首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A-kinase anchoring proteins tether cAMP-dependent protein kinase (PKA) to specific subcellular locations. The purpose of this study was to use fluorescence resonance energy transfer to monitor binding events in living cells between the type II regulatory subunit of PKA (RII) and the RII-binding domain of the human thyroid RII anchoring protein (Ht31), a peptide containing the PKA-binding domain of an A-kinase anchoring protein. RII was linked to enhanced yellow fluorescent protein (EYFP), Ht31 was linked to enhanced cyan fluorescent protein (ECFP), and these constructs were coexpressed in Chinese hamster ovary cells. Upon excitation of the donor fluorophore, Ht31.ECFP, an increase in emission of the acceptor fluorophore, RII.EYFP, and a decrease in emission from Ht31.ECFP were observed. The emission ratio (acceptor/donor) was increased 2-fold (p < 0.05) in cells expressing Ht31.ECFP and RII.EYFP compared with cells expressing Ht31P.ECFP, the inactive form of Ht31, and RII.EYFP. These results provide the first in vivo demonstration of RII/Ht31 interaction in living cells and confirm previous in vitro findings of RII/Ht31 binding. Using surface plasmon resonance, we also showed that the green fluorescent protein tags did not significantly alter the binding of Ht31 to RII. Thus, fluorescence resonance energy transfer can be used to directly monitor protein-protein interactions of the PKA signaling pathway in living cells.  相似文献   

2.
Enhanced cyan and yellow fluorescent proteins are widely used for dual color imaging and protein-protein interaction studies based on fluorescence resonance energy transfer. Use of these fluorescent proteins can be limited by their thermosensitivity, dim fluorescence, and tendency for aggregation. Here we report the results of a site-directed mutagenesis approach to improve these fluorescent proteins. We created monomeric optimized variants of ECFP and EYFP, which fold faster and more efficiently at 37 degrees C and have superior solubility and brightness. Bacteria expressing SCFP3A were 9-fold brighter than those expressing ECFP and 1.2-fold brighter than bacteria expressing Cerulean. SCFP3A has an increased quantum yield (0.56) and fluorescence lifetime. Bacteria expressing SYFP2 were 12 times brighter than those expressing EYFP(Q69K) and almost 2-fold brighter than bacteria expressing Venus. In HeLa cells, the improvements were less pronounced; nonetheless, cells expressing SCFP3A and SYFP2 were both 1.5-fold brighter than cells expressing ECFP and EYFP(Q69K), respectively. The enhancements of SCFP3A and SYFP2 are most probably due to an increased intrinsic brightness (1.7-fold and 1.3-fold for purified recombinant proteins, compared to ECFP & EYFP(Q69K), respectively) and due to enhanced protein folding and maturation. The latter enhancements most significantly contribute to the increased fluorescent yield in bacteria whereas they appear less significant for mammalian cell systems. SCFP3A and SYFP2 make a superior donor-acceptor pair for fluorescence resonance energy transfer, because of the high quantum yield and increased lifetime of SCFP3A and the high extinction coefficient of SYFP2. Furthermore, SCFP1, a CFP variant with a short fluorescence lifetime but identical spectra compared to ECFP and SCFP3A, was characterized. Using the large lifetime difference between SCFP1 and SCFP3A enabled us to perform for the first time dual-lifetime imaging of spectrally identical fluorescent species in living cells.  相似文献   

3.
Genetically encoded fluorescence resonance energy transfer (FRET) indicators are powerful tools for real-time detection of second messenger molecules and activation of signal proteins. However, these fluorescent protein-based sensors typically display marginal FRET efficiency. To improve their FRET efficiency for optical imaging and screening, we developed a number of fluorescent protein mutants based on cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). To improve FRET ratios, which were initially within a narrow dynamic range, we used DNA shuffling to develop a new FRET pair called 3xCFP/Venus. The optimized 3xCFP/Venus pair exhibited higher FRET ratios than CyPet/YPet, which has one of the greatest dynamic ranges of protein-based FRET pairs. We converted this FRET pair to a Ca(2+) FRET indicators using circular permutation Venus (cpVenus) linked with 3xCFP to form 3xCFP/cpVenus, which displayed an ~11-fold change in dynamic range in response to Ca(2+) binding. The enhanced dynamic range for Ca(2+) concentration detection using 3xCFP/cpVenus was confirmed in PC12 cells using previously established indicators (TN-XXL, ECFP/cpCitrine). To our knowledge, this FRET pair displays the largest dynamic range so far among genetically-encoded sensors, and can be used for sensitive FRET detection.  相似文献   

