首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Tension zones are maintained by the interaction between selection against hybrids and dispersal of individuals. Investigating multiple hybrid zones within a single species provides the opportunity to examine differences in zone structure on a background of differences in extrinsic factors (e.g., age of the zone, ecology) or intrinsic factors (e.g., chromosomes). The New Zealand tree weta Hemideina thoracica comprises at least eight distinct chromosomal races with diploid numbers ranging from 2n = 11 (XO) to 2n = 23 (XO). Five independent hybrid zones were located that involve races differing from one another by a variety of chromosomal rearrangements. The predicted negative correlation between extent of karyotypic differentiation (measured in terms of both percent of genome and number of rearrangements) and zone width was not found. Conversely, the widest zones were those characterized by two chromosome rearrangements involving up to 35% of the genome. The narrowest zone occurred where the two races differ by a single chromosome rearrangement involving approximately 2% of the genome. The five estimates of chromosomal cline width ranged from 0.5 km to 47 km. A comparative investigation of cline width for both chromosomal and mitochondrial markers revealed a complex pattern of zone characteristics. Three of the five zones in this study showed cline concordance for the nuclear and cytoplasmic markers, and at two of the zones the clines were also coincident. Zones with the widest chromosomal clines had the widest mitochondrial DNA clines. It appears that, even within a single species, the extent of karyotypic differentiation between pairs of races is not a good predictor of the level of disadvantage suffered by hybrids.  相似文献   

2.
Two chromosome races of common shrew, Moscow and Seliger, differ in the arm combination in 11 diagnostic chromosomes (Robertsonian metacentrics/acrocentrics). Homozygotes of both pure races, simple Robertsonian heterozygotes of Seliger race, and complex heterozygotes (FI hybrids) were detected in the found earlier between hybrid zone of these races, in the spring before the breeding seasonbreeding season. The g/oheterozygote was first discovered in race Seliger, whose chromosome formula typically contains acrocentrics g and o. The m/q heterozygote was recorded for the second time. Meiosis was studied in 16 males representing five detected karyotypic categories. No abnormal in pairing of homologs in either sex trivalent common for the species (XY1Y2) or autosome trivalents (g/o and m/q) was detected at diakinesis--metaphase I. Two hybrids displayed a theoretically expected and unimpaired meiotic configuration in a form of a very long chain comprising 11 monobrachial homologs (g/gm/mq/qp/pr/rk/ki/ih/hn/no/o). The results are discussed in terms of hypotheses on fertility of complex heterozygotes and limited gene flow in hybrid zone.  相似文献   

3.
Two chromosome races of common shrew, Moscow and Seliger, differ in the arm combination in 11 diagnostic chromosomes (Robertsonian metacentrics/acrocentrics). Homozygotes of both pure races, simple Robertsonian heterozygotes of Seliger race, and complex heterozygotes (F1 hybrids) were detected in the found earlier hybrid zone of these races, in the spring before the breeding season. The g/o heterozygote was first discovered in race Seliger, whose chromosome formula typically contains acrocentrics g and o. The m/q heterozygote was recorded for the second time. Meiosis was studied in 16 males representing five detected karyotypic categories. No abnormal in pairing of homologs in either sex trivalent common for the species (XY1Y2) or autosome trivalents (g/o and m/q) was detected at diakinesis-metaphase I. Two hybrids displayed a theoretically expected and unimpaired meiotic configuration in a form of a very long chain comprising 11 monobrachial homologs (g/gm/mq/qp/pr/rk/ki/ih/hn/no/o). The results are discussed in terms of hypotheses on fertility of complex heterozygotes and limited gene flow in hybrid zone.  相似文献   

