首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete nucleotide sequence of mulberry (Morus indica cv. K2) chloroplast genome (158,484 bp) has been determined using a combination of long PCR and shotgun-based approaches. This is the third angiosperm tree species whose plastome sequence has been completely deciphered. The circular double-stranded molecule comprises of two identical inverted repeats (25,678 bp each) separating a large and a small single-copy region of 87,386 bp and 19,742 bp, respectively. A total of 83 protein-coding genes including five genes duplicated in the inverted repeat regions, eight ribosomal RNA genes and 37 tRNA genes (30 gene species) representing 20 amino acids, were assigned on the basis of homology to predicted genes from other chloroplast genomes. The mulberry plastome lacks the genes infA, sprA, and rpl21 and contains two pseudogenes ycf15 and ycf68. Comparative analysis, based on sequence similarity, both at the gene and genome level, indicates Morus to be closer to Cucumis and Lotus, phylogenetically. However, at genome level, inclusion of non-coding regions brings it closer to Eucalyptus, followed by Cucumis. This may reflect differential selection pressure operating on the genic and intergenic regions of the chloroplast genome.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.Communicated by Y. Tsumura  相似文献   

2.
The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.  相似文献   

3.
We determined the complete nucleotide sequence of the chloroplast genome of Selaginella uncinata, a lycophyte belonging to the basal lineage of the vascular plants. The circular double-stranded DNA is 144,170 bp, with an inverted repeat of 25,578 bp separated by a large single copy region (LSC) of 77,706 bp and a small single copy region (SSC) of 40,886 bp. We assigned 81 protein-coding genes including four pseudogenes, four rRNA genes and only 12 tRNA genes. Four genes, rps15, rps16, rpl32 and ycf10, found in most chloroplast genomes in land plants were not present in S. uncinata. While gene order and arrangement of the chloroplast genome of another lycophyte, Hupertzia lucidula, are almost the same as those of bryophytes, those of S. uncinata differ considerably from the typical structure of bryophytes with respect to the presence of a unique 20 kb inversion within the LSC, transposition of two segments from the LSC to the SSC and many gene losses. Thus, the organization of the S. uncinata chloroplast genome provides a new insight into the evolution of lycophytes, which were separated from euphyllophytes approximately 400 million years ago. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The chloroplast genome of Pyrus was found to be 159,922?bp in length which included a pair of inverted repeats (IRs) of 26,392?bp, separated by a small single-copy region of 19,237?bp and a large single-copy region (LSC) of 87,901?bp. A total of 130 predicted genes (113 unique genes and 17 genes, which were duplicated in the IR) including 79 protein-coding genes, four ribosomal RNA genes and 30 tRNA genes were identified based on similarity to homologs from the chloroplast genome of Nicotiana tabacum. Genome organization was very similar to the inferred ancestral angiosperm chloroplast genome. Comparisons between Pyrus, Malus, and Prunus in Rosaceae revealed 220 indels (??10?bp). Excluding ycf1 and ycf2, which contained deletions in the coding region, all of these were detected in the spacer or intron regions. Three insertions and 13 deletions were detected in Pyrus compared to the same loci in Malus and Prunus. After comparing 89 noncoding chloroplast DNA regions in Pyrus and Malus, highly variable regions such as ndhC-trnV and trnR-atpA were identified. In Pyrus and Malus, the IR/LSC borders were 62?bp shorter than those of Prunus. In addition, there were length mutations at the IRa/LSC junction and in trnH. A total of 67 simple sequence repeats (more than 10 repeated motifs) were identified in the Pyrus chloroplast genome. The indels and simple sequence repeats will be useful evolutionary tools at both intra- and interspecific levels. Phylogenetic analysis demonstrated a close relationship between Pyrus and Prunus in the Rosaceae.  相似文献   

5.
苹果叶绿体基因组特征分析   总被引:2,自引:0,他引:2  
苹果(Malus×domestica)是最重要的温带水果之一。为了能更好的了解本种的分子生物学基础.对已发布的苹果叶绿体全基因组序列进行了结构特征分析。结果显示苹果的叶绿体基因组全长为160068bp,具有典型的被子植物叶绿体基因组的环状四分体结构,包含大单拷贝区(LSC),小单拷贝区(SSC)和两个反向互补重复区(IRs),长度分别为88184bp,19180bp和26352bp。基因组共有135个基因(20个基因分布在反向互补重复区,因此整个基因组包含115个不同的基因)。按照功能进行分类,这115个基因包括81个蛋白质编码基因,4个rRNA编码基因和30个tRNA基因。其中,ycf15.ycf68和infA三个基因包含多个终止密码子,推测可能为假基因。苹果的基因组结构.基因顺序.GC含量和密码子使用偏好均与典型的被子植物叶绿体基因组类似。在苹果的叶绿体基因组中,共检测到30个大于30bp的重复序列,其中包括21串联重复,6个正向重复和3个反向重复序列;并检测到237个简单重复序列(SSR)位点,大部分的SSR位点都偏向于A或者T组成。此外,每10000bp非编码区平均分布有24个SSR位点,而编码区平均有5个SSR位点,表明SSRs在叶绿体基因组上的分布是不均匀的。本文对苹果叶绿体基因组序列特征的报道,将有助于促进该种的居群遗传学、系统发育和叶绿体基因工程的研究。  相似文献   

