首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

2.
Effects of temperature and salinity on the growth of the two agarophytes, Gracilaria verrucosa (Hudson) Papenfuss and Gracilaria chorda Holmes were examined in Korea. Both species grew over a wide range of temperatures (10–30 C) and salinities (5–35‰), and grew well at 17–30 C and a salinity of 15–30‰. In culture, G. verrucosa grew faster than G. chorda and their maximum growth rates were 4.95% day−1 (30 C, 25‰) and 4.47% day−1 (at 25 C, 25‰), respectively. In the field population the maximum growth and fertility of G. chorda were observed in summer. The growth rate of G. verrucosa was slightly higher than that of G. chorda for 2 weeks on the cultivation rope and in culture but it was much lower after being contaminated with epiphytes. The biomass of the epiphytes was 0.82 g dry wt. per host plant in G. verrucosa and 0.001 g in G. chorda. G. chorda exhibited resistance to epiphytism and grew 7 times in length and the dry weight increased 15 times after 55 days. In conclusion, G. chorda appears to be a good agarophyte with a fast growth rate and resistance to epiphytesm, and compared with G. verrucosa, has good potential for commercial cultivation.  相似文献   

3.
Optimum temperature and salinity conditions for viable hatch were studied for turbot (Scophthalmus maximus L.) from the North Sea. Temperatures ranging from 6 to 22°C and salinities from 5 to 35‰ were used. Optimum conditions were observed to be between 12 and 18°C at salinities between 20 and 35‰. This contrasted with corresponding data for turbot from the southern Baltic proper, according to which survival sharply decreased in temperatures below 14°C and was high in salinities of 10 to 15‰. Thus, it is concluded that Baltic and Atlantic turbot should be considered as different races.  相似文献   

4.
Acclimation responses of the red alga Gracilaria tenuistipitata var. liui collected on the northwest coast of Philippines were determined in laboratory setups and outdoor cultivation tanks in Haifa, Israel. Growth under laboratory conditions was influenced by all three variables studied, namely, temperature (20 or 30 °C), salinity (20, 30 or39‰) and seawater pH (6.5, 7.0, 8.0 or ≥ 9.0). In 250 mL flasks lacking pH control growth was influenced by temperature only at 20 ‰, whereas at 39 ‰, growth rates were similar at 20 or 30 °C. In 500 mL cylinders in which pH was controlled, growth rates were significantly different at a pH of 6.5 and 7.0 for all salinities, with maximal rates occurring in 39 ‰. At pH 8.0, and above, growth rates between salinities were similar and reduced to approximately 50% at a pH of 9.0 compared to rates at a pH of 6.5. Photosynthesis responses generally resembled growth responses both, in 250 mL and 500 mL cultures. In 40-L outdoor tanks, weekly growth and agar yields were apparently enhanced by increasing light intensities (up to full sunlight) and nutrient concentrations (up to 0.2 mM PO3 2- and 2.0 mM NH4 +), and rates averaged four times higher than rates determined in the smaller flask cultures. This study shows broad salinity tolerance of G. tenuistipitata var. liui and its ability to sustain growth rates that are among the highest measured for Gracilaria spp. in outdoor cultures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The combined effects of temperatures of 14, 17, 20, 22, and 25°C and salinities of 36–12‰ on embryos and larvae of the sand dollar Scaphechinus mirabilis was studied. Embryonic development is the most sensitive stage in the early ontogenesis of S. mirabilis. It is completed at a temperature of 14–20°C in a salinity range of 36–24‰ and at temperature of 22°C to 26‰. The fertilization proceeds in wider ranges of temperature and salinity. Among the swimming larvae, blastulae showed the greatest resistance to variations of these environmental factors. All the larvae survived at a temperature of 14–22°C and a salinity of 36–20‰, and more than 70% of them at 18‰. The pluteus I is the most vulnerable stage; probably this is related to the formation of the larval skeleton and transition to phytoplankton feeding. The survival of larvae at the age of 20 days was 100% at 14–22° C and a salinity of 36–24‰, most of them survived at 14–20°C and a salinity 18‰. The temperature 25 ° C is the most damaging for early development of S. mirabilis. The duration of development of that species lasts 28.5–29 days at 20°C and a salinity of 32.2–32.6‰. At 20 and 22°C, the larvae settled and completed metamorphosis more quickly if sand from the parental habitat was present. The larvae did not settle during the experiment (14 days) at 14 ° C and in the absence of sand.  相似文献   