4.
Wild male house mice Mus musculus domesticus were collected from the hybrid zone between the John o'Groats race (2n = 32) and the standard race (2n = 40) in northern Scotland. Meiosis in both homozygotes (2n = 32, 36, and 40) and single Robertsonian heterozygotes (2n = 33, 35, and 37) was found to be orderly. At prophase/metaphase I in heterozygotes, a trivalent was formed from the metacentric and two homologous acrocentrics. At pachytene, this trivalent usually had a single side arm at the position of the centromeres, as a result of nonhomologous pairing of the acrocentrics. This side arm persisted into diplotene. Generally only a single chiasma was formed between each acrocentric and the metacentric. Anaphase I nondisjunction frequencies were estimated as 1.5% for the homozygotes and 2.7% for the heterozygotes. The extent of germ cell death between the pachytene and round spermatid stages was 18% greater in heterozygotes than in homozygotes. Our results concur with previous studies which indicate that single Robertsonian heterozygotes in wild house mice have near-normal fertility.  相似文献   

5.
Twenty-two adult male common shrews were collected from 5 sites in the vicinity of Oxford (UK) close to the zone of hybridization between two karyotypic races. The shrews were subdivided into 3 karyotypic categories: homozygotes, simple Robertsonian heterozygotes (which form one or more trivalents at prophase I of meiosis) and complex Robertsonian heterozygotes (which form a quadrivalent). The ratio of primary spermatocytes to round spermatids was determined from transverse sections of seminiferous tubules, to provide an indication of germ cell death. In no individual was there severe germ cells loss. Homozygotes had the highest mean spermatocyte: spermatid ratio and complex heterozygotes the lowest, but there was substantial individual variation and the differences were not significant. Complex heterozygotes also had a higher proportion of defective seminiferous tubules and lower testis weights than did other categories and it is reasonable to propose that, as a population, complex heterozygotes had reduced fitness relative to other categories on the basis of spermatogenic performance. However, there is no evidence from studies of spermatogenesis that simple Robertsonian heterozygotes are less fit than homozygotes.  相似文献   

6.
The iguanid lizard Sceloporus grammicus has a high level of karyotypic variability, and has often been cited as an example of chromosomal speciation. We examined a total of 2036 secondary spermatocytes from 30 S. grammicus males, and found that 16 of the 30 individuals (including a single lizard collected from a hybrid zone between two chromosome races) produced completely balanced spermatocytes. Fourteen of the 30 lizards (including both chromosomal heterozygotes and homozygotes) had relatively low (0.6% to 7.1%) levels of aneuploidy. Heterozygotes had a 1.1% increase over homozygotes in the number of aneuploid spermatocytes observed. The frequency of aneuploidy in S. grammicus may not be high enough to cause chromosomal speciation by any of the mechanisms that have been proposed for this complex. Most individuals showed balanced segregation of the autosomal trivalents, but nearly half of the lizards had a significant excess of spermatocytes with the X1 and X2 rather than the Y sex chromosomes. Five lizards had spermatocytes which had fission mutations not found in the somatic cells. As many as 5.9% of the spermatocytes in one individual had chromosomal mutations. This chromosomal mutation rate has important implications for chromosomal evolution in S. grammicus.  相似文献   

7.
Thirty-three adult male common shrews (Sorex araneus L.) were collected from a hybrid zone between two chromosomal races that differed in Robertsonian metacentrics. Anaphase I nondisjunction frequencies were estimated on the basis of metaphase II counts. RIV and CV complex heterozygotes (four-element rings and five-element chains at meiosis I, respectively) had substantially higher nondisjunction rates than homozygotes and simple Robertsonian heterozygotes. However, at least in the case of RIV-forming hybrids, increased nondisjunction frequency did not result from malsegregation of the heterozygous complex. Extra elements found in hyperploid spreads were most frequently acrocentrics, that could not originate from a fully metacentric multivalent. Complex heterozygotes were also characterized by higher frequencies of univalents observed at diakinesis I. However, univalents did not originate from complex configurations, which were regularly formed with usually one chiasma per chromosome arm. Hence, we suppose that the presence of multivalents in the cell affects pairing and segregation of other elements at meiosis I.  相似文献   

8.
Drosophila nasuta (2n = 8) and Drosophila albomicans (2n = 6) are cross-fertile allopatric sibling chromosomal races of the nasuta subgroup of Drosophila. Hybrids of these races can be maintained for any number of generations. Some of the introgressed hybrid lineages of D. nasuta and D. albomicans, after passing through a transient phase of karyotypic polymorphism, ended up with a stable karyotype whose composition is different from those of the parental races. Such hybrid populations were called cytoraces, in which the chromosomes of D. nasuta and D. albomicans are represented in different combinations. The karyotypic composition of 16 such cytoraces have been presented and discussed with reference to evolutionary strategies such as balancing selection, directional selection, and sex-specific effect on different components of the evolving karyotypes.  相似文献   