6.
Apple (Malus × domestica) is one of the most important temperate fruits. To better understand the molecular basis of this species, we characterized the complete chloroplast (cp) genome sequence downloaded from Genome Database for Rosaceae. The cp genome of apple is a circular molecule of 160068bp in length with a typical quadripartite structure of two inverted repeats (IRs) of 26352bp, separated by a small single copy region of 19180bp (SSC) and a large single copy region (LSC) of 88184bp. A total of 135 predicted genes (115 unique genes, and another 20 genes were duplicated in the IR) were identified, including 81 protein coding genes, four rRNA genes and 30 tRNA genes. Three genes of ycf15, ycf68 and infA contain several internal stop codons, which were interpreted as pseudogenes. The genome structure, gene order, GC content and codon usage of apple are similar to the typical angiosperm cp genomes. Thirty repeat regions (≥30bp) were detected, twenty one of which are tandem, six are forward and three are inverted repeats. Two hundred thirty seven simple sequence repeat (SSR) loci were revealed and most of them are composed of A or T, contributing to a distinct bias in base composition. Additionally, average 10000bp non coding region contains 24 SSR sites, while protein coding region contains five SSR sites, indicating an uneven distribution of SSRs. The complete cp genome sequence of apple reported in this paper will facilitate the future studies of its population genetics, phylogenetics and chloroplast genetic engineering.  相似文献   

7.
This work reports the complete plastid (pt) DNA sequence of Seseli montanum L. of the Apiaceae family, determined using next-generation sequencing technology. The complete genome sequence has been deposited in GenBank with accession No. KM035851. The S. montanum plastome is 147,823 bp in length. The plastid genome has a typical structure for angiosperms and contains a large single-copy region (LSC) of 92,620 bp and a small single-copy region (SSC) of 17,481 bp separated by a pair of 18,861 bp inverted repeats (IRa and IRb). The composition, gene order, and AT-content in the S. montanum plastome are similar to that of a typical flowering plant pt DNA. One hundred fourteen unique genes have been identified, including 30 tRNA genes, four rRNA genes, and 80 protein genes. Of 18 intron-containing genes found, 16 genes have one intron, and two genes (ycf3, clpP) have two introns. Comparative analysis of Apiaceae plastomes reveals in the S. montanum plastome a LSC/IRb junction shift, so that the part of the ycf2 (4980 bp) gene is located in the LSC, but the other part of ycf2 (1301 bp) is within the inverted repeat. Thus, structural rearrangements in the plastid genome of S. montanum result in an enlargement of the LSC region by means of capture of a large part of ycf2, in contrast to eight Apiaceae plastomes where the complete ycf2 gene sequence is located in the inverted repeat.  相似文献   

8.
盐肤木是一种重要的经济树种,可为医药和工业染料提供原料。盐肤木具有较强的抗旱、耐寒、耐盐,可在温带、暖温带和亚热带地区生长。本研究首次对盐肤木叶绿体基因组进行从头测序(de novo sequencing)组装研究。结果表明,盐肤木叶绿体基因组长度为159082 bp,具有典型的四部分结构,两个单拷贝区被一对反向重复区分隔。LSC和SSC的长度分别为85394 bp和18663 bp。叶绿体基因组总共编码126个基因,其中包括88个蛋白编码基因,8个rRNA基因,30个tRNA基因。在叶绿体基因组中,61.97%的序列为基因编码区。在盐肤木叶绿体基因组中,只有8个基因含有内含子,除ycf3基因(2个内含子)外,其余均含有1个内含子。盐肤木叶绿体基因组总共存在755个SSR位点。SSR主要由二核苷酸和单核苷酸组成,分别占60%(453)和28.74%(217)。聚类分析结果表明,漆树科与盐肤木最为接近,其次为槭树科和无患子科。本研究为盐肤木的分类提供了分子基础。本研究是关于盐肤木叶绿体基因组的首次报道,对了解其光合作用、进化和叶绿体转基因工程具有重要意义。  相似文献   