4.
The fluorescence spectral properties of recombinant green fluorescent protein (rGFP) were examined with one- and two-photon excitations using femtosecond pulses from a Ti:sapphire laser. Intensity-dependent properties of the two-photon-induced fluorescence from rGFP excited by an 800-nm, 100-fs laser beam were reported, and the two-photon excitation cross section of rGFP was measured at 800 nm as about 160 x 10(-50) cm(4)s/photon. The possible excited-state proton transfer between two electronic states at about 400 nm in protonated (RH) species and 478 nm in deprotonated (R(-)) species in rGFP was confirmed by fluorescence and fluorescence excitation anisotropy spectra. A subelectronic state (or vibronic progression) at about 420 nm in RH species was identified, which was relatively stable and not involved in the excited state proton transfer in rGFP upon irradiation.  相似文献   

5.
Two physico-chemical perturbations were applied to ECFP, EGFP, EYFP and DsRed fluorescent proteins: high hydrostatic pressure and encapsulation in reversed micelles. The observed fluorescence changes were described by two-state model and quantified by thermodynamic formalism. ECFP, EYFP and DsRed exhibited similar reaction volumes under pressure. The changes of the chemical potentials of the chromophore in bis(2-ethylhexyl)sulfosuccinate (AOT) micelles caused apparent chromophore protonation changes resulting in a fluorescence decrease of ECFP and EYFP. In contrast to the remarkable stability of DsRed, the highest sensitivity of EYFP fluorescence under pressure and in micelles is attributed to its chromophore structure.  相似文献   

6.
Oligomerization of the short (D(2S)) and long (D(2L)) isoforms of the dopamine D(2) receptor was explored in transfected Cos-7 cells by their C-terminal fusion to either an enhanced cyan or enhanced yellow fluorescent protein (ECFP or EYFP) and the fluorescent fusion protein interaction was monitored by a fluorescence resonance energy transfer (FRET) assay. The pharmacological properties of the fluorescent fusion proteins, as measured by both displacement of [(3)H]nemonapride binding and agonist-mediated stimulation of [(35)S]GTPgammaS binding upon co-expression with a G(alphao)Cys(351)Ile protein, were not different from the respective wild-type D(2S) and D(2L) receptors. Co-expression of D2S:ECFP+D2S:EYFP in a 1:1 ratio and D2L:ECFP+D2L:EYFP in a 27:1 ratio resulted, respectively, in an increase of 26% and 16% in the EYFP-specific fluorescent signal. These data are consistent with a close proximity of both D(2S) and D(2L) receptor pairs of fluorescent fusion proteins in the absence of ligand. The agonist-independent D(2S) receptor oligomerization could be attenuated by co-expression with either a wild-type, non-fluorescent D(2S) or D(2L) receptor subtype, but not with a distinct beta(2)-adrenoceptor. Incubation with the agonist (-)-norpropylapomorphine dose-dependently (EC(50): 0.23+/-0.06 nM) increased the FRET signal for the co-expression of D2S:ECFP and D2S:EYFP, in support of agonist-dependent D(2S) receptor oligomerization. In conclusion, our data strongly suggest the occurrence of dopamine D(2) receptor oligomers in intact Cos-7 cells.  相似文献   

7.
Black DJ  Persechini A 《Biochemistry》2011,50(46):10061-10068
We have investigated the roles played by the calmodulin (CaM) N- and C-lobes in establishing the conformations of CaM-IQ domain complexes in different Ca(2+)-free and Ca(2+)-bound states. Our results indicate a dominant role for the C-lobe in these complexes. When the C-lobe is Ca(2+)-free, it directs the N-lobe to a binding site within the IQ domain consensus sequence. It appears that the N-lobe must be Ca(2+)-free to interact productively with this site. When the C-lobe is Ca(2+)-bound, it directs the N-lobe to a site upstream of the consensus sequence, and it appears that the N-lobe must be Ca(2+)-bound to interact productively with this site. A model for switching in CaM-IQ domain complexes is presented in which the N-lobe adopts bound and extended positions that depend on the status of the Ca(2+)-binding sites in each CaM lobe and the compositions of the two N-lobe binding sites. Ca(2+)-dependent changes in the conformation of the bound C-lobe that appear to be responsible for directed N-lobe binding are also identified. Changes in the equilibria between extended and bound N-lobe positions may control bridging interactions in which the extended N-lobe is bound to another CaM-binding domain. Ca(2+)-dependent control of bridging interactions with CaM has been implicated in the regulation of ion channel and unconventional myosin activities.  相似文献   

