首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The polyprotein of infectious pancreatic necrosis virus (IPNV), a birnavirus, is processed by the viral protease VP4 (also named NS) to generate three polypeptides: pVP2, VP4, and VP3. Site-directed mutagenesis at 42 positions of the IPNV VP4 protein was performed to determine the active site and the important residues for the protease activity. Two residues (serine 633 and lysine 674) were critical for cleavage activity at both the pVP2-VP4 and the VP4-VP3 junctions. Wild-type activity at the pVP2-VP4 junction and a partial block (with an alteration of the cleavage specificity) at the VP4-VP3 junction were observed when replacement occurred at histidines 547 and 679. A similar observation was made when aspartic acid 693 was replaced by leucine, but wild-type activity and specificity were found when substituted by glutamine or asparagine. Sequence comparison between IPNV and two birnavirus (infectious bursal disease virus and Drosophila X virus) VP4s revealed that serine 633 and lysine 674 are conserved in these viruses, in contrast to histidines 547 and 679. The importance of serine 633 and lysine 674 is reminiscent of the protease active site of bacterial leader peptidases and their mitochondrial homologs and of the bacterial LexA-like proteases. Self-cleavage sites of IPNV VP4 were determined at the pVP2-VP4 and VP4-VP3 junctions by N-terminal sequencing and mutagenesis. Two alternative cleavage sites were also identified in the carboxyl domain of pVP2 by cumulative mutagenesis. The results suggest that VP4 cleaves the (Ser/Thr)-X-Ala / (Ser/Ala)-Gly motif, a target sequence with similarities to bacterial leader peptidases and herpesvirus protease cleavage sites.  相似文献   

2.
Infectious pancreatic necrosis virus (IPNV), an aquatic birnavirus that infects salmonid fish, encodes a large polyprotein (NH(2)-pVP2-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease, VP4, to release the proteins pVP2 and VP3. pVP2 is further processed to give rise to the capsid protein VP2 and three peptides that are incorporated into the virion. Reported here are two crystal structures of the IPNV VP4 protease solved from two different crystal symmetries. The electron density at the active site in the triclinic crystal form, refined to 2.2-A resolution, reveals the acyl-enzyme complex formed with an internal VP4 cleavage site. The complex was generated using a truncated enzyme in which the general base lysine was substituted. Inside the complex, the nucleophilic Ser(633)Ogamma forms an ester bond with the main-chain carbonyl of the C-terminal residue, Ala(716), of a neighboring VP4. The structure of this substrate-VP4 complex allows us to identify the S1, S3, S5, and S6 substrate binding pockets as well as other substrate-VP4 interactions and therefore provides structural insights into the substrate specificity of this enzyme. The structure from the hexagonal crystal form, refined to 2.3-A resolution, reveals the free-binding site of the protease. Three-dimensional alignment with the VP4 of blotched snakehead virus, another birnavirus, shows that the overall structure of VP4 is conserved despite a low level of sequence identity ( approximately 19%). The structure determinations of IPNV VP4, the first of an acyl-enzyme complex for a Ser/Lys dyad protease, provide insights into the catalytic mechanism and substrate recognition of this type of protease.  相似文献   

3.
By different approaches, we characterized the birnavirus blotched snakehead virus (BSNV). The sequence of genomic segment A revealed the presence of two open reading frames (ORFs): a large ORF with a 3,207-bp-long nucleotide sequence and a 417-nucleotide-long small ORF located within the N-terminal half of the large ORF, but in a different reading frame. The large ORF was found to encode a polyprotein cotranslationally processed by the viral protease VP4 to generate pVP2 (the VP2 precursor), a 71-amino-acid-long peptide ([X]), VP4, and VP3. The two cleavage sites at the [X]-VP4 and VP4-VP3 junctions were identified by N-terminal sequencing. We showed that the processing of pVP2 generated VP2 and several small peptides (amino acids [aa] 418 to 460, 461 to 467, 468 to 474, and 475 to 486). Two of these peptides (aa 418 to 460 and 475 to 486) were positively identified in the viral particles with 10 additional peptides derived from further processing of the peptide aa 418 to 460. The results suggest that VP4 cleaves multiple Pro-X-Ala downward arrow Ala motifs, with the notable exception of the VP4-VP3 junction. Replacement of the members of the predicted VP4 catalytic dyad (Ser-692 and Lys-729) confirmed their indispensability in the polyprotein processing. The genomic segment B sequence revealed a single large ORF encoding a putative polymerase, VP1. Our results demonstrate that BSNV should be considered a new aquatic birnavirus species, slightly more related to IBDV than to IPNV.  相似文献   

