首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
Background. It is still a point of controversy whether Helicobacter pylori‐infected patients are more likely to develop mucosal damage while taking NSADIs. Selective cyclooxygenase (COX‐2) inhibitors may be associated with less severe gastric mucosal damage than conventional NSAIDs, but this association is undefined in H. pylori‐induced gastritis. The aim of this study was to evaluate the effects of selective COX‐2 and nonselective NSAIDs on H. pylori‐induced gastritis. Methods. After intragastric administration of indomethacin, NS‐398 or vehicle alone, once daily for 5 days in H. pylori‐infected and uninfected Mongolian gerbils, we evaluated gastric mucosal damage, inflammatory cell infiltration and prostaglandin E2 (PGE2) concentration. We investigated whether H. pylori infection induced the COX‐2 expression. Results. In H. pylori‐uninfected groups, the indomethacin‐treated group showed the highest mucosal damage score and the lowest PGE2 concentration. There was no difference in mucosal damage scores and PGE2 concentration between NS‐398 and vehicle‐alone treated group. In H. pylori‐infected groups, there was no difference in mucosal damage scores, irrespective of the type of drugs administered. The indomethacin‐treated group showed the lowest PGE2 concentration, similar to that of the NS‐398 and vehicle‐alone treated groups, both without H. pylori infection. Gastric neutrophil and monocyte infiltration scores were higher in H. pylori‐infected groups than in uninfected groups. However, there was no difference in these scores according to the type of drugs administered, within H. pylori‐infected or uninfected groups. COX‐2 protein expression was observed in H. pylori‐infected Mongolian gerbils but not in uninfected ones. Conclusions. Our animal study showed that H. pylori infection induced COX‐2 expression and increased prostaglandin concentration. Administration of NSAIDs decreased the prostaglandin concentration, but did not increase mucosal damage in H. pylori‐induced gastritis. Selective COX‐2 inhibitors, instead of conventional NSIADs, had no beneficial effect on preventing mucosal damage in H. pylori‐induced gastritis.  相似文献   

3.
Background: Selective cyclooxygenase‐2 (COX‐2) inhibitors and proton pump inhibitors may exert immune‐mediated effects in human gastric mucosa. T‐cell immune response plays a role in Helicobacter pylori‐induced pathogenesis. This study evaluated effects of celecoxib and lansoprazole on T‐helper (Th) 1 and Th2 immune response in human gastric mucosa. Methods: Dyspeptic patients with or without osteoarticular pain were given one of the following 4‐week therapies: celecoxib 200 mg, celecoxib 200 mg plus lansoprazole 30 mg, and lansoprazole 30 mg daily. Expression of COX‐2, T‐bet, and pSTAT6 and production of prostaglandin E2 (PGE2), interferon (IFN)‐γ, and interleukin (IL)‐4 were determined in gastric biopsies before and after therapy. Histology was evaluated. Results: Cyclooxygenase‐2 expression and PGE2 production was higher, and Th1 signaling pathway was predominant in H. pylori‐infected vs. uninfected patients. T‐bet expression and IFN‐γ production increased, while STAT6 activation and IL‐4 production decreased following therapy with celecoxib and celecoxib plus lansoprazole, respectively. Th1 and Th2 signaling pathways down‐regulated after therapy with lansoprazole, and this was associated with an improvement of gastritis. Effect of therapy was not affected by H. pylori status. Conclusion: Celecoxib and lansoprazole modulate Th1/Th2 immune response in human gastric mucosa. The use of these drugs may interfere with long‐term course of gastritis.  相似文献   

4.
Background. Cyclooxygenase (COX)‐2 induced by Helicobacter pylori is thought to enhance gastric carcinogenesis by affecting the maintenance of epithelial homeostasis. Materials and Methods. Gastric biopsies from 160 subjects, 97 with nonulcer dyspepsia (47 H. pylori negative, 50 H. pylori positive) and 63 with gastric cancer were examined immunohistochemically for COX‐2 expression, cell proliferation and apoptotic indices. Results. COX‐2 expression in corpus was significantly higher in H. pylori positive than in negative non‐ulcer dyspepsia (NUD) (p < .05). Regardless of site, gastric cancer subjects had higher COX‐2 expression in both antrum and corpus compared with H. pylori negative and positive NUD (p < .005). Proliferation was higher in cancer and H. pylori positive than in negative NUD (p < .0001). Moreover, cancer had enhanced proliferation than H. pylori positive NUD in corpus greater (p = .0454) and antrum lesser (p = .0215) curvatures. Apoptosis was higher in H. pylori positive than in negative NUD (p < .05). However, both had a higher index than the cancer subjects (p < .0001). Apoptosis : proliferation ratio was higher in corpus of H. pylori negative than in positive NUD in greater (p = .0122) and lesser (p = .0009) curvatures. However, both had a higher A:P ratio than cancer cases (p = .0001). A negative correlation between COX‐2 expression and A:P ratio was found in corpus greater (r = –.176, p= .0437) and lesser (r = –.188, p= .0312) curvatures. Conclusion. The expression of COX‐2 is associated with disruption in gastric epithelial kinetics and hence may play a role in gastric carcinogenesis.  相似文献   

