首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The influence of Robertsonian (Rb) heterozygosity on fertility has been the subject of much study in the house mouse. However, these studies have been largely directed at single simple heterozygotes (heterozygous for a single Rb metacentric) or complex heterozygotes (heterozygous for several to many metacentrics which share common chromosome arms). In this paper we describe studies on male multiple simple heterozygotes, specifically the F(1) products of crosses between wild-stock mice homozygous for four or seven metacentrics and wild-stock mice with a standard all-acrocentric karyotype; these F(1) products were characterized by four and seven trivalents at meiosis I, respectively. Mice with the same karyotype, but two different genetic backgrounds were examined. Although a range of meiotic and fertility studies were conducted, particular emphasis was paid to analysis of chromosome pairing, previously not well-described in multiple simple heterozygous mice. The progression of spermatocytes through prophase I was followed by electron microscopy of surface spread material. As previously shown for single simple Rb heterozygotes, the trivalents that characterize multiple simple heterozygotes initially showed delayed pairing of the centromeric region and later showed side arm formation, resulting from non-homologous pairing by the centromeric ends of the acrocentric chromosomes. In the four trivalent groups of mice, 15 and 32% of trivalents showed unpairing in the centromeric region at mid pachytene; equivalent values were 29 and 39% for the seven trivalent groups. Pairing abnormalities (largely attachments and interlocks between trivalents and between a trivalent and the XY configuration) were observed in 18 and 23% of mid pachytene cells in the four trivalent groups and 36 and 49% of cells in the seven trivalent groups. The greater level of pachytene irregularity (unpairing and pairing abnormalities) in seven versus four trivalent heterozygotes was mirrored in terms of higher anaphase I nondisjunction frequency and lower germ cell counts. However, while pachytene irregularities appear to contribute to germ cell death, examples of male sterility in our material undoubtedly also involve genic incompatibilities.  相似文献   

2.
Synaptonemal complexes (SCs) in surface spread pachytene spermatocytes of Lemur resemble those in other mammals and are of two types: metacentric (or submetacentric) and acrocentric, with a very short second arm. In autosomal SC and mitotic karyotypes of Lemur fulvus (2n=60) a 11 proportionality in relative length is observed as in other mammals. In an intraspecific lemur hybrid (2n=55) obtained by mating L. fulvus rufus (2n=60) x L. fulvus collaris (2n=51), G-band patterns show that 10 single acrocentric mitotic chromosomes correspond to the arms of 5 single metacentrics, implying homology. It is inferred that the metacentrics have evolved by centric (Robertsonian) fusion of the acrocentrics. In the SC karyotype of the hybrid all SCs are normal except for five which have the configurations expected of metacentric-acrocentric trivalents. Similarly, in L. f. collaris (2n= 51), with one unpaired metacentric and two unpaired acrocentrics, one such SC trivalent is present in the complement. In an SC trivalent, each of the acrocentric long axes is synapsed with an arm of the metacentric axis, confirming the homology predicted from banding similarities. At late zygotene, the acrocentric short arms, which are non-homologous, are the last to pair, demonstrating that synapsis of the homologous arms occurs first. At later pachytene the acrocentric short arms are fully synapsed, producing a short SC side arm. This subsequent non-homologous synapsis is taken to be an instance of the synaptic adjustment phenomenon which has been shown to lead to non-homologous synapsis in a duplication and several inversions in the mouse. The kinetochore of the metacentric is the same size as those of the acrocentrics, and thus is unlikely to have arisen by true centromeric fusion, but rather by a translocation. The kinetochores of the acrocentrics always lie together on the same side of the metacentric kinetochore (cis configuration), implying a single pairing face on the metacentric axis. The observed trivalent configuration may well constitute a prerequisite for proper meiotic disjunction in metacentric-acrocentric heterozygotes. Such a mechanism is consistent with fertility regularly observed in such hybrid lemurs.  相似文献   

