首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A monoclonal antibody (MAb) specific for the bluetongue virus (BTV) group specific antigen (VP7) was characterized for its reactivity with purified virus and recombinant BTV VP7 (rVP7) protein and its suitability for use in the sandwich ELISA.The MAb,designated as 5B5 was specific to VP7 and belongs to IgG2a subclass and was selected for the development of the sELISA in this study.The MAb had a titer of 1:25 with BTV and 1:2 with the rVP7 protein.The sELISA is based on capturing of BTV antigen with VP7 spec...  相似文献   

2.
获得稳定、高效的具有良好抗原性的蓝舌病毒(Bluetongue virus,BTV)vp7基因重组抗原。将BTV编码群特异性抗原VP7的S7基因片段克隆至pMD18-T质粒载体中,构建S7克隆重组质粒,进行核苷酸序列分析。与已报道的多株BTV编码VP7的基因比较后发现,所测定毒株的核苷酸序列与BTV10型的S7基因同源性高达98.7%,推测的氨基酸同源性为99.3%,证实为BTV的S7基因。然后亚克隆插入pBAD/Thio TOPO表达载体,转化LGM194细胞,经抗性培养、PCR、限制性内切酶分析、测序鉴定,筛选获得BTV S7基因片段正向插入、有正确读码框的阳性克隆,成功构建了BTV群特异性抗原VP7的重组表达载体。经L-araboinose诱导表达,可稳定、高效地表达VP7蛋白抗原。SDS-PAGE、ELISA试验表明,表达蛋白为融合蛋白,具有反应原性,分子量约54.5kD,重组蛋白的获得率为1.52mg/g湿菌,其表达产量约占菌体总蛋白的12%左右,相当于93.5mg/L菌液。融合蛋白中含有BTV VP7特异性蛋白抗原,可作为c-ELISA包被抗原,为蓝舌病的免疫血清学诊断试剂的制备和分子生物学研究打下了坚实基础。  相似文献   

3.
AIMS: To improve the sensitivity of a monoclonal antibody (MAb 2F3) based enteropathogenic Escherichia coli (EPEC)/enterohaemorrhagic E. coli (EHEC) serogroup O26-specific sandwich ELISA (sELISA), using a capture/enrichment format of the assay. METHODS AND RESULTS: The sELISA utilized an EPEC/EHEC O26-specific MAb 2F3 as the capture reagent and an E. coli serogroup O26 lipopolysaccharide-specific polyclonal antibody in the development stage. Wells containing faeces test samples from bovine enteritis cases and agar colony sweep cultures from human diarrhoea cases, after a 2-h capture stage, were washed and enrichment of the captured cells was encouraged by addition of tryptone soya broth. After overnight incubation, the contents of each well were transferred to sterile wells and the sELISA completed. Any sELISA positive samples were then subcultured onto blood agar to recover and further characterize the positive cultures. The assay had a sensitivity of 10(3) CFU ml(-1). ELISA positive samples consisted of 21 (4.8%) of the 442 bovine and 19 (3.7%) of the 519 human samples tested, and ELISA positive EPEC/EHEC O26 strains were isolated from 11 and three of these samples respectively. CONCLUSION: The capture/enrichment method improved the sensitivity of a MAb-based sELISA for the detection of EPEC/EHEC O26 strains, and also contributed to an improved isolation rate of the organism from field samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The application of a specific MAb in a capture/enrichment format of the sELISA, provides a prospectively suitable screening method for the detection of pathogenic bacteria from mixed culture samples.  相似文献   

4.
The gene encoding the VP28 envelope protein of White spot syndrome virus (WSSV)was cloned into expression vector pET-30a and transformed into the Escherichia coli strain BL21.After induction,the recombinant VP28 (rVP28) protein was purified and then used to immunize Balb/c mice for monoclonal antibody (MAb) production.It was observed by immuno-electron microscopy the MAbs specific to rVP28 could recognize native VP28 target epitopes of WSSV and dot-blot analysis was used to detect natural WSSV infection.Competitive PCR showed that the viral level was approximately 104 copies/mg tissue in the dilution of gill homogenate of WSSV-infected crayfish at the detection limit of dot-blot assay.Our results suggest that dot-blot analysis with anti-rVP28 MAb could rapidly and sensitively detect WSSV at the early stages of WSSV infection.  相似文献   

5.
The gene encoding the VP28 envelope protein of White spot syndrome virus (WSSV) was cloned into expression vector pET-30a and transformed into the Escherichia coli strain BL21. After induction, the recombinant VP28 (rVP28) protein was purified and then used to immunize Balb/c mice for monoclonal antibody (MAb) production. It was observed by immuno-electron microscopy the MAbs specific to rVP28 could recognize native VP28 target epitopes of WSSV and dot-blot analysis was used to detect natural WSSV infection. Competitive PCR showed that the viral level was approximately 104 copies/mg tissue in the dilution of gill homogenate of WSSV-infected crayfish at the detection limit of dot-blot assay. Our results suggest that dot-blot analysis with anti-rVP28 MAb could rapidly and sensitively detect WSSV at the early stages of WSSV infection.  相似文献   