9.
The speciation model of divergence by monobrachially homologous fusions (that is, with one arm in common) benefits from a wide conceptual acceptance, because heterozygotes between populations carrying such fusions suffer from high levels of meiotic dysfunction. The same meiotic configurations can also be generated by WART (whole-arm reciprocal translocation), rearrangements that are known to occur in mammals. Estimating the disadvantage of heterozygotes carrying monobrachially homologous fusions is required to evaluate the relevance of this mode of chromosomal evolution in diversification and speciation. House mice are an excellent study models because chromosomal races exist carrying monobrachially homologous fusions, and WARTs have been documented in this species. The fertility of heterozygote mice carrying the smallest number of monobrachially homologous fusions (that is, a chain of four chromosomes, C4) was investigated in laboratory-bred hybrids between two parapatric chromosomal races from the island of Madeira. Meiotic nondisjunction analyses and histological sections of testes showed that aneuploidy (16.7%) and germ cell death (50.9%) rates reached significantly higher mean values in hybrids than in homozygotes. In females, however, the histological analysis of ovarian follicle parameters revealed no significant differences between hybrid and homozygous individuals. Overall, the reproductive assays indicated that these C4-carrying hybrids were not sterile but showed an approximately 50% decrease in fertility compared to homozygous parental mice. Implications for modes of chromosomal evolution involving monobrachially homologous fusions are discussed.  相似文献   

10.
Adult male common shrews, both Robertsonian heterozygotes and homozygotes, were collected from Oxford and elsewhere in Britain. In both simple Robertsonian heterozygotes and Robertsonian heterozygotes with monobrachial homology, regular chain configurations were observed at meiosis I; only 1-2% were incomplete such that univalents were observed. On the average, there was one chiasma per chromosome arm among those that displayed Robertsonian variation, including both chain configurations and bivalents. According to one hypothesis, a single chiasma per chromosome arm may facilitate proper disjunction of chain trivalents of simple Robertsonian heterozygotes. Based on metaphase II counts, anaphase I nondisjunction frequency can be estimated as 1.0% per heterozygous individual and 0.7% per heterozygous arm combination.  相似文献   

11.
There are at least 24 different karyotypic races of house mouse in the central Alps, each characterized by a different complement of ancestral acrocentric and derived metacentric chromosomes; altogether 55 different metacentric chromosomes have been described from the region. We argue that this chromosome variation largely arose in situ. If these races were to make contact, in most cases they would produce F1 hybrids with substantial infertility (sometimes complete sterility), due to nondisjunction and germ cell death associated with the formation of long-chain and/or ring configurations at meiosis. We present fertility estimates to confirm this for two particular hybrid types, one of which demonstrates male-limited sterility (in accordance with Haldane's Rule). As well as a model for speciation in allopatry, the Alpine mouse populations are of interest with regards speciation in parapatry: we discuss a possible reinforcement event. Raciation of house mice appears to have happened on numerous occasions within the central Alps. To investigate one possible source of new karyotypic races, we use a two-dimensional stepping stone model to examine the generation of recombinant races within chromosomal hybrid zones. Using field-derived ecological data and laboratory-derived fertility estimates, we show that hybrid karyotypic races can be generated at a reasonable frequency in simulations. Our model complements others developed for flowering plants that also emphasize the potential of chromosomal hybrid zones in generating new stable karyotypic forms.  相似文献   