5.
Background. The role of teprenone in Helicobacter pylori‐associated gastritis has yet to be determined. To investigate the effect of teprenone on inflammatory cell infiltration, and on H. pylori colonization of the gastric mucosa in H. pylori‐infected patients, we first compared the effect of teprenone with that of both histamine H2 receptor antagonists (H2‐RA) and sucralfate on the histological scores of H. pylori gastritis. We then examined its in vitro effect on H. pylori‐induced interleukin (IL)‐8 production in MKN28 gastric epithelial cells. Materials and Methods. A total of 68 patients were divided into three groups, each group undergoing a 3‐month treatment with either teprenone (150 mg/day), H2‐RA (nizatidine, 300 mg/day), or sucralfate (3 g/day). All subjects underwent endoscopic examination of the stomach before and after treatment. IL‐8 production in MKN28 gastric epithelial cells was measured by enzyme‐linked immunosorbent assay (ELISA). Results. Following treatment, the teprenone group showed a significant decrease in both neutrophil infiltration and H. pylori density of the corpus (before vs. after: 2.49 ± 0.22 vs. 2.15 ± 0.23, p = .009; 2.36 ± 0.25 vs. 2.00 ± 0.24, p = .035, respectively), with no significant differences seen in either the sucralfate or H2‐RA groups. Teprenone inhibited H. pylori‐enhanced IL‐8 production in MKN28 gastric epithelial cells in vitro, in a dose‐dependent manner. Conclusions. Teprenone may modify corpus H. pylori‐associated gastritis through its effect on neutrophil infiltration and H. pylori density, in part by its inhibition of IL‐8 production in the gastric mucosa.  相似文献   

6.
Background. Helicobacter pylori CagA is injected into the host cell and tyrosine‐phosphorylated. We examined tyrosine‐phosphorylation sites of CagA, as well as the function of CagA proteins in vivo and in vitro. Methods. After proteolytic digestion of CagA with lysyl endopeptidase, CagA tyrosine‐phosphorylation sites were determined using quadropolar time‐of‐flight (Q‐TOF) mass spectrometry analysis. Specific anti‐pY CagA polyclonal and anti‐CagA monoclonal antibodies were used to examine gastric mucosal biopsy specimens from H. pylori infected patients. Results. Mass spectrometry identified five crucial tyrosine‐phosphorylation sites of CagA at Tyr893, Tyr912, Tyr965, Tyr999, and Tyr1033 within the five repeated EPIYA sequences of H. pylori (NCTC11637)‐infected AGS cells. CagA protein also had an immuno‐receptor tyrosine‐based activation motif (ITAM)‐like amino acid sequences in the 3′ region of the cagA, E PIY ATI x27EIY ATI , which closely resembled the ITAM. CagA proteins: (i) were localized to the 1% TritonX‐100 resistant membrane fraction (lipid rafts); (ii) formed a cluster of phosphorylated CagA protein complexes; (iii) associated with tyrosine‐phosphorylated GIT1/Cat1 (G protein‐coupled receptor kinase‐interactor 1/Cool‐associated tyrosine‐phosphorylated 1), substrate molecules of receptor type protein‐tyrosine phosphatase (RPTPζ/β), which is the receptor of VacA; and (iv) were involved in a delay and negative regulation of VacA‐induced signal. Furthermore, immunohistochemical staining of gastric mucosal biopsy specimens provided strong evidence that tyrosine‐phosphorylated CagA is found together with CagA at the luminal surface of gastric foveola in vivo. Conclusion. These findings suggest an important role for CagA containing ITAM‐like sequences in the pathogenesis of H. pylori‐related disease.  相似文献   

