首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
鸡囊胚细胞嵌合体制作技术研究及其应用前景   总被引:2,自引:1,他引:1  
家鸡X期囊胚细胞(BCs)嵌合体技术,既是利用转基因技术进行家鸡品种改良和凭借转基因家鸡生物反应器生产医用蛋白等研究领域的关键技术,也是利用BCs冻存家鸡和珍稀鸟类双亲种质资源实现鸟类品种资源多样性保护、利用和挽救珍稀濒危鸟类的重要途径。从家鸡BCs嵌合体制作技术的基本过程:(1) 羽色嵌合体家鸡模型的建立;(2) 囊胚的分离与消化;(3) 受体种蛋的致弱处理;(4) 受体种蛋的开窗(包括部位、方法及封口技术等);(5) 供体细胞导入受体胚(显微注射或简易操作);(6) 孵化(常规方法或换壳培养)等几个方面的研究进展、目前存在的问题以及研究方向等进行了系统阐述。Abstract: The technology of producing chicken chimeras using blastodermal cells is very important not only in the field of transgenic chicken bioreactor but also in searching for efficient ways to conserve avian genetic resource. The basic processes for producing chicken chimeras consist of: (1) Setting up the color model; (2) Separating and dissociating of donor embryos; (3) Compromising of the recipient embryos; (4) Windowing and recovering the recipient eggs; (5) Cells injecting; (6) Method of hatching. The progress, obstacles and prospects of producing chicken chimeras via BCs were discussed in this paper.  相似文献   

2.
鸡蛋开窗法导入供体胚盘细胞对家鸡胚胎发育的影响研究   总被引:8,自引:0,他引:8  
通过4批孵化实验,研究鸡蛋开窗法注射供体胚盘细胞对受体鸡胚发育及孵化率的影响。GLM方差分析表明,开窗处理极显著降低整个孵化期(21d)的活胚比例(P<0.01),至21日龄出壳时,处理组的孵化率为.8%-6.0%。导入供体胚盘细胞对受体鸡胚的发育仅为阶段性影响,表现在显著性孵化第8日龄左右的活胚比例(P<0.05)。而对后期发育的影响不显著(P>0.05)。因经,鸡蛋开窗处理是降低受体胚胎成活率和孵化率的主要原因,如何降低开窗处理对受体胚胎的应激和不利影响则是今后研究的一个课题。  相似文献   