3.
Thirty-three adult male common shrews (Sorex araneus L.) were collected from a hybrid zone between two chromosomal races that differed in Robertsonian metacentrics. Anaphase I nondisjunction frequencies were estimated on the basis of metaphase II counts. RIV and CV complex heterozygotes (four-element rings and five-element chains at meiosis I, respectively) had substantially higher nondisjunction rates than homozygotes and simple Robertsonian heterozygotes. However, at least in the case of RIV-forming hybrids, increased nondisjunction frequency did not result from malsegregation of the heterozygous complex. Extra elements found in hyperploid spreads were most frequently acrocentrics, that could not originate from a fully metacentric multivalent. Complex heterozygotes were also characterized by higher frequencies of univalents observed at diakinesis I. However, univalents did not originate from complex configurations, which were regularly formed with usually one chiasma per chromosome arm. Hence, we suppose that the presence of multivalents in the cell affects pairing and segregation of other elements at meiosis I.  相似文献   

4.
Two chromosome races of common shrew, Moscow and Seliger, differ in the arm combination in 11 diagnostic chromosomes (Robertsonian metacentrics/acrocentrics). Homozygotes of both pure races, simple Robertsonian heterozygotes of Seliger race, and complex heterozygotes (F1 hybrids) were detected in the found earlier hybrid zone of these races, in the spring before the breeding season. The g/o heterozygote was first discovered in race Seliger, whose chromosome formula typically contains acrocentrics g and o. The m/q heterozygote was recorded for the second time. Meiosis was studied in 16 males representing five detected karyotypic categories. No abnormal in pairing of homologs in either sex trivalent common for the species (XY1Y2) or autosome trivalents (g/o and m/q) was detected at diakinesis-metaphase I. Two hybrids displayed a theoretically expected and unimpaired meiotic configuration in a form of a very long chain comprising 11 monobrachial homologs (g/gm/mq/qp/pr/rk/ki/ih/hn/no/o). The results are discussed in terms of hypotheses on fertility of complex heterozygotes and limited gene flow in hybrid zone.  相似文献   

5.
Meiosis was studied in male South American marsh rats (1) to help clarify the mechanisms that allow unusually high levels of Robertsonian (Rb) polymorphisms to be maintained in wild populations of these animals and (2) to test competing assumptions in two distinct models of chromosomal speciation. In both simple Rb heterozygotes and Rb heterozygotes with monobrachial homology, no univalency was observed in prophase I or metaphase I. Rates of nondisjunction were uniformly low (less than 10%) and did not differ significantly among any of the animals studied, regardless of karyotype and in contrast to the frequency of nondisjunction in other mammalian species. Robertsonian heterozygotes exhibited significantly more chiasmata than did homozygotes, largely owing to an increase in the number of terminally located chiasmata. There was a significant bias favoring the transmission of two acrocentrics over the single metacentric for some Rb rearrangements in the heterozygous state. In addition, the frequency of sex-chromosome univalency increased with increasing Rb heterozygosity, although the ratio of X- and Y-bearing secondary spermatocytes did not differ significantly from 1:1, and no secondary spermatocytes were observed that were nullisomic or disomic for an X or Y chromosome.  相似文献   

6.
Two chromosome races of common shrew, Moscow and Seliger, differ in the arm combination in 11 diagnostic chromosomes (Robertsonian metacentrics/acrocentrics). Homozygotes of both pure races, simple Robertsonian heterozygotes of Seliger race, and complex heterozygotes (FI hybrids) were detected in the found earlier between hybrid zone of these races, in the spring before the breeding seasonbreeding season. The g/oheterozygote was first discovered in race Seliger, whose chromosome formula typically contains acrocentrics g and o. The m/q heterozygote was recorded for the second time. Meiosis was studied in 16 males representing five detected karyotypic categories. No abnormal in pairing of homologs in either sex trivalent common for the species (XY1Y2) or autosome trivalents (g/o and m/q) was detected at diakinesis--metaphase I. Two hybrids displayed a theoretically expected and unimpaired meiotic configuration in a form of a very long chain comprising 11 monobrachial homologs (g/gm/mq/qp/pr/rk/ki/ih/hn/no/o). The results are discussed in terms of hypotheses on fertility of complex heterozygotes and limited gene flow in hybrid zone.  相似文献   