4.
In many viruses, a precursor particle, or procapsid, is assembled and undergoes massive chemical and physical modification to produce the infectious capsid. Capsid assembly and maturation are finely tuned processes in which viral and host factors participate. We show that the precursor of the VP2 capsid protein (pVP2) of the infectious bursal disease virus (IBDV), a double-stranded RNA virus, is processed at the C-terminal domain (CTD) by a host protease, the puromycin-sensitive aminopeptidase (PurSA). The pVP2 CTD (71 residues) has an important role in determining the various conformations of VP2 (441 residues) that build the T = 13 complex capsid. pVP2 CTD activity is controlled by co- and posttranslational proteolytic modifications of different targets by the VP4 viral protease and by VP2 itself to yield the mature VP2-441 species. Puromycin-sensitive aminopeptidase is responsible for the peptidase activity that cleaves the Arg-452-Arg-453 bond to generate the intermediate pVP2-452 polypeptide. A pVP2 R453A substitution abrogates PurSA activity. We used a baculovirus-based system to express the IBDV polyprotein in insect cells and found inefficient formation of virus-like particles similar to IBDV virions, which correlates with the absence of puromycin-sensitive aminopeptidase in these cells. Virus-like particle assembly was nonetheless rescued efficiently by coexpression of chicken PurSA or pVP2-452 protein. Silencing or pharmacological inhibition of puromycin-sensitive aminopeptidase activity in cell lines permissive for IBDV replication caused a major blockade in assembly and/or maturation of infectious IBDV particles, as virus yields were reduced markedly. PurSA activity is thus essential for IBDV replication.  相似文献   

5.
We have identified a region related to the protease domain of bacterial and organelle ATP-dependent Lon proteases in virus protein 4 (VP4) of infectious bursal disease virus strain P2 (IBDVP2), a two-segmented double-stranded RNA virus. Unlike canonical Lons, IBDVP2 VP4 possesses a proteinase activity though it lacks an ATPase domain. Ser652 and Lys692 of IBDVP2 VP4 are conserved across the Lon/VP4 family and are essential for catalysis. Lys692 has the properties of a general base, increasing the nucleophilicity of Ser652; a similar catalytic dyad may function in the other Lons. VP4 can cleave in trans and is responsible for the interdomain proteolytic autoprocessing of the pVP2- VP4-VP3 polyprotein encoded by RNA segment A. VP2, which is later derived from pVP2, and VP3 are major capsid proteins of birnaviruses. Results of the characterization of a range of the IBDVP2 VP4 mutants in cell cultures implicate VP4 in trans-activation of the synthesis of VP1, putative RNA-dependent RNA polymerase encoded by RNA segment B, and in cleavage rate-dependent control of process(es) crucial for the generation of the infectious virus progeny.  相似文献   

6.
The capsid proteins VP2 and VP3 of infectious bursal disease virus, a birnavirus, are derived from the processing of a large polyprotein: NH2-pVP2-VP4-VP3-COOH. Although the primary cleavage sites at the pVP2-VP4 and VP4-VP3 junctions have been identified, the proteolytic cascade involved in the processing of this polyprotein is not yet fully understood, particularly the maturation of pVP2. By using different approaches, we showed that the processing of pVP2 (residues 1 to 512) generated VP2 and four small peptides (residues 442 to 487, 488 to 494, 495 to 501, and 502 to 512). We also showed that in addition to VP2, at least three of these peptides (residues 442 to 487, 488 to 494, and 502 to 512) were associated with the viral particles. The importance of the small peptides in the virus cycle was assessed by reverse genetics. Our results showed that the mutants lacking the two smaller peptides were viable, although the virus growth was affected. In contrast, deletions of the domain 442 to 487 or 502 to 512 did not allow virus recovery. Several amino acids of the peptide 502 to 512 appeared essential for virus viability. Substitutions of the P1 and/or P1" position were engineered at each of the cleavage sites (P1-P1": 441-442, 487-488, 494-495, 501-502, and 512-513). Most substitutions at the pVP2-VP4 junction (512-513) and at the final VP2 maturation cleavage site (441-442) were lethal. Mutations of intermediate cleavage sites (487-488, 494-495, and 501-502) led to viable viruses showing different but efficient pVP2 processing. Our data suggested that while peptides 488 to 494 and 495 to 501 play an accessory role, peptides 442 to 487 and 502 to 512 have an unknown but important function within the virus cycle.  相似文献   