8.
Henzl MT  Tanner JJ  Tan A 《Proteins》2011,79(3):752-764
Birds express two β-parvalbumin isoforms, parvalbumin 3 and avian thymic hormone (ATH). Parvalbumin 3 from chicken (CPV3) is identical to rat β-parvalbumin (β-PV) at 75 of 108 residues. CPV3 displays intermediate Ca(2+) affinity--higher than that of rat β-parvalbumin, but lower than that of ATH. As in rat β-PV, the attenuation of affinity is associated primarily with the CD site (residues 41-70), rather than the EF site (residues 80-108). Structural data for rat α- and β-parvalbumins suggest that divalent ion affinity is correlated with the similarity of the unliganded and Ca(2+)-bound conformations. We herein present a comparison of the solution structures of Ca(2+)-free and Ca(2+)-bound CPV3. Although the structures are generally similar, the conformations of residues 47 to 50 differ markedly in the two protein forms. These residues are located in the C helix, proximal to the CD binding loop. In response to Ca(2+) removal, F47 experiences much greater solvent accessibility. The side-chain of R48 assumes a position between the C and D helices, adjacent to R69. Significantly, I49 adopts an interior position in the unliganded protein that allows association with the side-chain of L50. Concomitantly, the realignment of F66 and F70 facilitates their interaction with I49 and reduces their contact with residues in the N-terminal AB domain. This reorganization of the hydrophobic core, although less profound, is nevertheless reminiscent of that observed in rat β-PV. The results lend further support to the idea that Ca(2+) affinity correlates with the structural similarity of the apo- and bound parvalbumin conformations.  相似文献   

9.
Flow cytometric procedures are described to detect a "humanized" version of a new red fluorescent protein (DsRed) from the coral Discosoma sp. in conjunction with various combinations of three Aequorea victoria green fluorescent protein (GFP) variants--EYFP, EGFP, and ECFP. In spite of overlapping emission spectra, the combination of DsRed with EYFP, EGFP, and ECFP generated fluorescence signals that could be electronically compensated in real time using dual-laser excitation at 458 and 568 nm. Resolution of fluorescence signals from DsRed, EYFP, and EGFP was also readily achieved by single-laser excitation at 488 nm. Since many flow cytometers are equipped with an argon-ion laser that can be tuned to 488 nm, the DsRed/EYFP/EGFP combination is expected to have broad utility for facile monitoring of gene transfer and expression in mammalian cells. The dual-laser technique is applicable for use on flow cytometers equipped with tunable multiline argon-ion and krypton-ion lasers, providing the framework for studies requiring simultaneous analysis of four fluorescent gene products within living cells.  相似文献   

10.
目的:研究多聚甲醛固定对利用荧光共振能量转移(fluorescence resonance energy transfer, FRET)检测细胞中蛋白质相互作用的影响,解决运动能力较强的细胞中FRET效率检测的问题。方法:选用两个已知能够相互作用的蛋白分子TRA和TRB,将荧光蛋白ECFP和EYFP的编码基因通过融合PCR分别标记在其C端;将两个融合基因共转染靶细胞,一组细胞经低浓度(0.5%)多聚甲醛短时(0.5~1h)固定,另一组不固定,利用激光共聚焦扫描显微镜检测两个融合蛋白之间的FRET效率,比较其在两组细胞之间的差异情况。结果:经过统计学分析,在活细胞和经低浓度多聚甲醛短时间固定的细胞中,ECFP与EYFP之间的FRET效率没有显著差异。结论:低浓度短时间的多聚甲醛固定对于荧光蛋白分子之间的相互作用没有显著的影响,因此对于运动能力过强的细胞可以固定后再进行FRET检测。  相似文献   