12.
The common shrew (Sorex araneus) is subdivided into several karyotypic races in Britain. Two of these races meet near Oxford o form the “Oxford-Hermitage” hybrid zone. We present a model which describes this system a; a “tension zone,” i.e., a set of clines maintained by a balance between dispersal and selection against chromosomal heterozygotes. The Oxford and Hermitage races differ by Robertsonian fusions with monobrachial homology (kq, no versus ko), and so Fl hybrids between them would have low fertility. However, the acrocentric karyotype is found at high frequency within the hybrid zone, so that complex Robertsonian heterozygotes (kg no/q ko n) are replaced by more fertile combinations, such as (kg no/k q n o). This suggests that the hybrid zone has been modified so as to increase hybrid fitness. Mathematical analysis and simulation show that, if selection against complex heterozygotes is sufficiently strong relative to selection against simple heterozygotes, acrocentrics increase, and displace the clines for kg and no from the cline for ko. Superimposed on this separation is a tendency for the hybrid zone to move in favor of the Oxford (kg no) race. We compare the model with estimates of linkage disequilibrium and cline shape made from field data.  相似文献   

13.
报道了Paeonia anomala L.的核型,澄清了新疆阿尔泰地区分布的该物种的染色体数目。分布于该地区的Paeonia anomala L.的核型组成:2n=2x=10=6m+2sm+2st。该类群核型与该属其它类群一致——2A型。在综合比较分析该属染色体参数以及核型不均一性参数,包括最长,最短染色体比(L1/Ln)和染色体不对称系数(CKOA)的基础上,我们发现该属三个组在核型上没有明显分化,仅在木本类群(Sect.Mouton DC.)和草本类群(Sect.Onaepia Lindley和Sect.Paeonia)之间存在微小差异。此外,作为二倍体类群,新疆阿尔泰地区分布的Paeonia anomala L.很可能是二倍体杂种,这将为研究被子植物的父母本同倍化杂交式物种起源提供一个很好的研究材料。  相似文献   

14.
The grasshopper Podisma sapporensis consists of two main chromosome races in Hokkaido. The western group of populations of P. sapporensis, belonging to the XO race, has a diploid number of chromosomes 2n = 23 in the male and 2n = 24 in the female (sex determination XO male/XX female). The eastern group of populations of this species, belonging to the XY race, differs from the western one as a result of Robertsonian translocation between the originally acrocentric X chromosome and M5 autosome in homozygous state, having resulted in the forming of chromosome sex determination neo-XY male/neo-XX female (2n = 22). These races are geographically isolated by the mountainous system consisting of the Mts Daisetsu and Hidaka range, occupying the central part of the island. The hybrid zones between the races have not so far been discovered. Various levels of polymorphism for the pericentric inversions and C-banding variation exist in different chromosomes throughout populations in both chromosome races. In some solitary populations (the population at the summit of Mt Yotei, populations in the vicinity of Naganuma, Oketo, and Tanno) pericentric inversions are fixed in some pairs of chromosomes, which enables marking of the discrete karyomorphes. In the Mt Daisengen population all chromosomes are two-armed as a result of fixing the pericentric inversions. These facts contradict karyotypical conservatism of the tribe Podismini. The level of diversity of P. sapporensis karyotypes could provide a new perspective on the evolutionary process of different karyotype in Orthoptera. The considerable occurrence of polymorphism in chromosomes suggests that karyotypic diversification is undergoing in P. sapporensis. The authors also proposed that P. sapporensis would be divided into four chromosome subraces in the XO chromosome race and two chromosome subraces in the XY race, on the basis of karyotypic features. These races may have been established by fundamental climatic changes during the glacial epoch.  相似文献   

15.
Underdominance for chromosomal rearrangements is the central assumption of several models of chromosomally based speciation including the cascade model, proposed for the Sceloporus grammicus complex. Several cytotypes of the S. grammicus complex hybridize at localities in central México. A hybrid zone between two of the most chromosomally divergent races (= cytotypes) of S. grammicus (F5, 2n = 34 and FM2, 2n = 44–46) was examined to assess the meiotic effects of heterozygosity at multiple chromosomes. Meiosis was examined in males heterozygous for “simple” Robertsonian fissions at chromosomes 1, 3, 4, and 6 and/or a pericentric inversion at chromosome 4. Analysis of synaptonemal complexes and chromosomal configurations at diakinesis showed trivalent formation in fission heterozygotes and heterosynapsis (lack of reverse-loop formation) in an inversion heterozygote. Analysis of metaphase II configurations revealed primarily balanced segregation and low levels of nondisjunction regardless of chromosomal background. The lack of underdominance associated with “simple” fission heterozygosity in this narrow hybrid zone contradicts the key premise of most chromosomally based models of speciation.  相似文献   