7.
Few structures of viral serine proteases, those encoded by the Sindbis and Semliki Forest viruses, hepatitis C virus (HCV) and cytomegalovirus, have been reported. In the life cycle of HCV a crucial role is played by a chymotrypsin-like serine protease encoded at the N-terminus of the viral NS3 protein, the solution structure of which we present here complexed with a covalently bound reversible inhibitor. Unexpectedly, the residue in the P2 position of the inhibitor induces an effective stabilization of the catalytic His-Asp hydrogen bond, by shielding that region of the protease from the solvent. This interaction appears crucial in the activation of the enzyme catalytic machinery and represents an unprecedented observation for this family of enzymes. Our data suggest that natural substrates of this serine protease could contribute to the enzyme activation by a similar induced-fit mechanism. The high degree of similarity at the His-Asp catalytic site region between HCV NS3 and other viral serine proteases suggests that this behaviour could be a more general feature for this category of viral enzymes.  相似文献   

8.
Over the last decade, West Nile virus has spread rapidly via mosquito transmission from infected migratory birds to humans. One potential therapeutic approach to treating infection is to inhibit the virally encoded serine protease that is essential for viral replication. Here we report the crystal structure of the viral NS3 protease tethered to its essential NS2B cofactor and bound to a potent substrate-based tripeptide inhibitor, 2-naphthoyl-Lys-Lys-Arg-H (K= 41 nM), capped at the N-terminus by 2-naphthoyl and capped at the C-terminus by aldehyde. An important and unexpected feature of this structure is the presence of two conformations of the catalytic histidine suggesting a role for ligand stabilization of the catalytically competent His conformation. Analysis of other West Nile virus NS3 protease structures and related serine proteases supports this hypothesis, suggesting that the common catalytic mechanism involves an induced-fit mechanism.  相似文献   

9.
Viruses of the Birnaviridae family are characterized by their bisegmented double-stranded RNA genome that resides within a single-shelled non-enveloped icosahedral particle. They infect birds, aquatic organisms, and insects. Tellina virus 1 (TV-1) is an Aquabirnavirus isolated from the mollusk Tellina tenuis. It encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is cleaved by the self-encoded protease VP4 to yield capsid precursor protein pVP2, peptide X, and ribonucleoprotein VP3. Here we report the crystal structure of an intramolecular (cis) acyl-enzyme complex of TV-1 VP4 at 2.1-Å resolution. The structure reveals how the enzyme can recognize its own carboxyl terminus during the VP4/VP3 cleavage event. The methyl side chains of Ala830(P1) and Ala828(P3) at the VP4/VP3 junction point into complementary shallow and hydrophobic S1 and S3 binding pockets adjacent to the VP4 catalytic residues: nucleophile Ser738 and general base Lys777. The electron density clearly shows that the carbonyl carbon of Ala830 is covalently attached via an ester bond to the Oγ of Ser738. A highly ordered water molecule in the active site is coordinated in the proper position to act as the deacylating water. A comparative analysis of this intramolecular (cis) acyl-enzyme structure with the previously solved intermolecular (trans) acyl-enzyme structure of infectious pancreatic necrosis virus VP4 explains the narrower specificity observed in the cleavage sites of TV-1 VP4.  相似文献   