7.
Background: Helicobacter pylori infection is a major cause of gastritis and gastric carcinoma. Aspirin has anti‐inflammatory and antineoplastic activity. The aim of the present study was to determine the effects of aspirin on H. pylori‐induced gastritis and the development of heterotopic proliferative glands. Methods: H. pylori strain SS1 was inoculated into the stomachs of Mongolian gerbils. Two weeks after inoculation, the animals were fed with the powder diets containing 0 p.p.m. (n = 10), 150 p.p.m. (n = 10), or 500 p.p.m. (n = 10) aspirin. Mongolian gerbils were killed after 36 weeks of infection. Uninfected Mongolian gerbils (n = 10) were used as controls. Histologic changes, epithelial cell proliferation and apoptosis, and prostaglandin E2 (PGE2) levels of gastric tissue were determined. Results: H. pylori infection induced gastric inflammation. Administration of aspirin did not change H. pylori‐induced gastritis, but alleviated H. pylori‐induced hyperplasia and the development of heterotopic proliferative glands. Administration of aspirin accelerated H. pylori‐associated apoptosis but decreased H. pylori‐associated cell proliferation. In addition, the increased gastric PGE2 levels due to H. pylori infection were suppressed by treatment with aspirin, especially at the dose of 500 p.p.m. Conclusions: Aspirin alleviates H. pylori‐induced hyperplasia and the development of heterotopic proliferative glands. Moreover, aspirin increases H. pylori‐induced apoptosis. We demonstrated the antineoplastic activities of aspirin in H. pylori‐related gastric carcinogenesis.  相似文献   

8.
Background: The human bacterial pathogen Helicobacter pylori forms biofilms. However, the constituents of the biofilm have not been extensively investigated. In this study, we analyzed the carbohydrate and protein components of biofilm formed by H. pylori strain ATCC 43504 (NCTC 11637). Materials and Methods: Development of H. pylori biofilm was analyzed using scanning electron microscopy (SEM) and quantified using crystal violet staining. The extracted extracellular polysaccharide (EPS) matrix was analyzed using GC‐MS and nuclear magnetic resonance (NMR) analyses. Proteomic profiles of biofilms were examined by SDS–PAGE while deletion mutants of upregulated biofilm proteins were constructed and characterized. Results: Formation of H. pylori biofilm is time dependent as shown by crystal violet staining assay and SEM. NMR reveals the prevalence of 1,4‐mannosyl linkages in both developing and mature biofilms. Proteomic analysis of the biofilm indicates the upregulation of neutrophil‐activating protein A (NapA) and several stress‐induced proteins. Interestingly, the isogenic mutant napA revealed a different biofilm phenotype that showed reduced aggregated colonial structure when compared to the wild type. Conclusions: This in vitro study shows that mannose‐related proteoglycans (proteomannans) are involved in the process of H. pylori biofilm formation while the presence of upregulated NapA in the biofilm implies the potency to increase adhesiveness of H. pylori biofilm. Being a complex matrix of proteins and carbohydrates, which are probably interdependent, the H. pylori biofilm could possibly offer a protective haven for the survival of this gastric bacterial pathogen in the extragastric environments.  相似文献   

9.
The translocations of lipopolysaccharide (LPS) from the gut and its effects on bone healing are usually of clinical interest during bone fracture. As already widely stuided, Cyclooxygenase‐2 (COX‐2) is a key enzyme for prostaglandin E2 (PGE2) production, which induces the nuclear factor kappa B (NFκB) activation and is beneficial to fracture healing. In order to know their roles in skeletal regeneration, mouse MC3T3‐E1 osteoblasts were treated with NFκB inhibitor BAY 11‐7082 and sc791 (a selective COX‐2 inhibitor), in the presence of LPS. Interestingly, LPS could induce osteoblasts proliferation through increasing NFκB activation and translocation. This induction was not related to COX‐2 expression, suggesting that LPS‐induced NFκB activiation is independent of COX‐2. It is possible that low concentration of LPS can act as a stimulating factor of the NFκB pathway in nonstimulated cells such as osteoblasts. COX‐2 is not necessary for the NFκB pathway during LPS‐induced proliferation of osteoblasts since sc791 had no effects on this induction. These studies provide insight into a potential mechanism by which LPS can affect bone tissue repair in the initial phase of inflammation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Background. The impact of H. pylori infection on gastric mucosal blood flow and NSAID‐induced gastric damage is unclear. Aim. To study the effects of H. pylori infection on gastric mucosal blood flow, both at basal conditions and after NSAID exposure, and its relation with mucosal damage and nitric oxide production. Methods. Gastric mucosal blood flow, nitric oxide production and gastric damage were assessed in time after H. pylori SS1 or E. coli inoculation in mice. Experiments were conducted in basal conditions or after oral exposure to indomethacin (20 mg/kg). Results. H. pylori infected mice exhibited a significant increase in gastric blood flow and gastric nitric oxide production 1 week after infection, but those parameters returned to basal levels by 4 weeks. NSAID challenge elicited a similar reduction in gastric blood flow [25–35%] in H. pylori‐infected and control animals. However, only 1 week H. pylori‐infected mice, which exhibited a significant baseline hyperemia, were able to maintain gastric blood flow values within the normal range after NSAID exposure. NSAID‐induced gastric damage was increased in H. pylori‐infected mice by 4 weeks, but not 1 week after infection. Conclusions. Underlying H. pylori infection aggravates acute NSAID‐induced gastric damage. However, at early phases, gastric hyperemia associated with increased nitric oxide production may exert some protective role.  相似文献   