9.
The plastid genome of Trifolium subterraneum is 144,763 bp, about 20 kb longer than those of closely related legumes, which also lost one copy of the large inverted repeat (IR). The genome has undergone extensive genomic reconfiguration, including the loss of six genes (accD, infA, rpl22, rps16, rps18, and ycf1) and two introns (clpP and rps12) and numerous gene order changes, attributable to 14–18 inversions. All endpoints of rearranged gene clusters are flanked by repeated sequences, tRNAs, or pseudogenes. One unusual feature of the Trifolium subterraneum genome is the large number of dispersed repeats, which comprise 19.5% (ca. 28 kb) of the genome (versus about 4% for other angiosperms) and account for part of the increase in genome size. Nine genes (psbT, rbcL, clpP, rps3, rpl23, atpB, psbN, trnI-cau, and ycf3) have also been duplicated either partially or completely. rpl23 is the most highly duplicated gene, with portions of this gene duplicated six times. Comparisons of the Trifolium plastid genome with the Plant Repeat Database and searches for flanking inverted repeats suggest that the high incidence of dispersed repeats and rearrangements is not likely the result of transposition. Trifolium has 19.5 kb of unique DNA distributed among 160 fragments ranging in size from 30 to 494 bp, greatly surpassing the other five sequenced legume plastid genomes in novel DNA content. At least some of this unique DNA may represent horizontal transfer from bacterial genomes. These unusual features provide direction for the development of more complex models of plastid genome evolution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Eugenia uniflora is a plant native to tropical America that holds great ecological and economic importance. The complete chloroplast (cp) genome sequence of Eugenia uniflora, a member of the Neotropical Myrtaceae family, is reported here. The genome is 158,445 bp in length and exhibits a typical quadripartite structure of the large (LSC, 87,459 bp) and small (SSC, 18,318 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 26,334 bp). It contains 111 unique genes, including 77 protein-coding genes, 30 tRNAs and 4 rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Comparison of the entire cp genomes of E. uniflora L. and three other Myrtaceae revealed an expansion of 43 bp in the intergenic spacer located between the IRA/large single-copy (LSC) border and the first gene of LSC region. Simple sequence repeat (SSR) analysis revealed that most SSRs are AT rich, which contribute to the overall AT richness of the cp genome. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the noncoding regions. Phylogenetic analysis among 58 species based on 57 cp genes demonstrated a closer relationship between E. uniflora L. and Syzygium cumini (L). Skeels compared to the Eucalyptus clade in the Myrtaceae family. The complete cp genome sequence of E. uniflora reported here has importance for population genetics, as well as phylogenetic and evolutionary studies in this species and other Myrtaceae species from Neotropical regions.  相似文献   

11.
Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.  相似文献   

12.
Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.  相似文献   

13.
长爪栘[木衣](Docynia longiunguis Q.Luo & J.L.Liu)是我国特有的栘[木衣]属植物,具有较高的食药用价值.对其叶绿体基因组进行分析,有助于阐明栘[木衣]属内的系统发育关系,为长爪栘[木衣]资源的开发利用及进一步研究奠定基础.结合其近缘种云南移[木衣]叶绿体基因组数据,在进行全序列比对后...  相似文献   

14.
T Huotari  H Korpelainen 《Gene》2012,508(1):96-105
Elodea canadensis is an aquatic angiosperm native to North America. It has attracted great attention due to its invasive nature when transported to new areas in its non-native range. We have determined the complete nucleotide sequence of the chloroplast (cp) genome of Elodea. Taxonomically Elodea is a basal monocot, and only few monocot cp genomes representing early lineages of monocots have been sequenced so far. The genome is a circular double-stranded DNA molecule 156,700bp in length, and has a typical structure with large (LSC 86,194bp) and small (SSC 17,810bp) single-copy regions separated by a pair of inverted repeats (IRs 26,348bp each). The Elodea cp genome contains 113 unique genes and 16 duplicated genes in the IR regions. A comparative analysis showed that the gene order and organization of the Elodea cp genome is almost identical to that of Amborella trichopoda, a basal angiosperm. The structure of IRs in Elodea is unique among monocot species with the whole cp genome sequenced. In Elodea and another monocot Lemna minor the borders between IRs and LSC are located upstream of rps19 gene and downstream of trnH-GUG gene, while in most monocots, IR has extended to include both trnH and rps19 genes. A phylogenetic analysis conducted using Bayesian method, based on the DNA sequences of 81 chloroplast genes from 17 monocot taxa provided support for the placement of Elodea together with Lemna as a basal monocot and the next diverging lineage of monocots after Acorales. In comparison with other monocots, the Elodea cp genome has gone through only few rearrangements or gene losses. IR of Elodea has a unique structure among the monocot species studied so far as its structure is similar to that of a basal angiosperm Amborella. This result together with phylogenetic analyses supports the placement of Elodea as a basal monocot to the next diverging lineage of monocots after Acorales. So far, only few cp genomes representing early lineages of monocots have been sequenced and, therefore, this study provides valuable information about the course of evolution in divergence of monocot lineages.  相似文献   

