能力,从而提高灭活疫苗的保护性免疫应答作用,是预防人和动物Lm感染的潜在疫苗候选株。  相似文献   

5.
炭疽杆菌芽胞在炭疽免疫中发挥基本作用。实验中以炭疽活芽胞疫苗为原形,建立了制备灭活和裂解炭疽芽胞的方法,研究了各种灭活和裂解炭疽芽胞疫苗不同浓度、不同剂次免疫家兔的抗芽胞和毒素IgG应答,总结分析了各种灭活和裂解炭疽芽胞疫苗用于新疫苗成分之一的可能性。甲醛灭活炭疽芽胞疫苗设芽胞浓度2.5×108剂量组、5×108剂量组、1×109剂量组,于0、4、8周时3次免疫。在3剂免疫后血清抗炭疽芽胞IgG水平持续升高,首次免疫后4、8、12周时家兔血清中抗芽胞IgG几何平均滴度可达到600~16000。裂解炭疽芽胞疫苗的制备和动物免疫中,只采取了2.5×108芽胞浓度,两剂免疫,免疫时间为0、4周。在首次免疫后4、8、12周时家兔血清中抗芽胞IgG几何平均滴度分别为362、776和388。各时间点采集的家兔血清未能测出或只测出极微量的抗炭疽毒素IgG。通过上述研究认为,以裂解炭疽芽胞抗原作为炭疽疫苗成分之一,其抗原性和免疫原性是适宜的;免疫剂量可以设定为2.5×108芽胞浓度上下;免疫次数可定为2剂间隔1个月。  相似文献   

6.
CIA07 is an immunostimulatory agent composed of E. coli DNA fragments and modified LPS lacking the lipid A moiety. In this study, we investigated whether CIA07 promotes immune responses as an adjuvant to the influenza subunit vaccine. Balb/c mice were immunized intramuscularly once or twice at a 4-week interval with the trivalent influenza subunit vaccine antigen alone or in combination with CIA07 as adjuvant. Antigen-specific serum antibody titers and hemagglutination-inhibition (HI) antibody titers were assessed. At 4 weeks after each immunization, the antigen-specific total serum IgG antibody titer in mice receiving CIA07 was 2 to 3 times higher than that in animals administered antigen alone (P<0.05). The CIA07-treated group additionally displayed higher HI antibody titers against each of the 3 vaccine strains, compared to the antigen group. Animals receiving antigen alone displayed barely detectable antigen-specific serum IgG2a antibody titers. In contrast, coadministration of CIA07 with antigen led to significantly enhanced IgG2a antibody responses, suggesting that CIA07 stimulates a Th1-type immune response. Moreover, the CIA07-treated group displayed a marked increase in the number of interferon gamma-producing CD8(+) T cells in splenocytes. These data collectively demonstrate that CIA07 has the ability to induce both Th1-type cellular and Th2-type humoral immune responses to the influenza subunit vaccine, and support its potential as an effective adjuvant to the influenza vaccine.  相似文献   

7.
Previous studies have described an oral influenza vaccine comprising whole irradiated virus and an erythrocyte complex (IV-EC), which gave broad-based protection against influenza virus challenge in mice. The present study examined the immune responses generated after live virus challenge of vaccinated mice, particularly to determine whether mice vaccinated with IV-EC had enhanced CTL activity to compensate for the previously reported diminution in lung IgA response. Oral vaccine groups examined were IV-EC, live virus alone (LV) or live virus-erythrocyte complex (LV-EC), compared with irradiated virus and erythrocyte alone controls. The antibody responses of IV-EC and LV-EC vaccinated mice showed significantly elevated lung and serum IgG2a levels post live virus challenge, with no comparable increases in IgG1 levels compared to controls. Spleen cells from IV-EC mice showed an enhanced post-challenge proliferative response to antigen compared with mice that had received live oral vaccines, indicating enhanced cellular activity post IV-EC immunization. However, CTL activity was not enhanced for IV-EC mice, and live virus-vaccinated mice had reduced CTL activity compared with controls, indicating that CTL were not important for post-vaccine protection. Cytokine analysis revealed a predominant IFN-gamma response in spleen cells from orally vaccinated mice, whereas IL-4 was not detected in any lung or spleen culture analysed. The results suggest, therefore, that protection from live influenza challenge after IV-EC or LV-EC vaccination was due to an IFN-mediated IgG2a response. Definitive confirmation of the role of these factors in post-vaccine protection can now be tested in IgG2a-depleted or IFN-gamma gene knockout mouse models.  相似文献   