10.
The capsid of infectious bursal disease virus (IBDV), with a size of 60-65 nm, is formed by an initial processing of polyprotein (pVP2-VP4-VP3) by VP4, subsequent assemblage of pVP2 and VP3, and the maturation of VP2. In Sf9 cells, the processing of polyprotein expressed was restrained in the stage of VP2 maturation, leading to a limited production of capsid, i.e., IBDV-like particles (VLPs). In the present study, another insect cell line, High-Five (Hi-5) cells, was demonstrated to efficiently produce VLPs. Meanwhile, in this system, polyprotein was processed to pVP2 and VP3 protein and pVP2 was further processed to the matured form of VP2. Consequently, Hi-5 cells are better in terms of polyprotein processing and formation of VLPs than Sf9. In addition to the processing of pVP2, VP3 was also degraded. With insufficient intact VP3 protein present for the formation of VLPs, the excessive VP2 form subviral particles (SVPs) with a size of about 25 nm. The ratio of VLPs to SVPs is dependent on the multiplicity of infections (MOIs) used, and an optimal MOI is found for the production of both particles. VLPs were separated from SVPs with a combination of ultracentrifugation and gel-filtration chromatography, and a large number of purified particles of both were obtained. In conclusion, the insect cell lines and MOIs were optimized for the production of VLPs, and pure VLPs with morphology similar to that of the wild-type viruses can be effectively prepared. The efficient production and purification of VLPs benefits not only the development of an antiviral vaccine against IBDV but also the understanding of the structure of this avian virus that is economically important.  相似文献   

11.
Enteropeptidase is a membrane-bound serine protease that initiates the activation of pancreatic hydrolases by cleaving and activating trypsinogen. The enzyme is remarkably specific and cleaves after lysine residues of peptidyl substrates that resemble trypsinogen activation peptides such as Val-(Asp)4-Lys. To characterize the determinants of substrate specificity, we solved the crystal structure of the bovine enteropeptidase catalytic domain to 2.3 A resolution in complex with the inhibitor Val-(Asp)4-Lys-chloromethane. The catalytic mechanism and contacts with lysine at substrate position P1 are conserved with other trypsin-like serine proteases. However, the aspartyl residues at positions P2-P4 of the inhibitor interact with the enzyme surface mainly through salt bridges with the Nzeta atom of Lys99. Mutation of Lys99 to Ala, or acetylation with acetic anhydride, specifically prevented the cleavage of trypsinogen or Gly-(Asp)4-Lys-beta-naphthylamide and reduced the rate of inhibition by Val-(Asp)4-Lys-chloromethane 22 to 90-fold. For these reactions, Lys99 was calculated to account for 1.8 to 2.5 kcal mol(-1) of the free energy of transition state binding. Thus, a unique basic exosite on the enteropeptidase surface has evolved to facilitate the cleavage of its physiological substrate, trypsinogen.  相似文献   

12.
Oshima S  Imajoh M  Hirayama T 《Uirusu》2005,55(1):133-144
Marine birnavirus (MABV) is a member of the genus Aquabirnavirus of the family Birnaviridae. MABV is an unenveloped icosahedral virus about 60 nm in diameter with two genomes of double-stranded RNA. MABV adsorbed not only onto the cell surfaces of susceptible (CHSE-214 and RSBK-2) cells but also onto resistant (FHM and EPC) cells. Furthermore, the virus entered into the cytoplasm through the endocytotic pathway in CHSE-214, RSBK-2 and FHM cells but did not penetrate EPC cells. The virus was found to bind to an around 250 kDa protein on CHSE-214, RSBK-2, FHM and EPC cells. The syntheses of viral proteins pVP2, NS and VP3 and further proteolytic processing after viral infection were examined by using Western blot analysis. pVP2, NS and VP3 were detected in the cytosolic fractions of CHSE-214, RSBK-2 and FHM cells at 4 h after infection. At this time, VP3 underwent further proteolytic processing in the cytosolic fractions of CHSE-214 and RSBK-2 cells. The expression of pVP2, NS and VP3 increased and pVP2 and NS also underwent further proteolytic processing similar to VP3 in the cytosolic fractions of CHSE-214, RSBK-2 and FHM cells at 8 h after infection. The further proteolytic processing of VP3 was detected in the nuclear fractions of CHSE-214, RSBK-2, but VP3 was detected as a single band in the nuclear fraction of FHM cells. pVP2 and NS were detected as thin bands only in the nuclear fractions of CHSE-214 cells. The results of Western blot analysis demonstrated that pVP2, NS and VP3 are localized in the nuclear fraction when they were independently expressed in CHSE-214, RSBK-2, FHM and EPC cells. The expression pattern in the cytosolic fraction was identical among the four cell lines when pVP2 and NS were independently expressed. However, pVP2 and NS were not detected in the nuclear fraction of CHSE-214 cells. Further proteolytic processing of VP3 was detected in both cytosolic and nuclear fractions of RSBK-2 ,FHM and EPC cells (Low level in EPC cell), but not in CHSE-214 cells when VP3 was independently expressed. Then, the processes of preVP2 to form morphological assemblages in the presence of VP3 or the cleavage of VP3 into two proteins in CHSE-214 cells were studied. When preVP2- and VP3 were co-expressed, virion like particles (64 nm, diameter) were observed close to the nuclear membrane by electron microscopy. The co-expression of preVP2 and the cleaved VP3 proteins led to an efficient assembly of tubules (22 nm, diameter). Further important finds will be obtained by this infection system using 4 fish cell lines in the next couple of years.  相似文献   