3.
Chicken blastodermal cells were cultured for 48 hr as explanted intact embryos, as dispersed cells in a monolayer, or with a confluent layer of mouse fibroblasts. The cells were then dispersed and injected into stage X (E-G&K) recipient embryos that were exposed to 600 rads of irradiation from a 60Co source. Regardless of the conditions in which the cells were cultured, chimeras with contributions to both somatic tissues and the germline were observed. When blastodermal cells were co-cultured with mouse embryonic fibroblasts, significantly more somatic chimeras were observed and the proportion of feather follicles derived from donor cells was increased relative to that observed following the injection of cells derived from explanted embryos or monolayer cultures. Culture of blastodermal cells in any of the systems, however, yielded fewer chimeras that exhibited reduced contributions to somatic tissues in comparison to the frequency and extent of somatic chimerism observed following injection of freshly prepared cells. Contributions to the germline were observed at an equal frequency regardless of the conditions of culture, but were significantly reduced in comparison to the frequency and rate of germ-line transmission following injection of cells obtained directly from stage X (E-G&K) embryos. These data demonstrate that some cells retain the ability to contribute to germline and somatic tissues after 48 hr in culture and that the ability to contribute to the somatic and germline lineages is not retained equally. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Germline chimeric chickens can be constructed by injecting donor chicken blastodermal cells (CBCs) into recipient embryos and incubating to hatch. Transgenic chickens can be produced through chimeric intermediates if the donor cells are genetically manipulated; the chance of producing a transgenic chimera would be increased by enriching the donor population in transfected cells. To demonstrate that donor CBCs can be sorted according to the expression of a foreign gene, CBCs in suspension were subjected to transfection with plasmid DNA encoding bacterial β‐galactosidase (β‐gal). Following an overnight incubation, the CBCs were loaded with 5‐dodecanoylaminofluorescein di‐β‐D‐galactopyranoside (C12FDG), which is fluorescent after cleavage by β‐gal. The treated cells were subjected to fluorescence activated cell sorting (FACS) to give “positive” (fluorescent) and “negative” (non‐fluorescent) populations. Almost 100% of the “positive” population showed β‐gal activity. “Positive” cells were cultured on mouse SNL 76/7 fibroblast feeder cells and formed colonies, most of which still stained positively for β‐gal activity after three days. FACS‐sorted cells of Barred Plymouth Rock origin were injected into recipient White Leghorn embryos, resulting in chimeric embryos. Of the 298 embryos injected with sorted cells, 23 (8%; 18 injected with “positive cells, five with “negative”) survived to rearing. Somatic chimerism was seen in 12 of 18 (67%) “positive” and three of five (60%) “negative” birds with the proportion of black pigmentation averaging 19% overall. Twenty birds reached sexual maturity, of which 12 (60%) were somatically chimeric; seven (35%) of these produced donor‐derived chicks. Donor CBCs can, therefore, be sorted by FACS according to the expression of a selectable marker gene without impairing their ability to contribute to germline chimeras; this procedure could be incorporated into a practicable method by which to increase the chances of producing a transgenic chicken. Mol. Reprod. Dev. 52:33–42, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
In previous experiments in our laboratories, chickens that are chimeric in their gamete, melanocyte, and blood cell populations have been produced by injection of dispersed stage X blastodermal donor cells into the subgerminal cavity of stage X recipient embryos. In some experiments, donor cells were transfected with reporter gene constructs prior to injection as a preliminary step in the production of transgenic birds. Chimerism was assessed by test mating, observation of plumage, and DNA fingerprinting. Methods were sought that would provide a relatively rapid analysis of the spatial distribution of descendants of donor cells in chimeras to assess the efficacy of various methods of chimera construction. To date, the sex of donor and recipient embryos was not known and, therefore, numerous mixed sex chimeras must have been constructed by chance, since donor cells were usually collected from several embryos rather than from individual embryos. The presence of female-derived cells was determined by in situ hybridization using a W-chromosome-specific DNA probe, using smears of washed erythrocytes from 16 phenotypically male chimeric chickens ranging in age from 4 days to 42 months posthatching. The proportion of female cells detected in the erythrocyte samples was zero (eight samples) or very low (0.020-0.083%), although 1% of the erythrocytes from a phenotypically male chick that was killed 4 days after hatch were female-derived. The low proportions of female-derived cells were surprising, considering that most of these chimeras had been produced by the injection of cells pooled from several donor embryos and most recipients had been exposed to gamma irradiation prior to injection, thus dramatically enhancing the level of incorporation of donor cells into the resulting chimeras. By contrast, 0-100% of the erythrocytes were female-derived in blood samples taken at 10 days of incubation from the chorioallantois of seven phenotypically normal male embryos that resulted from the injection of blastodermal cells pooled from five embryos into irradiated recipient embryos. Approximately 70% of the erythrocytes in a blood sample from a phenotypically normal female chimeric embryo were female-derived, and 100% of the erythrocytes examined from an intersex embryo bearing a right testis and a left ovary were female-derived. These results indicate that female-derived cells can contribute to the formation of erythropoietic tissue during the early development of what will become a phenotypically male chimeric embryo. It would appear, therefore, that female-derived cells are blocked in development or destroyed, or certain male-female combinations of cells may be lethal prior to hatching.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The article summarizes results of studies concerning: 1/ qualitative evaluation of pig nuclear donor cells to somatic cell cloning, 2/ developmental potency of sheep somatic cells to create chimera, 3/ efficient production of chicken chimera. The quality of nuclear donor cells is one of the most important factors to determine the efficiency of somatic cell cloning. Morphological criteria commonly used for qualitative evaluation of somatic cells may be insufficient for practical application in the cloning. Therefore, different types of somatic cells being the source of genomic DNA in the cloning procedure were analyzed on apoptosis with the use of live-DNA or plasma membrane fluorescent markers. It has been found that morphological criteria are a sufficient selection factor for qualitative evaluation of nuclear donor cells to somatic cell cloning. Developmental potencies of sheep somatic cells in embryos and chimeric animals were studied using blastocyst complementation test. Fetal fibroblasts stained with vital fluorescent dye and microsurgically placed in morulae or blastocysts were later identified in embryos cultured in vitro. Transfer of Polish merino blastocysts harbouring Heatherhead fibroblasts to recipient ewes brought about normal births at term. Newly-born animals were of merino appearance with dark patches on their noses, near the mouth and on their clovens. This overt chimerism shows that fetal fibroblasts introduced to sheep morulae/blastocysts revealed full developmental plasticity. To achieve the efficient production of chicken chimeras, the blastodermal cells from embryos of the donor breeds, (Green-legged Partridgelike breed or GPxAraucana) were transferred into the embryos of the recipient breed (White Leghorn), and the effect of chimerism on the selected reproductive and physiological traits of recipients was examined. Using the model which allowed identification of the chimerism at many loci, it has been found that 93.9% of the examined birds were chimeras. The effect of donor cells on the reproduction and physiology of the recipients was evident.  相似文献   