6.
Two species of cold-temperate algae from the North Atlantic Ocean,Polyides rotundus andFurcellaria lumbricalis, were tested for growth and survival over a temperature range of −5 to 30 °C. In comparisons of eastern and western isolates, bothF. lumbricalis, a North Atlantic endemic, andP. rotundus, a species having related populations in the North Pacific, were quite homogeneous.F. lumbricalis tolerated −5 to 25°C and grew well from 0 to 25°C, with optimal growth at 10–15 °C.P. rotundus tolerated −5 to 27°C, grew well from 5 to 25°C, and had a broad optimal range of 10–25°C. Both species tolerated 3 months in darkness at 0°C. In neither case could any geographic boundary be explained in terms of lethal seasonal temperatures, suggesting that these species are restricted in distribution by strict thermal and/or daylength requirements for reproduction. The hypothesis that northern species are more homogeneous than southern taxa in terms of thermal tolerance was supported. A second hypothesis, that disjunct cold-temperate species should be more variable than pan-Arctic species, was not supported.  相似文献   

7.
The effects of light and temperature on flowering and pollentube growth were studied in watermelon [Citrullus lanatus(Thunb.)Matsum. and Nakai, cv. Early Yates] plants grown in controlledenvironment cabinets. All female flowers were pollinated inone group of plants; none was pollinated in the other group. Temperature increase from 25 °C to 35 °C with daylengthof 14 h and light intensity of 32 klx caused increase in flowernumber per plant, proportion of male flowers, ovary length anddiameter, ovule number per ovary, rate of pollen tube growthand percentage of penetrated ovules at 24 hand 48 h after pollination.Very few flowers were produced at 40 °C, but there was ahigh proportion of male flowers. Increase in daylength from14 h to 24 h at 25 °C with light intensity of 32 klx alsoincreased number of flowers per plant, ovary length and diameterand number of ovules per ovary but sex expression and rate ofpollen tube growth were unaffected. Reduction in daylength from14 h to 8 hat 25 °C and light intensity of 32 klx and reductionin light intensity from 32 klx to 8 klx at 25 °C and 14h daylength both produced an increase in the percentage of immatureovules. The presence of fruit on the vine resulted in fewerflowers per plant and in reduced ovary legnth and diameter underall conditions tested. The results are discussed in relation to the fruiting responseof the plant.  相似文献   

8.
Substantial halophilic organisms have been found in 100–200‰ salinities. These ranges represent a highly specialized halophilic environment to which only a few halotolerant species have adapted. Recent studies have underlined the existence of diverse obligately halophilic protozoa in the salinity ranges of 100–200‰. The ranges of salinity under which these organisms can grow have been examined to some extent, but the balance of specific ions that will support growth has not been investigated. The heterotrophic nanoflagellate Halocafeteria, the type strain of which grows optimally at 150‰ salinity and 35°C, is a commonly encountered obligate halophile found in very hypersaline environments. These extreme environments can vary in their Mg:Ca ratios (i.e. weight ratios) and sulfate concentrations. To examine growth response of Halocafeteria to the different chemical compositions, densities of Halocafeteria seosinensis strain EHF34 were monitored in seven different ion composition media for 9 days at 1- to 2-day intervals (at 150‰ salinity and 35°C, with no prey limitation). Halocafeteria does not grow at Mg:Ca ratios of 35 and 100 and at high sulfate concentrations of 11.6 and 31.6 g l−1. It grows well in 0.6 g l−1 sulfate media at Mg:Ca ratios of 2, 10 or 35, but not 100. The present study demonstrates that the growth of the obligate halophile Halocafeteria can be affected by different ion compositions in hypersaline environments. Therefore, Halocafeteria may not be ubiquitous in hypersaline environments due to its ionic requirements.  相似文献   

9.
Growth, maturation and survival of a free living turbellarian Macrostomum orthostylum (BRAUN), from a brackish water fish-farm, were studied in the laboratory under a constant temperature of 24 °C. The worms tolerated a wide range of salinity (1 to 30‰). Maximum growth (total length) of 1000 μm was attained in 56 days with a mean growth rate of 15.7 μm d-1. Minimum maturation time (7 days) and highest longevity (112 days) were recorded in 9%. salinity. Survival period was considerably longer at lower salinities (1 to 10‰) and showed negative relationship with higher salinities (11 to 30‰).  相似文献   