7.
The Eurasian common shrew (Sorex araneus L.) is characterized by spectacular chromosomal variation, both autosomal variation of the Robertsonian type and an XX/XY(1)Y(2) system of sex determination. It is an important mammalian model of chromosomal and genome evolution as it is one of the few species with a complete genome sequence. Here we generate a high-precision cytological recombination map for the species, the third such map produced in mammals, following those for humans and house mice. We prepared synaptonemal complex (SC) spreads of meiotic chromosomes from 638 spermatocytes of 22 males of nine different Robertsonian karyotypes, identifying each autosome arm by differential DAPI staining. Altogether we mapped 13,983 recombination sites along 7095 individual autosomes, using immunolocalization of MLH1, a mismatch repair protein marking recombination sites. We estimated the total recombination length of the shrew genome as 1145 cM. The majority of bivalents showed a high recombination frequency near the telomeres and a low frequency near the centromeres. The distances between MLH1 foci were consistent with crossover interference both within chromosome arms and across the centromere in metacentric bivalents. The pattern of recombination along a chromosome arm was a function of its length, interference, and centromere and telomere effects. The specific DNA sequence must also be important because chromosome arms of the same length differed substantially in their recombination pattern. These features of recombination show great similarity with humans and mice and suggest generality among mammals. However, contrary to a widespread perception, the metacentric bivalent tu usually lacked an MLH1 focus on one of its chromosome arms, arguing against a minimum requirement of one chiasma per chromosome arm for correct segregation. With regard to autosomal chromosomal variation, the chromosomes showing Robertsonian polymorphism display MLH1 foci that become increasingly distal when comparing acrocentric homozygotes, heterozygotes, and metacentric homozygotes. Within the sex trivalent XY(1)Y(2), the autosomal part of the complex behaves similarly to other autosomes.  相似文献   

8.
These studies centre on the 'Barcelona' karyotypic race of the western house mouse (Mus musculus domesticus), first described by Adolph & Klein (1981). This is one of many races within M. m. domesticus characterized by metacentric chromosomes that have originated by repeated Robertsonian fusions, with perhaps further modification by whole-arm reciprocal translocations. Data on 111 mice from 20 sites show that the race is centred 24 km to the west of Barcelona city and has a homozygous metacentric karyotype of 2n = 28 (3.8, 4.14, 5.15, 6.10, 9.11, 12.13). The race has a small range, and mice with the standard 40-acrocentric karyotype were caught only 30 km from the race centre. Throughout the area of occurrence of metacentrics there is polymorphism (i.e. presence of acrocentrics in the population), although all six metacentrics approach fixation close to the race centre. Thus, there is a hybrid zone between the Barcelona and standard races. The centres and widths of all clines (except 3.8) were determined. Likelihood ratio tests showed that most of the cline centres differed significantly in position (i.e. the clines were staggered) and the clines for metacentrics 6.10 and 9.11 were significantly narrower than those for 4.14, 5.15 and 12.13. Overall, the clines tended to be wider the further they were from the race centre. There are various possible explanations for this hybrid zone structure and further data are needed to distinguish between them.  相似文献   