7.
Blastodermal chimeras were constructed by transferring quail cells to chick blastoderm. Contribution of donor cells to host were histologically analyzed utilizing an in situ cell marker. Of the embryos produced by injection of stage XI-XIII quail cells into stage XI-2 chick blastoderm, more than 50 percent were definite chimeras. The restriction on the spatial arrangement of donor cells was induced by varying the stage of host. Ectodermal chimerism was limited to the head region and no mesodermal chimerism was shown when the quail cells were injected into stage XI-XIII blastoderm. Mesodermal and ectodermal chimerisms were limited to the trunk, not to the head region, when the quail cells were injected into the stage XIV-2 blastoderm. In these chimeras, however, some of the injected quail cells formed ectopic epidermal cysts. Consequently, the stage XIV-2 blastoderm may become intolerant of the injected cells. Our results suggest that it is possible to obtain chimeras that have chimerism limited to a particular germ layer and region by varying the stage of donor cell injection. Injected quail cells contributed to endodermal tissues and primordial germ cells regardless of the injection site. The quail-chick blastodermal chimeras could be useful in the production of a transgenic chicken and in the investigation of immunological tolerance.  相似文献   

8.
The developmental fate of male and female cells in the ovary and testis was evaluated by injecting blastodermal cells from Stage X (Eyal-Gliadi and Kochav, 1976: Dev Biol 49:321–337) chicken embryos into recipients at the same stage of development to form same-sex and mixed-sex chimeras. The sex of the donor was determined by in situ hybridization of blastodermal cells to a probe derived from repetitive sequences in the W chromosome. The sex of the recipient was assigned after determination of the chromosomal composition of erythrocytes from chimeras at 10, 20, 40, and 100 days of age. If the sex chromosome complement of all of the erythrocytes was the same as that of blastodermal cells from the donor, the sex of the recipient was assumed to be the same as that of the donor. Conversely, if the sex-chromosome complement of a portion of the erythrocytes of the chimera differed from that of the donor blastodermal cells, the sex of the recipient was assumed to differ from that of the donor. Injection of male blastodermal cells into female recipients produced both male and female chimeras in equal proportions whereas injection of female cells into male recipients produced only male chimeras. One phenotypically male chimera developed with a left ovotestis and a right testis although sexual differentiation was usually resolved into an unambiguous sexual phenotype during development when ZZ and ZW cells were present in a chimera. Donor cells contributed to the germline of 25–33% of same-sex chimeras whereas 67% of male chimeras produced by injecting male donor cells into female recipients incorporated donor cells into the germline. When ZW cells were incorporated into chimeric males, W-chromosome-specific DNA sequences were occasionally present in DNA extracted from semen. To examine the potential of W-bearing spermatozoa to fertilize ova, males producing ZW-derived offspring and semen in which W-chromosome-specific DNA was detected by Southern analysis were mated to sex-linked albino hens. Since sex-linked albino female progeny were not obtained from this mating, it was concluded that the W-bearing sperm cells were unable to fertilize ova. The production of Z-derived, but not W-derived, offspring from ZW spermatogonia indicates that female primordial germ cells can become spermatogonia in the testes. In the testes, ZW spermatogonia enter meiosis I and produce functional ZZ spermatocytes. The ZZ spermatocytes complete the second meiotic division, continue to differentiate during spermiogenesis, and leave the seminiferous tubules as functional spermatozoa. By contrast, the WW spermatocytes do not appear to complete spermiogenesis and, therefore, spermatozoa bearing the W chromosome are not produced. When cells from male embryos were incorporated into a female chimera, ZZ “oogonia” were included within the ovarian follicles and the chromosome complement of genetically male oogonia was processed normally during meiosis. Following ovulation, the male-derived ova were fertilized and produced normal offspring. This is the first reported evidence that genetically male avian germ cells can differentiate into functional ova and that genetically female germ cells can differentiate into functional sperm. © 1995 wiley-Liss, Inc.  相似文献   