10.
Plants of watermelon [Citrullus lanatus(Thunb.) Matsum. &Nakai, cv. Early Yates] were grown for up to 3 months aftergermination in controlled environment cabinets, and variousaspects of vegetative growth and fruit development were measured.Effects of light intensity were studied by comparing growthat 8, 16 and 32 klx at constant temperature and daylength (25°C, 14 h). Effects of daylength were studied by comparing8, 14 and 24 h at constant light intensity and temperature (32klx, 25 °C), and effects of tem perature were studied bycomparing 20°, 25°, 30°, 35° and 40 °C atconstant light intensity and day- length (32 klx, 14 h). Withincreasing light intensity and daylength lateral growth waspromoted whereas main shoots were less affected. Increase intemperature above 25 °C resulted in longer main shoots andprolific lateral growth, due both to more and to longer laterals.Environmental differences had little effect on internode lengthbut did affect the size of basal leaves. However, an increasein total leaf area at higher temperatures or with Continuouslight was mainly due to more leaves rather than larger leaves.The presence of developing fruit greatly reduced vegetativegrowth of plants. Main shoot length, lateral growth, numberof leaves, and even size of individual leaves, were all reduced.This reduction did not apply to d. wt of whole plants. Fruitingplants were very efficient, on a leaf area basis, in accumulatingd. wt. At 25 °C at the two higher light intensities with14 h days the presence of one developing fruit was inhibitoryto the setting of any subsequent fruit. With short days or lowlight, more fruits were set but they were small. With continuouslight or high temperature more than one fruit could developand they were large.  相似文献   

11.
The effect of polyunsaturated fatty acids on photosynthesis and the growth of the marine cyanobacterium Synechococcus sp. PCC 7002 was examined using wild-type and Δ12 fatty acid desaturase mutant strains. Under a light intensity of 250 μmol m−2 s−1, wild-type cells could grow exponentially in a temperature range of 20–38 °C, but growth was non-exponential below 20 °C and ceased at 12 °C. The Δ12 desaturase mutant cells lacking polyunsaturated fatty acids had the same growth rate as wild-type cells in a temperature range of 25–38 °C but grew slowly at 22 °C, and no cell growth took place below 18 °C. Under a very high-light intensity of 2.5 mmol m−2 s−1, wild-type cells could grow exponentially in a temperature range of 30–38 °C, although the high-light grown cells became chlorotic because of nitrogen limitation. The temperature sensitive phenotype in the Δ12 desaturase mutant was enhanced in cells grown under high-light illumination; the mutant cells could grow at 38 °C, but were killed at 30 °C. The decrease of oxygen evolution and nitrate consumption by whole cells as a function of temperature was similar in both wild type and the Δ12 desaturase mutant. No differences were observed in either light-induced damage of oxygen evolution or recovery from this damage. No inactivation of oxygen evolution took place at 22 °C under the normal light intensity of 250 μmol m−2 s−1. These results suggest that growth of the Δ12 desaturase mutant at low temperature is not directly limited by the inactivation of photosynthesis, and raise new questions about the functions of polyunsaturated membrane lipids on low temperature acclimation in cyanobacteria. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Most studies of oxygen solubility values for high salinity conditions have used synthetic solutions. The object of this study is therefore to propose an equation, valid for high salinity conditions, based on the analysis of oxygen saturation in evaporated seawater. In this study, the solubility of oxygen in evaporated seawater has been determined over a temperature range of 8–35°C and with salinity values of up to 133‰. Based on experimental data, an equation is proposed that introduces a S 2 (salinity) term, at 1 atm pressure, giving increased importance to salinity. The equation provides a valid means of predicting the amount of dissolved oxygen in this range of temperatures and salinities. In addition, for high salinity conditions, with this equation there is no need to extrapolate other established equations, which are less accurate at salinities higher than 40‰. The use of the proposed equation offers a more precise way of calculating oxygen solubility in seawater at high salinity values (up to 133‰), and small deviations from experimental values, of the order of 2 μmol kg−1, are obtained. Handling editor: J. Melack  相似文献   

13.
The growth and lipid content of three Botryococcus braunii strains from China (CHN), United Kingdom (UK) and Japan (JAP) were compared at three temperatures (20, 25 and 30 C), three irradiances (60, 100 and 300 W m−2) and four salinities (0, 0.15, 0.25, and 0.5 M NaCl) for 30 days, respectively. In the temperature trial, the UK strain and JAP strain grew faster at 25 C than at other temperatures, while the CHN strain performed equally well at 20 and 25 C. The JAP strain grew slowest among the three strains at all temperatures, whereas the growth rate of the CHN and UK strains was similar at all temperatures except at 20 C. The UK strain contained the highest lipid content, but the CHN strain had the lowest lipid content at most temperatures. In the light trial, the highest growth rate was found in the UK strain and the lowest growth rate was observed in the JAP strain at most irradiances. The UK and JAP strains contained more lipids than the CHN strain at 60 and 100 W m−2, but the lipid content was not significantly different among the three strains at 300 W m−2. In the salinity trial, both the CHN and UK strains grew faster than the JAP strain at all salinities, but the growth rate between the CHN and UK strains was not different. However, the CHN strain had the lowest lipid content whereas the UK strain produced the highest lipids at most salinities. Our results indicate that the CHN strain and the UK strain grow faster than the JAP strain, but the UK and JAP strains produce more lipids than the CHN strain. The UK strain should be considered as a potential B. braunii strain for the exploitation of renewable energy.  相似文献   