13.
丙型肝炎病毒NS3蛋白酶在酵母系统中的可溶性表达   总被引:1,自引:0,他引:1  
利用毕赤酵母系统表达具有催化活性的丙型肝炎病毒 (HCV)NS3蛋白酶 .将PCR直接扩增的病毒NS3丝氨酸蛋白酶基因和重组的带有辅酶的单链NS3 NS4A蛋白酶基因 ,分别插入表达载体pPICZαA的EcoRⅠ和XbaⅠ克隆位点 ,转化毕赤酵母GS115 ,可溶性表达NS3蛋白酶和单链NS3 4A蛋白酶 ;ELISA法测定表达蛋白酶的抗原性 ;原核高效表达载体pBVIL1表达酶切底物NS5A B片段 ,体外与蛋白酶共同温育 ,SDS PAGE鉴定蛋白酶催化活性 .载体测序结果表明 ,重组载体pPICZαA NS3和pPICZαA NS3 4A中的目的基因序列插入正确 ;SDS PAGE结果显示 ,培养物上清中存在分泌型目的蛋白带 ;ELISA结果证实 ,表达蛋白与HCV阳性血清有结合活性 ;蛋白酶与底物NS5A B片段不同作用时间的SDS PAGE ,看到约 2 4kD处底物条带的分解 .说明用毕赤酵母表达系统成功地表达了可溶性HCVNS3和单链NS3 4A蛋白酶 ;两种结构形式的蛋白酶在体外系统中都有催化活性 ,同时也都具有抗原性 .该研究为大量和方便地获得有催化活性的HCVNS3蛋白酶提供了有效途径 .  相似文献   

14.
The capsid of infectious bursal disease virus (IBDV), a nonenveloped virus of the family Birnaviridae, has a T=13l icosahedral shell constituted by a single protein, VP2, and several disordered peptides, all derived from the precursor pVP2. In this study, we show that two of the peptides, pep11 and pep46, control virus assembly and cell entry. Deletion of pep11 or even simple substitution of most of its residues blocks the capsid morphogenesis. Removal of pep46 also prevents capsid assembly but leads to the formation of subviral particles formed by unprocessed VP2 species. Fitting with the VP2 atomic model into three-dimensional reconstructions of these particles demonstrates that the presence of uncleaved pep46 causes a steric hindrance at the vertices, blocking fivefold axis formation. Mutagenesis of the pVP2 maturation sites confirms that C terminus processing is necessary for VP2 to acquire the correct icosahedral architecture. All peptides present on virions are accessible to proteases or biochemical labeling. One of them, pep46, is shown to induce large structural rearrangements in liposomes and to destabilize target membranes, demonstrating its implication in cell entry.  相似文献   

15.
The chymotrypsin subfamily A of serine proteases consists primarily of eukaryotic proteases, including only a few proteases of bacterial origin. VesB, a newly identified serine protease that is secreted by the type II secretion system in Vibrio cholerae, belongs to this subfamily. VesB is likely produced as a zymogen because sequence alignment with trypsinogen identified a putative cleavage site for activation and a catalytic triad, His-Asp-Ser. Using synthetic peptides, VesB efficiently cleaved a trypsin substrate, but not chymotrypsin and elastase substrates. The reversible serine protease inhibitor, benzamidine, inhibited VesB and served as an immobilized ligand for VesB affinity purification, further indicating its relationship with trypsin-like enzymes. Consistent with this family of serine proteases, N-terminal sequencing implied that the propeptide is removed in the secreted form of VesB. Separate mutagenesis of the activation site and catalytic serine rendered VesB inactive, confirming the importance of these features for activity, but not for secretion. Similar to trypsin but, in contrast to thrombin and other coagulation factors, Na+ did not stimulate the activity of VesB, despite containing the Tyr250 signature. The crystal structure of catalytically inactive pro-VesB revealed that the protease domain is structurally similar to trypsinogen. The C-terminal domain of VesB was found to adopt an immunoglobulin (Ig)-fold that is structurally homologous to Ig-folds of other extracellular Vibrio proteins. Possible roles of the Ig-fold domain in stability, substrate specificity, cell surface association, and type II secretion of VesB, the first bacterial multidomain trypsin-like protease with known structure, are discussed.  相似文献   