8.
Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.  相似文献   

9.
目的:考查DNA疫苗注射免疫后电脉冲和布吡卡因佐剂化DNA疫苗递送方式对A型肉毒毒素DNA核酸疫苗免疫效果的影响。方法:A型肉毒毒素DNA复制子疫苗和传统DNA疫苗肌肉注射免疫小鼠后电脉冲和布吡卡因佐剂化DNA后再肌肉注射免疫小鼠;检测免疫小鼠的抗体和细胞水平,并分析抗体亚类。结果:电脉冲和布吡卡因这二种递送方式均增强DNA复制子疫苗和传统DNA疫苗的体液免疫和细胞免疫效果;电脉冲提高DNA疫苗免疫效果更为明显,并且电脉冲和布吡卡因组合这种递送方式增强DNA疫苗体液免疫和细胞免疫水平最高;与传统DNA疫苗相比,A型肉毒毒素DNA复制子疫苗在这些递送方式下均诱导产生了更好的特异性体液免疫和细胞免疫应答,并且这些递送方式没有改变DNA疫苗的Th1/Th2免疫应答特性,即DNA复制子疫苗诱导产生Th1/Th2混合免疫应答但偏向于Th2途经,而传统DNA疫苗则完全偏向于Th2途经。结论:电脉冲和布吡卡因增强DNA复制子疫苗和传统DNA疫苗的免疫效果,是提高DNA疫苗免疫原性的良好策略。  相似文献   

10.
嗜水气单胞菌菌蜕的制备及其对银鲫的口服免疫   总被引:1,自引:0,他引:1  
菌蜕系统是一个自身具有佐剂性质的新型疫苗体系,不含细胞质内容物但具有细菌的完整表面抗原结构,可诱导机体的体液、细胞免疫应答及增强黏膜免疫反应.本研究通过将带有裂解基因E的质粒pElysis转化至嗜水气单胞菌J-1株中,对Ah J-1(pElysis)进行温度诱导,温度从28℃升至42℃,每隔15min检测菌液的OD600值,测定其溶菌动力学,并做无菌检验,用扫描电镜观察裂解后的细菌形态,研究其作为口服疫苗对银鲫的效果.结果显示,通过温度诱导,嗜水气单胞菌J-1(pElysis)OD值在诱导30min后开始持续下降,75min时开始趋于平稳,到120min溶菌效率达99.99%,诱导16h后进行无菌检验,证实其无活菌.扫描电镜观察绝大部分菌体经诱导后形成菌蜕,细胞两端有溶菌通道.动物试验表明,用菌蜕口服免疫的银鲫,在第5周产生较高的凝集抗体,达到27,并能维持2周;而甲醛灭活苗组为26,维持时间仅一周;生理盐水对照组效价仅2.攻击试验表明,菌蜕疫苗组和甲醛灭活疫苗组对嗜水气单胞菌强毒株J.1的攻击均有保护作用,其相对保护率分别为16/20(78.95%)和12/20(57.9%),显示菌蜕疫苗比普通灭活疫苗能更有效地激活机体的免疫保护.  相似文献   

11.
BACKGROUND: An increasing number of women are being vaccinated during child-bearing years, including vaccination with BioThrax® (Anthrax Vaccine Adsorbed, or AVA). As only a limited number of studies exist in humans that have examined the effects of AVA on reproductive health, this study was conducted in order to evaluate the impact AVA vaccination may have on pregnant female rabbits and their offspring. METHODS: Two hundred female rabbits were vaccinated with saline, adjuvant, or AVA twice prior to mating and on one of two occasions during gestation, in order to have exposure to the antigen during organogenesis. Blood samples were collected from does and fetuses/kits to assess the development and in utero transfer of antibodies to Bacillus anthracisprotective antigen (anti-PA IgG). Half of the does underwent Caesarean-sectioning on gestation day 29 and a gross necropsy was performed on both the does and their fetuses. The other half were allowed to naturally deliver and gross necropsy of the does and their kits was performed on lactation day 29. RESULTS: ELISA results showed that anti-PA IgG was generated by the does and passed to the fetuses/kits at detectable levels. CONCLUSIONS: AVA directly, or indirectly through the production of anti-PA IgG, did not appear to have an adverse effect on the pregnant females or their offspring, as measured by mating and fertility indices, natural delivery observations, clinical signs, gross lesions, in utero growth and survival, morphological development, or kit viability. Birth Defects Res (Part B) 86:370–376, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

12.

Background

The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.

Methods

We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.

Results

The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.