14.
Temperature requirements for growth, photosynthesis and dark respiration were determined for five Antarctic red algal species. After acclimation, the stenothermal species Gigartina skottsbergii and Ballia callitricha grew at 0 or up to 5 °C, respectively; the eurythermal species Kallymenia antarctica, Gymnogongrus antarcticus and Phyllophora ahnfeltioides grew up to 10 °C. The temperature optima of photosynthesis were between 10 and 15 °C in the stenothermal species and between 15 and 25 °C in the eurythermal species, irrespective of the growth temperature. This shows that the temperature optima for photosynthesis are located well below the optima from species of other biogeographical regions, even from the Arctic. Respiratory rates rose with increasing temperatures. In contrast to photosynthesis, no temperature optimum was evident between 0 and 25 °C. Partial acclimation of photosynthetic capacity to growth temperature was found in two species. B. callitricha and Gymnogongrus antarcticus acclimate to 0 °C, and 5 and 0 °C, respectively. But acclimation did in no case lead to an overall shift in the temperature optimum of photosynthesis. B. callitricha and Gymnogongrus antarcticus showed acclimation of respiration to 5 °C, and P. ahnfeltioides to 5 and 10 °C, resulting in a temperature independence of respiration when measured at growth temperature. With respect to the acclimation potential of the species, no distinction can be made between the stenothermal versus the eurythermal group. (Net)photosynthetic capacity:respiration (P:R) ratios showed in all species highest values at 0 °C and decreased continuously to values lower than 1.0 at 25 °C. In turn, the low P:R ratios at higher temperatures are assumed to determine the upper temperature growth limit of the studied species. Estimated daily carbon balance reached values between 4.1 and 30.7 mg C g−1 FW day−1 at 0 °C, 16:8 h light/dark cycle, 12–40 μmol m−2 s−1. Received: 4 November 1999 / Accepted: 7 March 2000  相似文献   

15.
Survival, duration of intermoult cycle and respiratory metabolism were evaluated as a function of salinity (0–35‰; 25° C) in early zoeae of the cinnamon shrimp, Macrobrachium amazonicum. Zoeae are extremely resistant to salinity, mortality occurring only in fresh and sea-water after several days. Moulting occurs in all salinities, longer cycles being recorded in 0 and 35‰ S. The metabolism-salinity curve is broadly U-shaped between 0 and 28‰ S but declines sharply in sea-water. Such physiological responses characterise the early zoeae as strongly euryhaline and typically estuarine. Data are discussed in relation to the degree of adaptation of the organism to the freshwater biotope and the position of the species within the generic pattern of adaptive radiation.  相似文献   

16.
We report abundance of 13C and 15N contents in terrestrial plants (mosses, lichens, liverworts, algae and grasses) from the area of Barton Peninsula (King George Island, maritime Antarctic). The investigated plants show a wide range of δ13C and δ15N values between −29.0 and −20.0‰ and between −15.3 and 22.8‰, respectively. The King George Island terrestrial plants show species specificity of both carbon and nitrogen isotope compositions, probably due to differences in plant physiology and biochemistry, related to their sources and in part to water availability. Carbon isotope compositions of Antarctic terrestrial plants are typical of the C3 photosynthetic pathway. Lichens are characterized by the widest carbon isotope range, from −29.0 to −20.0‰. However, the average δ13C value of lichens is the highest (−23.6 ± 2.8‰) among King George Island plants, followed by grasses (−25.6 ± 1.7‰), mosses (−25.9 ± 1.6‰), liverworts (−26.3 ± 0.5‰) and algae (−26.3 ± 1.2‰), partly related to habitats controlled by water availability. The δ15N values of moss samples range widest (−9.0 to 22.8‰, with an average of 4.6 ± 6.6‰). Lichens are on the average most depleted in 15N (mean = −7.4 ± 6.4‰), whereas algae are most enriched in 15N (10.0 ± 3.3‰). The broad range of nitrogen isotope compositions suggest that the N source for these Antarctic terrestrial plants is spatially much variable, with the local presence of seabird colonies being particularly significant.  相似文献   