16.
Mutagenesis of the NS3 Protease of Dengue Virus Type 2   总被引:4,自引:3,他引:1       下载免费PDF全文
The flavivirus protease is composed of two viral proteins, NS2B and NS3. The amino-terminal portion of NS3 contains sequence and structural motifs characteristic of bacterial and cellular trypsin-like proteases. We have undertaken a mutational analysis of the region of NS3 which contains the catalytic serine, five putative substrate binding residues, and several residues that are highly conserved among flavivirus proteases and among all serine proteases. In all, 46 single-amino-acid substitutions were created in a cloned NS2B-NS3 cDNA fragment of dengue virus type 2, and the effect of each mutation on the extent of self-cleavage of the NS2B-NS3 precursor at the NS2B-NS3 junction was assayed in vivo. Twelve mutations almost completely or completely inhibited protease activity, 9 significantly reduced it, 14 decreased cleavage, and 11 yielded wild-type levels of activity. Substitution of alanine at ultraconserved residues abolished NS3 protease activity. Cleavage was also inhibited by substituting some residues that are conserved among flavivirus NS3 proteins. Two (Y150 and G153) of the five putative substrate binding residues could not be replaced by alanine, and only Y150 and N152 could be replaced by a conservative change. The two other putative substrate binding residues, D129 and F130, were more freely substitutable. By analogy with the trypsin model, it was proposed that D129 is located at the bottom of the substrate binding pocket so as to directly interact with the basic amino acid at the substrate cleavage site. Interestingly, we found that significant cleavage activity was displayed by mutants in which D129 was replaced by E, S, or A and that low but detectable protease activity was exhibited by mutants in which D129 was replaced by K, R, or L. Contrary to the proposed model, these results indicate that D129 is not a major determinant of substrate binding and that its interaction with the substrate, if it occurs at all, is not essential. This mutagenesis study provided us with an array of mutations that alter the cleavage efficiency of the dengue virus protease. Mutations that decrease protease activity without abolishing it are candidates for introduction into the dengue virus infectious full-length cDNA clone with the aim of creating potentially attenuated virus stocks.  相似文献   

17.
The herpes simplex virus type 1 (HSV-1) protease and its substrate, ICP35, are involved in the assembly of viral capsids and required for efficient viral growth. The full-length protease (Pra) consists of 635 amino acid (aa) residues and is autoproteolytically processed at the release (R) site and the maturation (M) site, releasing the catalytic domain No (VP24), Nb (VP21), and a 25-aa peptide. To understand the biological importance of cleavage at these sites, we constructed several mutations in the cloned protease gene. Transfection assays were performed to determine the functional properties of these mutant proteins by their abilities to complement the growth of the protease deletion mutant m100. Our results indicate that (i) expression of full-length protease is not required for viral replication, since a 514-aa protease molecule lacking the M site could support viral growth; and that (ii) elimination of the R site by changing the residue Ala-247 to Ser abolished viral replication. To better understand the functions that are mediated by proteolytic processing at the R site of the protease, we engineered an HSV-1 recombinant virus containing a mutation at this site. Analysis of the mutant A247S virus demonstrated that (i) the mutant protease retained the ability to cleave at the M site and to trans process ICP35 but failed to support viral growth on Vero cells, demonstrating that release of the catalytic domain No from Pra is required for viral replication; and that (ii) only empty capsid structures were observed by electron microscopy in thin sections of A247S-infected Vero cells, indicating that viral DNA was not encapsidated. Our results demonstrate that processing of ICP35 is not sufficient to support viral replication and provide genetic evidence that the HSV-1 protease has nuclear functions other than enzymatic activity.  相似文献   