Conclusion

These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.  相似文献   

13.
超抗原SEA增强小鼠对HBV DNA 疫苗的免疫反应   总被引:4,自引:0,他引:4  
观察超抗原SEA(D227A)的真核表达载体(pmSEA),对HBVDNA疫苗诱导Balbc小鼠(H2d)免疫应答的调节作用。肌内注射空载体pcDNA3、HBVDNA疫苗加pmSEA佐剂(pHBVS2S+pmSEA)或不加佐剂(pHBVS2S);ELISA法测定血清抗HBs;ELISPOT检测分泌IFNγ的脾淋巴细胞;4h51Cr释放法检测小鼠脾细胞CTL活性。HBVDNA佐剂组免疫小鼠抗HBsAg抗体滴度明显高于不加佐剂组,其IgG1IgG2a的比例不同于多肽免疫组,二者分别为0.282与10。HBVDNA佐剂组均能增强IgG1和IgG2a的产生,是不加佐剂组的1.36、1.73倍。佐剂组小鼠脾淋巴细胞IFNγ的分泌量是不加佐剂组2~3倍。CTL细胞杀伤活性(E:T=100)佐剂组与不加佐剂组分别为:69.77%±7.5%、42.81%±7.7%,差异显著(P<0.05)。HBVDNA疫苗具有较强的免疫原性,能够诱导机体产生特异性的抗体及CTL反应;pmSEA佐剂能够提高小鼠对DNA疫苗的免疫应答,有望成为DNA疫苗的免疫佐剂。  相似文献   

14.
目的:探讨新型呼肠病毒R4株S片段免疫小鼠后引发的免疫应答。方法构建4个不同S基因节段的重组真核表达质粒,并免疫小鼠;ELISA检测血清以研究R4特异性抗体升高水平,并对其抗体亚型进行鉴定;ELISPOT检测小鼠淋巴细胞INF-γ的表达情况。结果与对照组相比,4个重组质粒免疫的小鼠血清都有明显的R4特异性抗体升高,尤其以S1和S3基因免疫后抗体水平较高,且均以IgG2a占绝对优势;S1基因免疫组小鼠的细胞免疫应答最强。结论 S1基因重组质粒免疫小鼠后可同时引发较强的体液免疫和细胞免疫应答,是较为理想的疫苗备选基因片段。  相似文献   

15.
To determine whether a protective immune response could be elicited by oral delivery of a recombinant live bacterial vaccine, Helicobacter pylori urease subunit B (UreB) was expressed for extracellular expression in food-grade bacterium Lactococcus lactis . The UreB-producing strains were then administered orally to mice, and the immune response to UreB was examined. Orally vaccinated mice produced a significant UreB-specific serum immunoglobulin G (IgG) response. Specific anti-UreB IgA responses could be detected in the feces of mice immunized with the secreting lactococcal strain. Mice vaccinated orally were significantly protected against gastric Helicobacter infection following a challenge with H. pylori strain SS1. In conclusion, mucosal vaccination with L. lactis expressing UreB produced serum IgG and UreB-specific fecal IgA, and prevented gastric infection with H. pylori .  相似文献   

16.
He H  Tang Y  Qin X  Xu W  Wang Y  Liu X  Liu X  Xiong S  Li J  Zhang M  Duan M 《DNA and cell biology》2005,24(8):516-520
The spike (S) protein, a main surface antigen of the SARS coronavirus (SARS-CoV), is considered to be one of the most important protective antigen candidates for targets for vaccine design against the virus. In this study, a secreted recombinant expression plasmid, pVAX-S1, encoding the partial S protein with a signal peptide, was constructed and used to immunize BALB/c mice through electroporation. It was demonstrated that the eukaryotic expression vector pVAX-S1 was successfully constructed by restriction enzyme and sequence analysis. The expressed protein could be detected specifically by Western blot analysis. The serum IgG level of the vaccine group mice was significantly higher than that of the corresponding control group at day 14 after vaccination (P < 0.05). The vaccine group demonstrated significantly higher S1 protein lymphocyte proliferation index (LPI) than the control groups (P < 0.05). Furthermore, in the experimental group, a decrease in the ratio of CD4(+) to CD8(+) T-lymphocytes and an increase level of IFN-gamma in serum were observed. However, interleukin-4 (IL-4) was not detectable in two groups. These results strongly demonstrated that the pVAX-S1 plasmid could induce humoral and cellular immune responses in mice, and may be a potential candidate for a DNA vaccine against the SARS coronavirus.  相似文献   