17.
The effects of temperature, salinity and irradiance on the growthof the harmful red tide dinoflagellate Cochlodinium polykrikoideswere examined in the laboratory. From 60 different combinationsof temperature (10–30°C) and salinity (10–40)under saturated irradiance, C. polykrikoides exhibited its maximumspecific growth rate of 0.41 day-1 at a combination of 25°Cand salinity of 34. Optimum growth rates of >0.3 day-1 wereobserved at temperatures ranging from 21 to 26°C and atsalinities from 30 to 36. The organism did not grow at temperatures10°C and only grew at salinities >30 if the temperaturewas >15°C. It was able to grow in temperatures rangingfrom 15 to 30°C and at salinities from 20 to 36. These valuesclosely resembled those observed for this species in situ. Itappears as if C. polykrikoides is a stenohaline organism thatprefers high salinities, indicative of offshore waters. Temperaturehad the greatest influence on the growth rate, followed by salinity,and then the interaction between temperature and salinity. Theoptimum irradiance for growth was >90 µmol m-2 s-1.Photoinhibition did not occur at 230 µmol m-2 s-1, whichwas the maximum irradiance used in this study.  相似文献   

18.
 Leaf movements of bush bean plants were studied at the relatively low photon flux density of 0.2 mmol/m2 per s, and air temperatures of 25° and 35° C in a growth chamber. A beta-ray gauge system was used to monitor continuously pulvinus water status and bending. Leaf angles were below the horizontal and were linearly related to the soil water content (R≥−0.91 at 25° C and R≥−0.93 at 35° C). The beta-ray transmission maxima coincided with the stem temperature minima in darkness and vice versa when brightness prevailed as the growth chamber temperature varied with the photoperiod. Leaf angle increased linearly with increased beta-ray transmission. The Q10 temperature coefficient, a measure of the metabolic energy requirement for leaf movement between 25° and 35° C was estimated at 1.8, and the corresponding mean Arrhenius constant at 423 kJ/mol for bush bean. Received: 19 July 1996 / Accepted: 9 September 1996  相似文献   

19.
Excised ligulae of Glossophora kunthii from central Chile were cultured of temperatures of 5–25° C, photoperiods of 16:8 and 8:16 h LD cycles, with photon irradiances of 10 and 50 μmol · m?2· s?1. Growth of the ligulae, number of fertile ligulae and number of tetrasporangia forming on the ligulae were assessed. Ligulae tolerated temperatures between 10 and 23°C. Temperature interacted with daylength and photon dose, determining quantitative responses in the growth and fertility of ligulae. Growth was least at 8:16 h LD and was not affected significantly by temperature. It was greatest at 16:8 h LD, 50 μmol · m?2· s?1 and increased with temperature up to 20°C. Percentage of fertile ligulae and number of tetrasporangia increased with temperature at the 8:16 h LD cycle, reaching a maximum at 20°C. Fertility was low at 16:8 h LD, except at 20° C (and low photon dose) suggesting that reproduction at 20° C is independent of daylength in this species. Ligulae grew larger at the long-day photoperiods and the proportions of fertile ligulae were higher at the short-day photoperiods, irrespective of the total photon dose received. These results suggest that some aspects of growth and fertility are controlled by photoperiod.  相似文献   

20.
Leaf Photosynthesis of the Mangrove Avicennia Germinans as Affected by NaCl   总被引:2,自引:0,他引:2  
In leaves of the mangrove species Avicennia germinans (L.) L. grown in salinities from 0 to 40 ‰, fluorescence, gas exchange, and δ13C analyses were done. Predawn values of Fv/Fm were about 0.75 in all the treatments suggesting that leaves did not suffer chronic photoinhibition. Conversely, midday Fv/Fm values decreased to about 0.55-0.60 which indicated strong down-regulation of photosynthesis in all treatments. Maximum photosynthetic rate (P max) was 14.58 ± 0.22 μmol m-2 s-1 at 0 ‰ it decreased by 21 and 37 % in plants at salinities of 10 and 40 ‰, respectively. Stomatal conductance (g s) was profoundly responsive in comparison to P max which resulted in a high water use efficiency. This was further confirmed by δ13C values, which increased with salinity. From day 3, after salt was removed from the soil solution, P max and g s increased up to 13 and 30 %, respectively. However, the values were still considerably lower than those measured in plants grown without salt addition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号