18.
Inhibiting viral proteases: challenges and opportunities   总被引:5,自引:0,他引:5  
Bianchi E  Pessi A 《Biopolymers》2002,66(2):101-114
Inhibitor design against viral targets must take into account the peculiar characteristics of viral biology-in particular, the plasticity of their replicative machinery. This includes maturational cleavage of the polyprotein, which is mediated by virally encoded proteases. Designing against a movable target is particularly challenging, but at the same time it offers new opportunities. Here we describe our experience with the NS3/4A (NS: nonstructural) serine protease of human hepatitis C virus (HCV). By extensive use of combinatorial peptide libraries, various inhibitor types were generated, including product inhibitors, serine traps, P-P' inhibitors, and prime side inhibitors. The latter represent a first case for a serine protease. A key finding, derived from structural studies utilizing these inhibitors, was that NS3 is an induced-fit protease, requiring both the NS4A cofactor protein and the substrate to fully activate its catalytic machinery. In the absence of cofactor and/or substrate, NS3 exists in solution as a large conformational ensemble, which can be matched by a correspondingly large set of peptide inhibitors, each one stabilizing a given conformer. In the perspective of inhibiting viral proteases in general, we suggest that combinatorial ligand ensembles may be a powerful tool, to contrast the adaptive potential of the viral quasispecies.  相似文献   

19.
Fricke J  Voss C  Thumm M  Meyers G 《Journal of virology》2004,78(11):5900-5912
The genome of the cytopathogenic (cp) bovine viral diarrhea virus (BVDV) JaCP contains a cellular insertion coding for light chain 3 (LC3) of microtubule-associated proteins, the mammalian homologue of yeast Aut7p/Apg8p. The cellular insertion induces cp BVDV-specific processing of the viral polyprotein by a cellular cysteine protease homologous to the known yeast protease Aut2p/Apg4p. Three candidate bovine protease genes were identified on the basis of the sequence similarity of their products with the Saccharomyces cerevisiae enzyme. The search for a system for functional testing of these putative LC3-specific proteases revealed that the components involved in this processing have been highly conserved during evolution, so that the substrate derived from a mammalian virus is processed in cells of mammalian, avian, fish, and insect origin, as well as in rabbit reticulocyte lysate, but not in wheat germ extracts. Moreover, two of these proteases and a homologous protein from chickens were able to rescue the defect of a yeast AUT2 deletion mutant. In coexpression experiments with yeast and wheat germ extracts one of the bovine proteases and the corresponding enzyme from chickens were able to process the viral polyprotein containing LC3. Northern blots showed that bovine viral diarrhea virus infection of cells has no significant influence on the expression of either LC3 or its protease, bAut2B2. However, LC3-specific processing of the viral polyprotein containing the cellular insertion is essential for replication of the virus since mutants with changes in the LC3 insertion significantly affecting processing at the LC3/NS3 site were not viable.  相似文献   

20.
The activity of the avian myeloblastosis virus (AMV) or the human immunodeficiency virus type 1 (HIV-1) protease on peptide substrates which represent cleavage sites found in the gag and gag-pol polyproteins of Rous sarcoma virus (RSV) and HIV-1 has been analyzed. Each protease efficiently processed cleavage site substrates found in their cognate polyprotein precursors. Additionally, in some instances heterologous activity was detected. The catalytic efficiency of the RSV protease on cognate substrates varied by as much as 30-fold. The least efficiently processed substrate, p2-p10, represents the cleavage site between the RSV p2 and p10 proteins. This peptide was inhibitory to the AMV as well as the HIV-1 and HIV-2 protease cleavage of other substrate peptides with Ki values in the 5-20 microM range. Molecular modeling of the RSV protease with the p2-p10 peptide docked in the substrate binding pocket and analysis of a series of single-amino acid-substituted p2-p10 peptide analogues suggested that this peptide is inhibitory because of the potential of a serine residue in the P1' position to interact with one of the catalytic aspartic acid residues. To open the binding pocket and allow rotational freedom for the serine in P1', there is a further requirement for either a glycine or a polar residue in P2' and/or a large amino acid residue in P3'. The amino acid residues in P1-P4 provide interactions for tight binding of the peptide in the substrate binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号