17.
In this study, we designed and engineered a two-component recombinant fusion protein antigen as a vaccine candidate against the possible biological threat of Yersinia pestis. The recombinant F1-V pro-tein was formulated with Alhydrogel. A four-time injection with a dosage of 10, 20 and 50 μg/mouse in about two months was adopted for vaccination. Serum antibodies and subclass of T helper cells were measured and analyzed. After the final vaccination, the mice were challenged by 141 strain with 25― 600 LD50. In conclusion, the recombinant vaccine was capable of inducing protective immunity against subcutaneous challenge. The level of serum IgG was supposed to be a main factor that affected the final protection of challenge. 20 μg recombinant protein could induce an endpoint titre of serum IgG as high as 51200, which was enough to afford 100% protection against 400 LD50 virulent 141 challenge. The antibody isotype analysis showed that the vaccine induced predominantly an IgG1 rather than IgG2a response. Flow cytometric analysis revealed that Alhydrogel significantly helped induce a stronger humoral immunity instead of CTL cellular response. These findings suggested that the plague F1-V subunit vaccine is promising for the next plague vaccine.  相似文献   

18.
Intranasally administered influenza vaccines could be more effective than injected vaccines, because intranasal vaccination can induce virus-specific immunoglobulin A (IgA) antibodies in the upper respiratory tract, which is the initial site of infection. In this study, immune responses elicited by an intranasal inactivated vaccine of influenza A(H5N1) virus were evaluated in healthy individuals naive for influenza A(H5N1) virus. Three doses of intranasal inactivated whole-virion H5 influenza vaccine induced strong neutralizing nasal IgA and serum IgG antibodies. In addition, a mucoadhesive excipient, carboxy vinyl polymer, had a notable impact on the induction of nasal IgA antibody responses but not on serum IgG antibody responses. The nasal hemagglutinin (HA)-specific IgA antibody responses clearly correlated with mucosal neutralizing antibody responses, indicating that measurement of nasal HA-specific IgA titers could be used as a surrogate for the mucosal antibody response. Furthermore, increased numbers of plasma cells and vaccine antigen-specific Th cells in the peripheral blood were observed after vaccination, suggesting that peripheral blood biomarkers may also be used to evaluate the intranasal vaccine-induced immune response. However, peripheral blood immune cell responses correlated with neutralizing antibody titers in serum samples but not in nasal wash samples. Thus, analysis of the peripheral blood immune response could be a surrogate for the systemic immune response to intranasal vaccination but not for the mucosal immune response. The current study suggests the clinical potential of intranasal inactivated vaccines against influenza A(H5N1) viruses and highlights the need to develop novel means to evaluate intranasal vaccine-induced mucosal immune responses.  相似文献   

19.
To express human papillomavirus (HPV) L 1 capsid protein in the recombinant strain of Shigella and study the potential of a live attenuated Shigella-based HPV prophylactic vaccine in preventing HPV infection, the icsA/virG fragment of Shigella-based prokaryotic expression plasmid pHS3199 was constructed. HPV type 16 L1 (HPV16L1) gene was inserted into plasmid pHS3199 to form the pHS3199-HPV16L1 construct, and pHS3199-HPV 16L1 was electroporated into a live attenuated Shigella strain sh42. Western blotting analysis showed that HPV 16L 1 could be expressed stably in the recombinant strain sh42-HPV 16L 1. Sereny test results were negative, which showed that the sh42-HPV16L1 lost virulence. However, the attenuated recombinant strain partially maintained the invasive property as indicated by the HeLa cell infection assay. Specific IgG, IgA antibody against HPV16L1 virus-like particles (VLPs) were detected in the sera, intestinal lavage and vaginal lavage from animals immunized by sh42-HPV 16L1. The number of antibodysecreting cells in the spleen and draining lymph nodes were increased significantly compared with the control group. Sera from immunized animals inhibited mufine hemagglutination induced by HPV 16L1 VLPs, which indicated that the candidate vaccine could stimulate an efficient immune response in guinea pig's mucosal sites. This may be an effective strategy for the development of an HPV prophylactic oral vaccine.  相似文献   

20.
为探讨HCV/HBV 复合疫苗的可行性,将合成的丙型肝炎病毒(HCV)复合多表位抗原基因PCX与HBsAg 基因连接成PCXS基因,与β-半乳糖苷酶(GZ)基因融合后在大肠杆菌及减毒鼠伤寒沙门氏菌中获得表达.目的蛋白GZ-PCXS可被抗-HBs 及抗-HCV 抗体所特异识别.GZ-PCXS抗原皮下注射免疫ICR小鼠后,诱发了较高水平的抗-GZ-PCXSIgG反应.构建的重组减毒鼠伤寒沙门氏菌SL3261(pWR/PCXS)口服免疫小鼠后,诱发了高水平的CD8+ T细胞增殖反应及抗GZ-PCXSIgG反应.所有免疫小鼠均未见明显的毒副作用.该研究揭示,HCV/HBV 复合抗原可诱发特异性体液免疫及细胞免疫应答,而活菌苗口服可能是理想的免疫途径,为HCV/HBV 双价疫苗研究提供了一定的理论及实验依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号