16.
Robertsonian (Rb) translocation heterozygosity may cause pairing problems during prophase and segregation irregularities at anaphase of meiosis I. These stages of meiosis I were studied in male mice doubly heterozygous for the two Rb chromosomes Rb(9.19)163H and Rb(16.17)8Lub. At pachytene both Rb chromosomes similarly showed pairing irregularities like unpaired segments. However, highly different nondisjunction frequencies of chromosomes forming the respective trivalents were found. The nondisjunction frequency of the Rb8Lub trivalent chromosomes was about 40%, whereas a very low frequency of nondisjunction was found in combination with the Rb163H trivalent. Since both trivalents were together in the same cell, differences in kinetochore function are assumed to be responsible for the diverse frequency of nondisjunction.  相似文献   

17.
In the vicinity of John o'Groats (Caithness, Scotland) there is a small karyotypic race of the house mouse (Mus musculus domesticus) characterized by a diploid number of 32 chromosomes, including the metacentrics 4.10, 9.12, 6.13 and 11.14. This race forms a hybrid zone with the standard British race (fully acrocentric chromosomes, 2n = 40). Although hybrid zones normally consist of several (or many) narrow character clines at the same position, this zone is unusual in that the chromosomal clines do not coincide. The cline for arm combination 11.14 is staggered relative to the 6.13 cline and both are separate from the clines for 4.10 and 9.12 (which may or may not coincide). A variety of explanations for the structure of the hybrid zone are discussed. It is possible that this may be a case of 'zonal raciation'.  相似文献   

18.
Our long range interracial hybridization experiments between a pair of cross fertile races, Drosophila nasuta (2n = 8) and D.albomicans (2n = 6) have resulted in the evolution of two new karyotypic strains under laboratory conditions, which are named as Cytorace 1 and Cytorace 2. These Cytoraces harbor chromosomes from both parents. Here, we compare the body size of the parental races and newly evolved Cytoraces and the relationship between the body size and fitness. Analysis reveals that the parental races have reduced fertility and are larger in body size than newly evolved Cytoraces. Thus, the newly evolved Cytoraces show reduced body size and better fitness in the course of their evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Summary Two F5 strains of tetraploid triticale (2n= 4x=28), obtained from 6x triticaleX2 rye progenies, were crossed with diploid and tetraploid rye, some durum and bread wheats, and various 8x and 6x triticale lines. Meiosis in the different hybrid combinations was studied. The results showed that the haploid complement of these triticales consists of seven chromosomes from rye and seven chromosomes from wheat. High frequencies of PMCs showing trivalents were observed in hybrids involving the reference genotypes of wheat and triticale. These findings proved that several chromosomes from the wheat component have chromosome segments coming from two parental wheat chromosomes. The origin of these heterogeneous chromosomes probably lies in homoeologous pairing occurring at meiosis in the 6x triticaleX2x rye hybrids from which 4x triticale lines were isolated. A comparison among different hybrids combinations indicated that the involvement of D-genome chromosomes in homoeologous pairing is quite limited. In contrast, meiotic patterns in 4x triticale X 2x rye hybrids showed a quite high pairing frequency between some R chromosomes and their A and B homoeologues.  相似文献   

20.
Summary Of A. rubellum, already known as a diploid (2n=16), a triploid form has been collected from Pathankot. All the 24 chromosomes in the latter possess median to submedian kinetochores. Of these, 6 are nucleolar chromosomes, which do not represent 3 truly morphologically homologous pairs.Meiosis is characterised by the presence of quadrivalents, trivalents, bivalents and univalents. Out of these, trivalents are the most common and often as many as 8 were seen in a cell. Anaphase-I distribution is irregular and shows bridge-fragment configurations, lagging chromosomes and micronuclei. The subsequent course of meiosis is also not normal and results in sterility.In view of the high frequency of trivalents, the triploid form appears to be an autotriploid and the karyotypic heterozygosity points to an intervarietal origin. It maintains itself because of the efficient vegetative reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号