15.
Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated) chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC) region, 16.670 bp of a small single-copy (SSC) region, and a pair of 25,783 bp sequences of inverted repeats (IRs).The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.  相似文献   

16.
为探究滇黄精(Polygonatum kingianum)叶绿体全基因组特征和密码子使用偏性,利用第二代测序技术对滇黄精嫩叶进行测序,再经组装与注释后得到其叶绿体基因组全序列,通过MISA、EMBOSS和CodonW等软件对滇黄精叶绿体全基因组的SSR位点、系统发育及密码子偏好性进行分析。结果表明,滇黄精完整叶绿体基因组长度为155 852 bp,基因组平均GC含量为37.7%,其大、小单拷贝区(LSC)长度分别为84 633和185 25 bp,反向重复区长度为26 347 bp,注释了132个基因,包括86个蛋白编码基因、38个tRNA基因和8个核糖rRNA基因。叶绿体基因组中共有69个SSR位点,绝大多数属于单碱基重复的A/T类型。系统发育分析表明滇黄精与格脉黄精(P. tessellatum)亲缘关系近,可能与分布地域有关。密码子偏好性分析表明,滇黄精叶绿体基因组密码子使用模式受到自然选择影响大于突变因素,最终确定9个最优密码子。因此, 滇黄精叶绿体基因组遗传结构和系统发育位置及其密码子偏倚的分析,为叶绿体基因工程研究提供理论依据。  相似文献   

17.
The nucleotide sequence of the complete chloroplast genome of a basal angiosperm, Calycanthus fertilis, has been determined. The circular 153337 bp long cpDNA is colinear with those of tobacco, Arabidopsis and spinach. A total of 133 predicted genes (115 individual gene species, 18 genes duplicated in the inverted repeats) including 88 potential protein-coding genes (81 gene species), 8 ribosomal RNA genes (4 gene species) and 37 tRNA genes (30 gene species) representing 20 amino acids were identified based on similarity to their homologs from other chloroplast genomes. This is the highest gene number ever registered in an angiosperm plastome. Calycanthus fertilis cpDNA also contains a homolog of the recently discovered mitochondrial ACRS gene. Since no gene transfer from mitochondria to the chloroplast has ever been documented, we investigated the evolutionary affinity of this gene in detail. Phylogenetic analysis of the protein-coding subset of the plastome suggests that the ancient line of Laurales emerged after the split of the angiosperms into monocots and dicots. Calycanthus fertilis Walter var. ferax (Michy.) Rehder is a synonym of C. floridus L. var. glaucus (Willd.) Torr. & A. Gray.Data deposition: The sequence reported in this paper has been deposited in the EMBL database (accession no. AJ428413).  相似文献   

18.
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1–585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.  相似文献   

19.
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.  相似文献   

20.
This current study presents, for the first time, the complete chloroplast genome of two Cleomaceae species: Dipterygium glaucum and Cleome chrysantha in order to evaluate the evolutionary relationship. The cp genome is 158,576 bp in length with 35.74% GC content in D. glaucum and 158,111 bp with 35.96% GC in C. chrysantha. Inverted repeats IR 26,209 bp, 26,251 bp each, LSC of 87,738 bp, 87,184 bp and SSC of 18,420 bp, 18,425 bp respectively. There are 136 genes in the genome, which includes 80 protein coding genes, 31 tRNA genes and four rRNA genes were observed in both chloroplast genomes. 117 genes are unique while the remaining 19 genes are duplicated in IR regions. The analysis of repeats shows that the cp genome includes all types of repeats with more frequent occurrences of palindromic; Also, this analysis indicates that the total number of simple sequence repeats (SSR) were 323 in D. glaucum, and 313 in C. chrysantha, of which the majority of the SSRs in these plastid genomes were mononucleotide repeats A/T which are located in the intergenic spacer. Moreover, the comparative analysis of the four cp sequences revealed four hotspot genes (atpF, rpoC2, rps19, and ycf1), these variable regions could be used as molecular makers for the species authentication as well as resources for inferring phylogenetic relationships of the species. All the relationships in the phylogenetic tree are with high support, this indicate that the complete chloroplast genome is a useful data for inferring phylogenetic relationship within the Cleomaceae and other families. The simple sequence repeats identified will be useful for identification, genetic diversity, and other evolutionary studies of the species. This study reported the first cp genome of the genus Dipterygium and Cleome. The finding of this study will be beneficial for biological disciplines such as evolutionary and genetic diversity studies of the species within the core Cleomaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号