9.
以增强型绿色荧光蛋白和萤火虫荧光素酶为报告基因,构建了鸡卵清蛋白启动子表达载体和慢病毒载体,以巨细胞病毒 (Cytomegalovirus,CMV)启动子表达载体为对照,转染或感染鸡原代输卵管上皮细胞、鸡胚成纤维细胞、鼠3T3-L1前脂肪细胞和牛乳腺上皮细胞,通过荧光和酶活性检测,旨在筛选出用于实现转基因鸡生物反应器的高效特异性表达载体。结果发现,鸡卵清蛋白启动子表达载体转染以上4种细胞后2种标记基因均有表达,没有表现出明显的细胞特异性,且荧光素酶检测结果表明其在各细胞组中表达活性都低于CMV启动子表达载体100倍以上;慢病毒载体感染以上4种细胞后2种标记基因均有表达,在鸡输卵管上皮细胞组感染单个细胞的病毒颗粒 (Multiplicity of infection,MOI) 为20时绿色荧光蛋白表达量就可以达到CMV启动子表达载体的水平。上述结果表明,基于卵清蛋白基因调控序列构建的表达载体无法实现外源基因的高效、特异性表达,而慢病毒载体在表达活性和广泛性上可以用于进行鸡输卵管生物反应器的研究。  相似文献   

10.
To develop an alternative source for chicken pluripotent cells, we examined (1) whether undifferentiated preblastodermal cells could be subcultured in vitro for an extended period and (2) how subculturing affected the physiological properties of preblastodermal cells. The average number of preblastodermal cells was 2,397 in stage V embryos and 36,345 in stage VII embryos; stage X embryos had an average of 53,857 blastodermal cells. The average cell size decreased significantly (70.63-18.83 microm in diameter; P < 0.0001) as the embryo grew; this was closely related to a reduction in the size and number of lipid vesicles in the cell cytoplasm. The culture conditions were optimized for the stage V preblastodermal cells and the control stage X blastodermal cells. On STO feeder cells, the preblastodermal cells achieved stable growth in vitro only in HES medium or a mixed medium of the Knockout DMEM and HES media. However, more than 10 passages of preblastodermal cells at intervals of 3-4 days was possible only by using the Knockout/HES mixed medium and BRL cell-conditioned HES medium for the primary cultures and subcultures, respectively. Colony-forming preblastodermal cells had well-delineated cytoplasm, which was positively stained for stem cell-specific markers by anti-stage-specific embryo antigen-1 antibody, periodic acid-Schiff's solution, and alkaline phosphatase. When preblastodermal cells with or without culturing were transferred into the blastodermal cavity of stage X embryos, only in vitro-cultured preblastodermal cells at stage V (4/5 = 80%) and stage VII (2/8 = 25%) induced somatic chimerism in recipient chickens. In conclusion, undifferentiated preblastodermal cells could be subcultured, and only the colony-forming preblastodermal cells that stained positively for stem cell markers could induce somatic chimerism.  相似文献   

11.
鸡胚胎干细胞的分离、培养和鉴定   总被引:14,自引:0,他引:14  
安静  杜立新 《动物学报》2003,49(5):698-703
SNL cells (permanent line of irradiated mouse fibroblast cells), primary mice embryonic fibroblasts (PMEF) cells and primary chicken embryonic fibroblasts (PCEF) cells were respectively used as the feeder cells for chicken embryonic stem cell culture. The isolated blastoderm cells front the stage X embryos of chicken were cultured in Dulercco‘‘ s Modified Eagle Medium (DMEM) supplemented with leukemia inhibitory factor (LIF, 1 000 IU/ml), basic fibroblast growth factor (bFGF 10 ng/ml) and stem cell factor (SCF, 5 ng/ml). The alkaline phosphatase (AKP) test, differentiation experiment in vitro and chimeric chicken production were carried out. The resuts showed that culture on feeder layer of PMEF yielded high quality CES cell colonies. The shape of typical CES clone showed as follows: nested aggregation (clone) with clear edge and round surface as well as close arrangement within the clone. Strong positive AKP reactive cellswere observed. On the other hand, the fourth passage CES cells could differentiate into various cells in the absence of feeder layer cells and LIF in vitro. The third and fourth passage cells were injected into the subgerminal cavity of recipient embryos at stage X. The manipulated embryos were incubated until hatching. Of 269 Hailan embryos injected with CES cells of Shouguang Chickens, 8.2 % (22/269) survived to hatching, 3 feather chimeras had been produced, which suggests that an effective culture systems were established and it could promote the growth of CES cells and maintain them in an undifferentiated state .  相似文献   