11.
Relative to other parvalbumin isoforms, the mammalian beta-parvalbumin (oncomodulin) displays attenuated divalent ion affinity. High-resolution structural data for the Ca(2+)-bound protein have provided little insight into the physical basis for this behavior, prompting an examination of the unliganded state. This article describes the solution structure and peptide backbone dynamics of Ca(2+)-free rat beta-parvalbumin (beta-PV). Ca(2+) removal evidently provokes significant structural alterations. Interaction between the D helix and the AB domain in the Ca(2+)-bound protein is greatly diminished in the apo-form, permitting the D helix to straighten. There is also a significant reorganization of the hydrophobic core and a concomitant remodeling of the interface between the AB and CD-EF domains. These modifications perturb the orientation of the C and D helices, and the energetic penalty associated with their reversal could contribute to the low-affinity signature of the CD site. By contrast, Ca(2+) removal causes a comparatively minor perturbation of the E and F helices, consistent with the more typical divalent ion affinity observed for the EF site. Ca(2+)-free rat beta-PV retains structural rigidity on the picosecond-nanosecond timescale. At 20 degrees C, the majority of amide vectors show no evidence for motion on timescales above 20 ps, and the average order parameter for the entire molecule is 0.92.  相似文献   

12.
Regulators of G-protein signaling (RGS) are a family of proteins which accelerate intrinsic GTP-hydrolysis on heterotrimeric G-protein-alpha-subunits. Although it has been suggested that the function of RGS4 is reciprocally regulated by competitive binding of the membrane phospholipid, phosphatidylinositol-3,4,5,-trisphosphate(PtdIns(3,4,5)P(3)), and Ca(2+)/calmodulin (CaM), it remains to be shown that these interactions occur in vivo. Here, using fluorescence resonance energy transfer (FRET) techniques, we show that an elevation of intracellular Ca(2+) concentration by ionomycin increased the FRET efficiency from ECFP (a variant of cyan fluorescent protein)-labeled calmodulin to Venus (a variant of yellow fluorescent protein)-labeled RGS4. The increase in FRET efficiency was greatly attenuated by pre-treating the cells with methyl-beta-cyclodextrin, which depletes membrane cholesterol and thus disrupts lipid rafts. These results provide the first demonstration of a Ca(2+)-dependent interaction between RGS4 and CaM in vivo and show that association in lipid rafts of the plasma membrane might be involved in this physiological regulation of RGS proteins.  相似文献   

13.
The FRQ1 gene is essential for growth of budding yeast and encodes a 190-residue, N-myristoylated (myr) calcium-binding protein. Frq1 belongs to the recoverin/frequenin branch of the EF-hand superfamily and regulates a yeast phosphatidylinositol 4-kinase isoform. Conformational changes in Frq1 due to N-myristoylation and Ca(2+) binding were assessed by nuclear magnetic resonance (NMR), fluorescence, and equilibrium Ca(2+)-binding measurements. For this purpose, Frq1 and myr-Frq1 were expressed in and purified from Escherichia coli. At saturation, Frq1 bound three Ca(2+) ions at independent sites, which correspond to the second, third, and fourth EF-hand motifs in the protein. Affinity of the second site (K(d) = 10 microM) was much weaker than that of the third and fourth sites (K(d) = 0.4 microM). Myr-Frq1 bound Ca(2+) with a K(d)app of 3 microM and a positive Hill coefficient (n = 1.25), suggesting that the N-myristoyl group confers some degree of cooperativity in Ca(2+) binding, as seen previously in recoverin. Both the NMR and fluorescence spectra of Frq1 exhibited very large Ca(2+)-dependent differences, indicating major conformational changes induced upon Ca(2+) binding. Nearly complete sequence-specific NMR assignments were obtained for the entire carboxy-terminal domain (residues K100-I190). Assignments were made for 20% of the residues in the amino-terminal domain; unassigned residues exhibited very broad NMR signals, most likely due to Frq1 dimerization. NMR chemical shifts and nuclear Overhauser effect (NOE) patterns of Ca(2+)-bound Frq1 were very similar to those of Ca(2+)-bound recoverin, suggesting that the overall structure of Frq1 resembles that of recoverin. A model of the three-dimensional structure of Ca(2+)-bound Frq1 is presented based on the NMR data and homology to recoverin. N-myristoylation of Frq1 had little or no effect on its NMR and fluorescence spectra, suggesting that the myristoyl moiety does not significantly alter Frq1 structure. Correspondingly, the NMR chemical shifts for the myristoyl group in both Ca(2+)-free and Ca(2+)-bound myr-Frq1 were nearly identical to those of free myristate in solution, indicating that the fatty acyl chain is solvent-exposed and not sequestered within the hydrophobic core of the protein, unlike the myristoyl group in Ca(2+)-free recoverin. Subcellular fractionation experiments showed that both the N-myristoyl group and Ca(2+)-binding contribute to the ability of Frq1 to associate with membranes.  相似文献   