12.
Liu FX  Wang WH  Wang J  Li J  Gao PP 《Helicobacter》2011,16(1):66-77
Objectives: To investigate the relationship between Helicobacter pylori infection and Barrett’s esophagus (BE), a rat model of chronic gastroesophageal reflux with H. pylori infection was established and the degree of inflammation, incidence of BE and esophageal adenocarcinoma (EA) were evaluated. Methods: Eight‐week‐old male specific‐pathogen‐free SD rats were divided into five groups randomly: pseudo‐operation group; esophagojejunum anastomosis (EJA) group; EJA with H. pylori infection group; EJA with H. pylori infection and celecoxib‐treated group; EJA with celecoxib‐treated group. Rats were kept for 30 weeks after surgery. Esophageal lesion was evaluated grossly and microscopically. The expression of COX‐2 and CDX2 was determined by RT‐PCR and immunohistochemistry staining. The level of PGE2 was assessed by enzyme‐linked immunosorbent assay. Results: Esophageal mucosal injury in the group of EJA with H. pylori infection was decreased than that in EJA group (p < .05). The incidence of BE and EA in rats undergoing EJA with H. pylori infection was increased than in rats undergoing EJA with no statistical difference. Celecoxib treatment decreased the incidence of EA in rats undergoing EJA with H. pylori infection (p < .05). The expression of CDX2 mRNA was decreased in rats with H. pylori infection or treated with celecoxib than in the rats of pseudo‐operation group (p < .05). When compared with those in rats of pseudo‐operation group, the expression of COX‐2 mRNA and the level of PGE2 were upregulated in rats undergoing EJA irrespective of H. pylori infection (p < .05) and downregulated in rats treated with celecoxib (p < .05). When H. pylori colonized in esophagus, the severity of inflammation and the incidence of BE and EA were increased significantly. Higher levels of COX‐2 expression and PGE2 were detected in rats with esophageal H. pylori colonization. Conclusions: When H. pylori infect in stomach, it may reduce the severity of inflammation. However, when colonizes in esophagus, H. pylori increases the severity of esophageal inflammation and the incidence of BE and EA. Celecoxib administration attenuates the incidence of EA by inhibiting COX‐2 expression.  相似文献   

13.
Background: The outer core region of Hpylori lipopolysaccharide (LPS) contains α1,6‐glucan previously shown to contribute to colonizing efficiency of a mouse stomach. The aim of the present study was to generate monoclonal antibodies (mAbs) specific for α1,6‐glucan and characterize their binding properties and functional activity. Materials and Methods: BALB/c mice were injected intraperitoneally with 108 formalin‐fixed H. pylori O:3 0826::Kan cells 3× over 56 days to achieve significant titer. Anti‐α1,6‐glucan‐producing hybridomas were screened by indirect ELISA using purified H. pylori O:3 0826::Kan LPS. One clone, 1C4F9, was selected for further characterization. The specificities of mAbs were determined by indirect and inhibition ELISA using structurally defined H. pylori LPS and synthetic oligosaccharides, and whole‐cell indirect ELISA (WCE) of clinical isolates. They were further characterized by indirect immunofluorescent (IF) microscopy and their functional activity in vitro determined by serum bactericidal assays against wild‐type and mutant strains of H. pylori. Results: The generated anti‐α1,6‐glucan IgM, 1C4F9, has demonstrated an excellent specificity for the glucan chain containing 5 to 6 α1,6‐linked glucose residues and showed surface accessibility by IF microscopy with H. pylori cells adherent to gastric adenocarcinoma cells monolayers. Of 38 isolates from Chile, 17 strains reacted with antiglucan mAbs in WCE (OD450 ≥ 0.2). Bactericidal activity was observed against selective wild‐type and mutant H. pylori strains exhibiting OD450 values of ≥0.45 in WCE. Conclusions: Anti‐α1,6‐glucan mAbs could have potential application in typing and surveillance of H. pylori isolates as well as offer insights into structural requirements for the development of LPS‐based vaccine against H. pylori infections.  相似文献   