9.
棕色田鼠罗伯逊易位的研究(简报)   总被引:2,自引:0,他引:2  
屈艾  高焕 《实验生物学报》2000,33(4):367-375
The type of chromosome No. 1 and chromosome number from 53 individuals of Microtus mandarinus have been studied and compared in three sex types: XY, XX, XO. We found that the first pair of autosomes are very unstable, and there are three types: (1) M, M (With a double metacentric chromosome), (2) M, T, T, (With single metacentric chromosome). (3) T, T, T, T (Without metacentric chromosome). The chromosome number of the same sex individuals changes regularly with the type change of chromosome No. 1, that is, the increase of one chromosome in 2n number is always accompanied by the increase of two T and the decrease of one M, and vice versa. The synaptonemal complexes (SCs) of spermatocyte in pachytene nuclei from the males (2n = 51) were analysed by the electron microscopy. The SCs studies demonstrate that there are 23 fully paired autosomal bivalents, XY-bivalent and an autosomal trivalent. This trivalent is formed by one metacentric and two telocentric elements and characterized by the presence of two short side-arms. Meanwhile, all trivalents are in a cis configuration. The study of G-banding also demonstrates that the No. 1 autosome polymorphism is caused by Robertsonian translocation. Robertsonian fission is the main reason of the polymorphism of chromosome No. 1 and of variation of chromosome number in M. mandarinus.  相似文献   

10.
Adult male common shrews, both Robertsonian heterozygotes and homozygotes, were collected from Oxford and elsewhere in Britain. In both simple Robertsonian heterozygotes and Robertsonian heterozygotes with monobrachial homology, regular chain configurations were observed at meiosis I; only 1-2% were incomplete such that univalents were observed. On the average, there was one chiasma per chromosome arm among those that displayed Robertsonian variation, including both chain configurations and bivalents. According to one hypothesis, a single chiasma per chromosome arm may facilitate proper disjunction of chain trivalents of simple Robertsonian heterozygotes. Based on metaphase II counts, anaphase I nondisjunction frequency can be estimated as 1.0% per heterozygous individual and 0.7% per heterozygous arm combination.  相似文献   

11.
Contrasting results (random segregation or cosegregation of isomorphic chromosomes) have been reported up to now on the segregation pattern of Robertsonian metacentric chromosomes of Mus musculus domesticus in multiple heterozygotes, using different approaches (karyotypical analysis of the progeny or of second meiotic metaphases). In the present contribution data are presented based on FISH (Fluorescence In Situ Hybridisation) analysis with telomeric probes, which allowed us to distinguish metacentric chromosomes from pairs of acrocentric chromosomes with their centromeric regions close to each other. Probes were hybridized to DAPI stained metaphases of spermatocytes II of mice heterozygous for two, three or four Robertsonian metacentrics in an all-acrocentric background, the karyotype of which has been reconstructed starting from laboratory strains. Isomorphic chromosomes tend to cosegregate (metacentrics with metacentrics, acrocentrics with acrocentrics); the values found for cosegregation have a clear even if moderate effect on the reproductive isolation caused by underdominant chromosomal rearrangements.  相似文献   

12.
We analyzed a hybrid zone between two chromosome races (2n = 16 and 2n = 22) of a Japanese harvestman, Gagrellopsis nodulifera Sato and Suzuki (Arachnida: Opiliones: Phalangiidae). The hybrid zone is located in the eastern part of Tottori Prefecture, western Honshu. The width of the zone is approximately 5 to 15 km. Three independent tandem fusions/fissions seem to be the main cause of the karyotypic differences between the parental races. Ten karyotypic variants were found in the hybrid zone. They differed by numbers of diploid chromosomes and trivalents detected in meiosis. In most of the collecting sites, karyotypic heterozygotes were less common than expected. A positive correlation was found between number of trivalents in a karyotype and its deficiency rate. In some sites, the deficit of heterozygous individuals was accompanied by an excess of the intermediate homozygotes. One of the three transects across the zone was studied in detail. We found that three types of single heterozygotes (2n = 17, 2n = 19 and 2n = 21) formed a series of successive, spatially separated peaks along the transect. Two types of intermediate homozygotes (2n = 18 and 2n = 20) were also spatially separated. The most parsimonious explanation of such a structure is the staggering of clines of three tandem (or Robertsonian) fusion/fission variants that differentiate the parental races caused by selection against multiple heterozygotes. Analysis of nondisjunction in single heterozygotes demonstrated that there was a strong interindividual variation in nondisjunction rate. The mean frequency of aneuploid MII in single heterozygotes was 0.10 +/- 0.03. Crossover exchanges in some critical regions of trivalents result in abnormal chromosomal configurations: chromosomes with unequal chromatids and dicentric chromosomes. Frequency of crossover-induced chromosomal abnormalities was low in single heterozygotes (approximately equal to 4%), and was unexpectedly high in the double heterozygotes (approximately equal to 15%). Selection against karyotypic heterozygotes is considered as a main evolutionary force responsible for the structuring of the hybrid zone. A positive association between diploid chromosome number and altitude was found. The race 2n = 16 tended to occupy lower altitudes than the 2n = 22 parental race. Differences in ecological preferences may be a result of previous adaptations to different environments in allopatry. A hypothesis concerning the origin and evolution of the hybrid zone is proposed.  相似文献   