12.
Ha JY  Park TS  Hong YH  Jeong DK  Kim JN  Kim KD  Lim JM 《Theriogenology》2002,58(8):1531-1539
We previously reported that germline chimeras could be produced by transfer of chicken gonadal primordial germ cells (gPGCs) cultured for a short term (5 days). This study was subsequently undertaken to examine whether gPGCs maintained in vitro for an extended period could retain their specific characteristics to induce germline transmission. Chicken (White Leghorn, WL) gPGCs were retrieved from embryos at stage 28 (5.5 days of incubation) and continuously cultured for 2 months in modified Dulbecco's minimal essential medium without subpassage and changing of the feeder cell layer. After the identification of gPGC characteristics using Periodic acid-Shiff's (PAS) reaction and anti stage-specific embryonic antigen-1 (SSEA-1) antibody staining at the end of the culture, cultured gPGCs were injected into the dorsal aorta of Korean Ogol Chicken (KOC) recipient embryos at stage 17 (2.5 days of incubation). Nineteen chickens (13 males and 6 females) were hatched, grown to sexual maturity, and subsequently subjected to testcross analysis employing artificial insemination with adult KOC. Of these, four (three males and one female) hatched chickens with white coat color. The percentage of germline chimerism was 21% (4/19). The results of this study demonstrated that gPGCs could maintain their specific characteristics for up to 2 months in vitro, resulting in the birth of germline chimeras following transfer to recipient embryos.  相似文献   

13.
利用密度梯度离心等方法从孵化51-56 h的石歧杂鸡胚血液中提取PGCs,用自制的玻璃注射针将PGCs注射到孵化2.5 d的H系受体鸡胚中制备种系嵌和体鸡;通过筛选AFLP引物建立起家禽嵌和体的AFLP检测方法;经检测20个发育的PGCs受体鸡胚中有8个种系嵌和体,嵌和率为40%。  相似文献   

14.
This study reports for the first time the production of chicken germline chimeras by transfer of embryonic germ (EG) cells into recipient embryos of different strain. EG cells were established by the subculture of gonadal tissue cells retrieved from stage 28 White Leghorn (WL) embryos with I/I gene. During primary culture (P(0)), gonadal primordial germ cells (gPGCs) in the stromal cells began to form colonies after 7 days in culture with significant (P < 0.0001) increase in cell population. Colonized gPGCs were then subcultured with chicken embryonic fibroblast monolayer for EG cell preparation. Prepared EG cells or gPGCs at P(0) were transferred to stage 17 Korean Ogol chicken (KOC) embryos with i/i gene. The recipient chickens were raised for 6 months to sexual maturity, then a testcross analysis by artificial insemination was conducted for evaluating germline chimerism. As results, transfer of EG cells and gPGCs yielded total 17 germline chimeras; 2 out of 15 (13.3%) and 15 of 176 sexually matured chickens (8.5%), respectively. The efficiency of germline transmission in the chimeras was 1.5-14.6% in EG cells, while 1.3-27.6% in gPGCs. In conclusion, chicken germline chimeras could be produced by the transfer of EG cells, as well as gPGCs, which might enormously contribute to establishing various innovative technologies in the field of avian transgenic research for bioreactor production.  相似文献   

15.
鸡Ⅹ期胚盘细胞体外培养   总被引:9,自引:0,他引:9  
杜立新  尹春光 《动物学报》2002,48(4):549-553
为证实经遗传修饰的鸡X期胚盘细胞具有参与受体胚胎发育和形成嵌合体的能力 ,本研究将由鸡X期胚盘制成的细胞悬液与经脂质体包埋的抗鸡传染性支气管炎病毒基因重组质粒PGS1共孵育后 ,直接显微注入同期受体胚盘 (14 0枚 ) ;或对转染后供体细胞进行G418抗性筛选后显微注入同期受体鸡胚盘 (14 0枚 ) ;或将供体细胞体外培养 4 8h ,再与脂质体 PGS1复合物共孵育后显微注入同期受体鸡胚盘 (190枚 ) ,制备转基因嵌合体鸡 ,并应用PCR和RAPD方法 ,对鸡胚和雏鸡不同组织或血液中的DNA进行检测。结果表明 :直接注射组孵化率(5 7% )显著 (P <0 0 1)高于G418筛选处理组 (1 4 % )和培养 4 8h处理组 (2 1% ) ;G418筛选处理组不同胚龄鸡胚组织、器官中外源DNA的PCR检测阳性率均高于其它二个组。实验结果证明 ,体外培养 4 8h并经遗传修饰的胚盘细胞仍然具有形成嵌合体的能力 ,利用早期胚盘细胞途径制备转基因鸡是可行的。  相似文献   