14.
Background: Eradication of Helicobacter pylori with antibiotics is the established initial treatment of patients with localized gastric mucosa‐associated lymphoid tissue (MALT) lymphoma. However, there are few reports on follow‐up modalities to identify sustained remission in patients who achieve complete remission (CR). We therefore investigated the role of abdominal computed tomography (CT) as follow‐up after CR with H. pylori eradication. Patients and Methods: We retrospectively analyzed 122 patients with H. pylori‐positive stage IE1 gastric MALT lymphoma who achieved CR with successful H. pylori eradication. Results: The median follow‐up after CR was 35 months (range 3–140months). At a median of 17 months (range 12–21 months) after CR, 7 of 122 patients (5.7%) experienced lymphoma recurrence, all cases of which were confined to the gastric mucosa and were detectable only by endoscopy with multiple biopsies. At the time of recurrence, four of seven patients showed re‐infection by H. pylori. Eradication therapy was successful in these patients, resulting in both bacterial eradication and tumor regression. Three patients who experienced histologic recurrence without H. pylori re‐infection were observed by a watch and wait strategy and again achieved CR. Conclusions: None of the patients with H. pylori‐positive stage IE1 gastric MALT lymphoma who experienced tumor recurrence after CR with successful H. pylori eradication showed recurrence at extragastric sites, including lymph nodes without gastric mucosal lesion. These findings indicate that endoscopic biopsies without abdominal CT scans are sufficient to detect recurrence in these patients.  相似文献   

15.
Background. Polymorphisms in the promoter region of the proinflammatory cytokine, interleukin (IL)‐6 have been related to several chronic inflammatory diseases. Inter‐individual variation in the severity of gastric inflammation may be important in determining the clinical outcome of an Helicobacter pylori infection and relate to polymorphisms in this region. Materials and Methods. We studied H. pylori‐infected patients with duodenal ulcer or gastric cancer. In addition six gastric cancer cell lines, AGS, SNU‐668, MKN‐1, MKN‐7, MKN28 and KATOIII, were cocultured with both cag pathogenicity island‐positive and ‐negative H. pylori. Single nucleotide polymorphisms at positions ?174, ?572, and ?597 in the IL‐6 promoter region were identified by PCR‐RFLP. The IL‐6 production from the cancer cells was determined by ELISA. Results. Sixty patients with gastric cancer and 60 with duodenal ulcer were studied. The alleles at positions ?174 and ?597 were closely linked (?174G/?597G or ?174C/?597A) regardless of the ethnic group or disease presentation. There was no difference in the allele frequency at any of the sites among patient groups. H. pylori‐induced IL‐6 production from the gastric cancer cell lines was also independent of the IL‐6 polymorphisms or the presence of the cag pathogenicity island. Conclusions. The genetic polymorphisms in IL‐6 can be attributable to ethnicity and appear to be independent of the clinical outcome of an H. pylori infection.  相似文献   

16.
17.
18.
Yin YN  Wang CL  Liu XW  Cui Y  Xie N  Yu QF  Li FJ  Lu FG 《Helicobacter》2011,16(5):389-397
Background: Long‐term Helicobacter pylori infection leads to chronic gastritis, peptic ulcer, and gastric malignancies. Indigenous microflora in alimentary tract maintains a colonization barrier against pathogenic microorganisms. This study is aimed to observe the gastric and duodenum microflora alteration after H. pylori infection in Mongolian Gerbils model. Materials and Methods: A total of 18 Mongolian gerbils were randomly divided into two groups: control group and H. pylori group that were given H. pylori NCTC J99 strain intragastrically. After 12 weeks, H. pylori colonization was identified by rapid urease tests and bacterial culture. Indigenous microorganisms in stomach and duodenum were analyzed by culture method. Histopathologic examination of gastric and duodenum mucosa was also performed. Results: Three of eight gerbils had positive H. pylori colonization. After H. pylori infection, Enterococcus spp. and Staphylococcus aureus showed occurrences in stomach and duodenum. Lactobacillus spp. showed a down trend in stomach. The levels and localizations of Bifidobacterium spp., Bacteroides spp., and total aerobes were also modified. Bacteroides spp. significantly increased in H. pylori positive gerbils. No Enterobacteriaceae were detected. Positive colonization gerbils showed a higher histopathologic score of gastritis and a similar score of duodenitis. Conclusions: Long‐term H. pylori colonization affected the distribution and numbers of indigenous microflora in stomach and duodenum. Successful colonization caused a more severe gastritis. Gastric microenvironment may be unfit for lactobacilli fertility after long‐term H. pylori infection, while enterococci, S. aureus, bifidobacteria, and bacteroides showed their adaptations.  相似文献   