13.
Synaptonemal complexes (SC) in four Ellobius talpinus males heterozygous for ten Robertsonian translocations were examined with an electron microscope using a surface-spreading technique. A total of 136 late zygotene and pachytene spermatocytes were examined. From one to three completely paired SC trivalents were found in each early pachytene spermatocyte. The lateral elements of the short arms of the acrocentric chromosomes in these trivalents were joined with an SC thus forming the third arm of the SC trivalent. At the same stage a few SC trivalents did not contain lateral elements in the pericentromeric region of the metacentric chromosomes and remained unpaired in this region up to mid pachytene. At zygotene and pachytene from two to eight SC trivalents were joined into chains due to formation of SCs between the short arms of acrocentrics of other SC trivalents. These chains are frequent at late zygotene, but are resolved during pachytene into individual trivalents. It is proposed that pairing and SC formation between the short arms of the acrocentric chromosomes results from the monosomy of the short arms and partial DNA homology between these heterochromatic regions. Since crossing over probably does not take place in these segments, the chromosomal chains may subsequently be corrected into trivalents by a dissolution of the SCs combining adjacent trivalents. The correction and disjoining of chains may not be effective in all cells. The cells in which the chains are retained are assumed to be arrested at the pachytene stage.  相似文献   

14.
棕色田鼠罗伯逊易位的研究(简报)   总被引:2,自引:0,他引:2  
棕色田鼠(Microtus mandarinus Milne-Edwards,1871)又称北方田鼠,主要分布于我国。前苏联、蒙古的少数地区亦有分布,前苏联学者称该鼠为中国田鼠。关于该鼠的染色体研究国内外已有报道。仅推测罗伯逊易位是引起该鼠第一对常染色体多态及其染色体数目多态的主要原因。本文详细研究了该鼠第一对常染色体多态类型与个体染色体数目之间的一一对应关系、性个体(2n=51)的G带带型及其联会复合作中三价体的存在,完全证实了  相似文献   

15.
Solano E  Castiglia R  Corti M 《Hereditas》2007,144(3):75-77
In this paper we describe a new Robertsonian (Rb) race of the house mouse from Vulcano (Aeolian archipelago) through the identification of the metacentric chromosomes. We analysed fifteen mice. All the specimens were found to have the same karyotype 2n=26. This karyotype is characterized by Rb(1.2), Rb(3.9), Rb(4.13), Rb(5.14), Rb(8.12), Rb(10.16) and Rb(15.17). The differences between the race of Vulcano and the races in a neighbour island (Lipari) consist in the presence of Rb(10.16) and Rb(15.17) in the former and Rb(6.16) and Rb(10.15) in the latter. We discuss the possible hypotheses regarding the origin between these two races including the possible occurrence of a whole arm reciprocal translocation (WART) on the Vulcano island.  相似文献   