16.
嵌合体大鼠是研究人类疾病的重要动物模犁.用囊胚注射法研究了大鼠内细胞团(ICM)和胎儿神经干细胞(FNS)构建嵌合体的潜力.结果发现来自黑色(DA)大鼠第5天(D5)和第6天(D6)囊胚的ICM细胞注入D5 Sprague-Dawley(SD)大鼠囊胚后得到3只嵌合体大鼠:D5 SD大鼠ICM细胞注射入D5 DA囊胚后得到4只嵌合体大鼠:而体外培养的DA或SD人鼠ICM细胞注射后均未能获得嵌合体大鼠.本研究用大鼠胎儿神经干细胞(rFNS)和LacZ转染的rFNS构建嵌介体,未能获得嵌合体人鼠:但在LacZ转染的SD rFNS注射到DA大鼠囊胚后发育来的41只胎儿中,有2只胎儿其组织切片中发现少量LacZ阳性细胞.结果表明DA和SD大鼠ICM具有参与嵌合体发育的潜力,但ICM细胞经体外培养后构建嵌合体的潜力显著F降(P<0.05);大鼠胎儿神经干细胞构建嵌合体的潜力较低,可能仅具有参与早期胚胎发育的潜力.  相似文献   

17.
When they are derived from blastodermal cells of the pre-primitive streak in vitro, the pluripotency of Chicken Embryonic Stem Cells (cESC) can be controlled by the cPouV and Nanog genes. These cESC can differentiate into derivatives of the three germ layers both in vitro and in vivo, but they only weakly colonize the gonads of host embryos. By contrast, non-cultured blastodermal cells and long-term cultured chicken primordial germ cells maintain full germline competence. This restriction in the germline potential of the cESC may result from either early germline determination in the donor embryos or it may occur as a result of in vitro culture. We are interested in understanding the genetic determinants of germline programming. The RNA binding protein Cvh (Chicken Vasa Homologue) is considered as one such determinant, although its role in germ cell physiology is still unclear. Here we show that the exogenous expression of Cvh, combined with appropriate culture conditions, induces cESC reprogramming towards a germ cell fate. Indeed, these cells express the Dazl, Tudor and Sycp3 germline markers, and they display improved germline colonization and adopt a germ cell fate when injected into recipient embryos. Thus, our results demonstrate that Vasa can drive ES cell differentiation towards the germ cell lineage, both in vitro and in vivo.  相似文献   

18.
19.
High-grade transgenic somatic chimeras from chicken embryonic stem cells   总被引:9,自引:0,他引:9  
Male and female embryonic stem (ES) cell lines were derived from the area pellucidae of Stage X (EG&K) chicken embryos. These ES cell lines were grown in culture for extended periods of time and the majority of the cells retained a diploid karyotype. When reintroduced into Stage VI-X (EG&K) recipient embryos, the cES cells were able to contribute to all somatic tissues. By combining irradiation of the recipient embryo with exposure of the cES cells to the embryonic environment in diapause, a high frequency and extent of chimerism was obtained. High-grade chimeras, indistinguishable from the donor phenotype by feather pigmentation, were produced. A transgene encoding GFP was incorporated into the genome of cES cells under control of the ubiquitous promoter CX and GFP was widely expressed in somatic tissues. Although cES cells made extensive contributions to the somatic tissues, contribution to the germline was not observed.  相似文献   

20.
We report here the generation of transgenic chickens using a retroviral vector for the production of recombinant proteins. It was found that the transgene expression was suppressed when a Moloney murine leukemia virus-based retroviral vector was injected into chicken embryos at the blastodermal stage. When a concentrated viral solution was injected into the heart of developing embryos after 50 to 60 h of incubation, transgene expression was observed throughout the embryo, including the gonads. For practical production, a retroviral vector encoding an expression cassette of antiprion single-chain Fv fused with the Fc region of human immunoglobulin G1 (scFv-Fc) was injected into chicken embryos. The birds that hatched stably produced scFv-Fc in their serum and eggs at high levels (approximately 5.6 mg/ml). We obtained transgenic progeny from a transgenic chicken generated with this procedure. The transgene was stably integrated into the chromosomes of transgenic progeny. The transgenic progeny also expressed scFv-Fc in the serum and eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号