19.
Yang YJ  Sheu BS 《Helicobacter》2012,17(4):297-304
Background: The benefits of probiotics to the pediatric Helicobacter pylori infection remain uncertain. We tested whether the H. pylori‐infected children have an altered gut microflora, and whether probiotics‐containing yogurt can restore such change and improve their H. pylori‐related immune cascades. Methods: We prospectively included 38 children with H. pylori infection confirmed by a positive 13C‐urea breath test (UBT) and 38 age‐ and sex‐matched noninfected controls. All of them have provided the serum and stool samples before and after 4‐week ingestion of probiotics‐containing yogurt. The serum samples were tested for the TNF‐α, IL‐10, IL‐6, immunoglobulin (Ig) A, G, E, pepsinogens I and II levels. The stool samples were tested for the colony counts of Bifidobacterium spp. and Escherichia coli. The follow‐up UBT indirectly assessed the H. pylori loads after yogurt usage. Results: The H. pylori‐infected children had lower fecal Bifidobacterium spp. count (p = .009), Bifidobacterium spp./E. coli ratio (p = .04), serum IgA titer (p = .04), and pepsinogens I/II ratio (p < .001) than in controls. In the H. pylori‐infected children, 4‐week yogurt ingestion reduced the IL‐6 level (p < .01) and H. pylori loads (p = .046), but elevated the serum IgA and pepsinogen II levels (p < .001). Moreover, yogurt ingestion can improve the childhood fecal Bifidobacterium spp./E. coli ratio (p = .03). Conclusions: The H. pylori‐infected children have a lower Bifidobacterium microflora in gut. The probiotics‐containing yogurt can offer benefits to restore Bifidobacterium spp./E. coli ratio in children and suppress the H. pylori load with increment of serum IgA but with reduction in IL‐6 in H. pylori‐infected children.  相似文献   

20.
Background. Two types of mucous cell are present in gastric mucosa: surface mucous cells (SMCs) and gland mucous cells (GMCs), which consist of cardiac gland cells, mucous neck cells, and pyloric gland cells. We have previously reported that the patterns of glycosylation of SMC mucins are reversibly altered by Helicobacter pylori infection. In this study, we evaluated the effects of H. pylori infection on the expression of GMC mucins in pyloric gland cells. Methods. Gastric biopsy specimens from the antrums of 30 H. pylori‐infected patients before and after eradication of H. pylori and 10 normal uninfected volunteers were examined by immunostaining for MUC6 (a core protein of GMC mucins), α1,4‐N‐acetyl‐glucosaminyl transferase (α4GnT) (the glycosyltransferase which forms GlcNAcα1‐4Galβ‐R), and GlcNAcα1‐4Galβ‐R (a GMC mucin‐specific glycan). Results. MUC6, α4GnT, and HIK1083‐reactive glycan were expressed in the cytoplasm, supranuclear region, and secretory granules in pyloric gland cells, respectively. The immunoreactivity of MUC6 and α4GnT, but not of GlcNAcα1‐4Galβ‐R, in the pyloric gland increased in H. pylori‐associated gastritis, and after the eradication of H. pylori, the increased expression of MUC6 and α4GnT in the gastric mucosa of H. pylori‐infected patients decreased to almost normal levels. This up‐regulation was correlated with the degree of inflammation. Conclusions. In addition to the synthesis of GMC mucins increasing reversibly, their metabolism or release may also increase reversibly in H. pylori‐associated gastritis. The up‐regulation of the expression of gastric GMC mucins may be involved in defense against H. pylori infection in the gastric surface mucous gel layer and on the gastric mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号