14.
Controlled ablation of microtubules using a picosecond laser   总被引:4,自引:0,他引:4       下载免费PDF全文
The use of focused high-intensity light sources for ablative perturbation has been an important technique for cell biological and developmental studies. In targeting subcellular structures many studies have to deal with the inability to target, with certainty, an organelle or large macromolecular complex. Here we demonstrate the ability to selectively target microtubule-based structures with a laser microbeam through the use of enhanced yellow fluorescent protein (EYFP) and enhanced cyan fluorescent protein (ECFP) variants of green fluorescent protein fusions of tubule. Potorous tridactylus (PTK2) cell lines were generated that stably express EYFP and ECFP tagged to the α-subunit of tubulin. Using microtubule fluorescence as a guide, cells were irradiated with picosecond laser pulses at discrete microtubule sites in the cytoplasm and the mitotic spindle. Correlative thin-section transmission electron micrographs of cells fixed one second after irradiation demonstrated that the nature of the ultrastructural damage appeared to be different between the EYFP and the ECFP constructs suggesting different photon interaction mechanisms. We conclude that focal disruption of single cytoplasmic and spindle microtubules can be precisely controlled by combining laser microbeam irradiation with different fluorescent fusion constructs. The possible photon interaction mechanisms are discussed in detail.  相似文献   

15.
The generation of spectral mutants of the green fluorescent protein (GFP) set the stage for multiple-color imaging in living cells. However, the use of this technique has been limited by a spectral overlap of the available GFP mutants and/or by insufficient resolution in both time and space. Using a new setup for dual-color imaging, we demonstrate here the visualization of small, fast moving vesicular structures with a high time resolution. Two GFP-fusion proteins were generated: human chromogranin B, a secretory granule matrix protein, and phogrin, a secretory granule membrane protein. They were tagged with enhanced yellow fluorescent protein (EYFP) and enhanced cyan fluorescent protein (ECFP), respectively. Both fusion proteins were cotransfected in Vero cells, a cell line from green monkey kidney. EYFP and ECFP were excited sequentially at high time rates using a monochromator. Charged coupled device (CCD)-based image acquisition resulted in 5-8 dual-color images per second, with a resolution sufficient to detect transport vesicles in mammalian cells. Under these conditions, a fully automated time-resolved analysis of the movement of color-coded objects was achieved. The development of specialized software permitted the analysis of the extent of colocalization between the two differentially labeled sets of cellular structures over time. This technical advance will provide an important tool to study the dynamic interactions of subcellular structures in living cells.  相似文献   

16.
17.
The modulation of the local structure and dynamics of domain III of annexin 2 (Anx2), in both the monomeric (p36) and heterotetrameric forms (p90), by calcium and by membrane binding was studied by time-resolved fluorescence intensity and anisotropy measurements of the single tryptophan residue (W212). The results yield the same dominant excited-state lifetime (1.4 ns) in both p36 and p90, suggesting that the conformation and environment of W212 are very similar. The fluorescence anisotropy decay data were analyzed by associative (two-dimensional) as well as nonassociative (one-dimensional) models. Although no statistical criterion is decisive for one model versus the other, only the associative model allows recovery of a physically relevant value of the Brownian rotational correlation of the protein. Using the associative model, a nanosecond flexibility is detectable in p90 but not in p36. When Ca(2+) binds in the millimolar concentration range to both forms of Anx2, a conformational change takes place leading to an increase of the major excited-state lifetime (2.6 ns) and to a suppression of the W212 local flexibility of p90. Binding to membranes of either p36 or p90 in the presence of Ca(2+) does not induce any conformational change other than that provoked by Ca(2+) binding alone. The W212 local flexibility in both proteins increases significantly, however, in their membrane-bound forms. In the presence of membranes, the conformation change of domain III in p90 displays a sensitivity to Ca(2+) 2 orders of magnitude higher than that of p36, reaching intracellular sub-micromolar concentration ranges. This higher Ca(2+) sensitivity correlates with the Ca(2+)-dependent membrane aggregation but not with their Ca(2+)-dependent binding to membranes. The significance of these structural and dynamical changes for the function of the protein is discussed.  相似文献   