16.
All seventeen black rats collected from Mauritius Island were characterized by having many extra small acrocentric autosomes. Their basic karyotype was of Oceanian type, because of the presence of the large metacentric M1 and M2 pairs, but chromosome numbers in 13 specimens among them were 42, those of 3 specimens 43, and those of the remaining one specimen 44. Although the Oceanian type rat had 2 small acrocentric autosomes (pair no. 13), 16 Mauritius rats had 10 small acrocentrics, and the remaining one had 8 small acrocentrics. Comparative karyotype analysis between Oceanian and Mauritius type rats showed that the extra small acrocentrics found in Mauritius rats were due to Robertsonian fission of small metacentric pairs no. 14 and 18 of the original Oceanian type rat. Only one rat with 8 small acrocentrics showed the heteromorphic pair no. 18 consisting of one metacentric and two acrocentrics. The large metacentric M1 chromosome in 13 of 17 rats examined showed homologous pair, but two of them were heteromorphic by involving one metacentric M1 and two acrocentrics. In the remaining two rats M1 chromosome was not observed, but acrocentric pairs no. 4 and 7 were included. These acrocentrics were also suggested to be originated from Robertsonian fission of the large metacentric M1 chromosome. Robertsonian fission seemed to be one of the important mechanism found in karyotype evolution.  相似文献   

17.
18.
Keith Jones 《Chromosoma》1974,45(4):353-368
The plant species Gibasis schiedeana (Kunth) D. R. Hunt sens. lat. contains two cytotypes viz. a self-sterile diploid with 2n=10 (x=5) and a selffertile cytological autotetraploid with 2n=16 (x=4). Single chromosome sets of these plants consist of 2 metacentrics +3 acrocentrics, and 3 metacentrics +1 acrocentric chromosomes respectively suggesting a Robertsonian relationship between them. Their artificial F1 hybrids show the pairing of acrocentrics with metacentric arms confirming the supposed nature of the chromosome affinities. Both breeding systems and ploidy levels show that the direction of the change has been from x=5 to x=4 by a translocation of the Robertsonian type.  相似文献   

19.
Chiasma frequency effects of structural chromosome change   总被引:4,自引:0,他引:4  
Three structural chromosome changes in the plant Hypochoeris radicata 2n = 8 have been tested for their effects on chiasma formation: (1) centric fission of chromosome 1, (2) a whole arm exchange between chromosomes 1 and 3, and (3) an interchange between the long arm of chromosome 1 and the short arm of 2 which gives an effectively three-armed pachytene multiple. Mean chiasma frequencies were compared between full-sibs in families segregating for the rearrangements. In each family the chiasma frequency was higher in heterozygotes than basic homozygotes. The size of the chiasma increase is dependant on the number of additional potentially-paired segments in the complement at pachytene. Fission heterozygotes and 1/2 interchange heterozygotes, with one extra pairing region, both form about 0.45 more chiasmata per PMC than full-sib basic homozygotes. The 1/3 exchange, with two additional pairing regions, increases chiasma frequency by twice this, about 0.85 per PMC. Individuals homozygous for the centric fission maintain the raised chiasma level. The chiasma increase appears limited to the chromosome(s) affected by structural change with no detectable interchromosomal effect.  相似文献   

20.
We describe the chromosomal evolution of the metacentric populations of the house mouse, Mus musculus domesticus , which constitute the Robertsonian System of Aeolian Islands (Sicily, Italy). Eighty-nine specimens from all the seven islands that form the Archipelago were cytogenetically examined. The analysis shows the presence of 4 Rb races with a large number of shared metacentric chromosomes: 2 n  = 36 on Panarea, 2 n  = 34 on Alicudi, 2 n  = 26 on Lipari and Stromboli, and a different 2 n  = 26 race on Vulcano. On Salina and Filicudi, the standard karyotype was found. Polymorphism was only found in a population on Panarea Island and this population shares no metacentrics with the other races. The distribution of metacentrics among the races and the comparison between the Aeolian metacentrics and those found in the 97 previously documented metacentric populations allows us to formulate a hypothesis of chromosomal evolution for the Aeolian Robertsonian system. Six of the twelve metacentric chromosomes found in the Aeolian Islands come from localities outside the archipelago. The evolutionary model highlights how the chromosomal races originated inside the Archipelago and involve several factors, such as formation in situ of metacentrics, zonal raciation and, whole arm reciprocal translocation. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 194–202.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号