18.
Regulation of RYR1 activity by Ca(2+) and calmodulin   总被引:4,自引:0,他引:4  
The skeletal muscle calcium release channel (RYR1) is a Ca(2+)-binding protein that is regulated by another Ca(2+)-binding protein, calmodulin. The functional consequences of calmodulin's interaction with RYR1 are dependent on Ca(2+) concentration. At nanomolar Ca(2+) concentrations, calmodulin is an activator, but at micromolar Ca(2+) concentrations, calmodulin is an inhibitor of RYR1. This raises the question of whether the Ca(2+)-dependent effects of calmodulin on RYR1 function are due to Ca(2+) binding to calmodulin, RYR1, or both. To distinguish the effects of Ca(2+) binding to calmodulin from those of Ca(2+) binding to RYR1, a mutant calmodulin that cannot bind Ca(2+) was used to evaluate the effects of Ca(2+)-free calmodulin on Ca(2+)-bound RYR1. We demonstrate that Ca(2+)-free calmodulin enhances the affinity of RYR1 for Ca(2+) while Ca(2+) binding to calmodulin converts calmodulin from an activator to an inhibitor. Furthermore, Ca(2+) binding to RYR1 enhances its affinity for both Ca(2+)-free and Ca(2+)-bound calmodulin.  相似文献   

19.
BACKGROUND: Development of spectrally distinct green fluorescent protein (GFP) variants has allowed for simultaneous flow cytometric detection of two different colored mutants expressed in a single cell. However, the dual-laser methods employed in such experiments are not widely applicable since they require a specific, expensive laser, and single-laser analysis at 488 nm exhibits considerable spectral overlap. The purpose of this work was to evaluate detection of enhanced cyan fluorescent protein (ECFP) in combination with the enhanced green (EGFP) and enhanced yellow (EYFP) fluorescent proteins by flow cytometry. METHODS: Cells transfected with expression constructs for EGFP, EYFP, or ECFP were analyzed by flow cytometry using excitation wavelengths at 458, 488, or 514 nm. Fluorescence signals were separated with a custom optical filter configuration: 525 nm shortpass and 500 nm longpass dichroics; 480/30 (ECFP), 510/20 (EGFP) and 550/30 (EYFP) bandpasses; 458 nm laser blocking filters. RESULTS: All three fluorescent proteins when expressed individually or in combination in living cells were excited by the 458 nm laser line and their corresponding signals could be electronically compensated in real time. CONCLUSIONS: This method demonstrates the detection of three fluorescent proteins expressed simultaneously in living cells using single laser excitation and is applicable for use on flow cytometers equipped with a tunable argon ion laser.  相似文献   

20.
In this work, fluorescence lifetime imaging microscopy in the time domain was used to study the fluorescence dynamics of ECFP and of the ratiometric chloride sensor Clomeleon along neuronal development. The multiexponential analysis of fluorophores combined with the study of the contributions of the individual lifetimes (decay-associated spectra) was used to discriminate the presence of energy transfer from other excited state reactions. A characteristic change of sign of the pre-exponential factors of lifetimes from positive to negative near the acceptor emission maxima was observed in presence of energy transfer. By fluorescence lifetime imaging microscopy, we could show that the individual conformations of CFP display differential quenching properties depending on their microenvironment. Suitability of Clomeleon as an optical indicator to obtain a direct readout of the intracellular chloride concentrations in living cells was verified by steady-state and time-resolved spectroscopy. The simultaneous study of the photophysical properties of Clomeleon, the calcium indicator Cameleon, and ECFP with neuronal development provided a kinetic model for the mechanism when competitive quenching effects as well as energy transfer occur in the same molecule. Simultaneous analysis of donor and acceptor kinetics was necessary to discriminate F?rsters resonance energy transfer along neuronal development due to the different cellular effects involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号