6.
Capsid protein genes VP1 and VP3 of Taura syndrome virus (TSV) were cloned into pGEX-6P-1 expression vector and transformed into Escherichia coli BL21. After induction, recombinant VP1 (rVP1) and recombinant VP3 (rVP3) were produced, purified by SDS-PAGE and used for immunization of Swiss mice for antisera production. Anti-rVP1 and anti-rVP3 antisera showed specific immunoreactivities to rVP1 and rVP3 proteins, respectively, by Western blot assay and also yielded good results for detection of TSV in various shrimp tissues by immunohistochemistry. This is the first step towards our target of preparing monoclonal antibodies specific to rVP1 and rVP3 for use in simple immuno-diagnostic test kits for TSV detection and identification.  相似文献   

7.
AIMS: A monoclonal antibody (Mab 2F3)-based sandwich enzyme linked immunosorbent assay (sELISA) format for the detection of Escherichia coli O26 that improves the sensitivity of the assay by combining enrichment with the capture stage has been developed. Culture of the enriched contents of wells before completion of the sELISA was compared with immunomagnetic bead separation (IMS) as a means of specific isolation of the target organism. METHODS AND RESULTS: Bovine faecal samples, c. 10% in buffered peptone water (BPW), were pre-enriched for 6 h before testing by capture/enrichment sELISA and by IMS. The sELISA consisted of a 1-2 h capture stage followed by addition of BPW to the wells and an overnight enrichment stage before completion of the assay. The capture/enrichment stage of the assay was repeated a second time on the enriched contents removed from the wells before completion of the first sELISA. From 204 cattle faeces samples, 30x O26 strains [20x attachment effacement Escherichia coli (AEEC) and 10x non-AEEC] were isolated from the enriched wells of the sELISA, in comparison with 11 (9x AEEC and 2x non-AEEC) that were isolated by IMS. Examination of the use of enterohaemolysin activity and rhamnose utilization on 1% rhamnose McConkey's (RMAC) agar with or without cefixime and potassium tellurite demonstrated that the selection based on enterohaemolysin production and growth on RMAC with cefixime and potassium tellurite would largely differentiate the AEEC strains from the non-AEEC strains. CONCLUSIONS: The capture/enrichment sELISA protocol used compared favourably with the IMS for the isolation of E. coli O26 from faeces samples. The ELISA optical density readings obtained in the procedure were used as a screening indicator for selection of samples for further culture examination, and the selective culture methods examined to assist strain isolation did have potential. SIGNIFICANCE AND IMPACT OF THE STUDY: The capture/enrichment format of an Mab-based sELISA protocol has the potential to provide a suitable screening assay for the specific detection of pathogenic strains from mixed culture samples like faeces.  相似文献   

8.
Bluetongue virus (BTV) is an arthropod-borne virus transmitted by Culicoides species to vertebrate hosts. The double-capsid virion is infectious for Culicoides vector and mammalian cells, while the inner core is infectious for only Culicoides-derived cells. The recently determined crystal structure of the BTV core has revealed an accessible RGD motif between amino acids 168 to 170 of the outer core protein VP7, whose structure and position would be consistent with a role in cell entry. To delineate the biological role of the RGD sequence within VP7, we have introduced point mutations in the RGD tripeptide and generated three recombinant baculoviruses, each expressing a mutant derivative of VP7 (VP7-AGD, VP7-ADL, and VP7-AGQ). Each expressed mutant protein was purified, and the oligomeric nature and secondary structure of each was compared with those of the wild-type (wt) VP7 molecule. Each mutant VP7 protein was used to generate empty core-like particles (CLPs) and were shown to be biochemically and morphologically identical to those of wt CLPs. However, when mutant CLPs were used in an in vitro cell binding assay, each showed reduced binding to Culicoides cells compared to wt CLPs. Twelve monoclonal antibodies (MAbs) was generated using purified VP7 or CLPs as a source of antigen and were utilized for epitope mapping with available chimeric VP7 molecules and the RGD mutants. Several MAbs bound to the RGD motif on the core, as shown by immunogold labeling and cryoelectron microscopy. RGD-specific MAb H1.5, but not those directed to other regions of the core, inhibited the binding activity of CLPs to the Culicoides cell surface. Together, these data indicate that the RGD motif present on BTV VP7 is responsible for Culicoides cell binding activity.  相似文献   

9.
The gene sequence encoding VP3 capsid protein of Taura syndrome virus (TSV) was cloned into pGEX-6P-1 expression vector and transformed into Escherichia coli BL21. After induction, recombinant GST-VP3 (rVP3) fusion protein was obtained and further purified by electro-elution before use in immunizing Swiss mice for production of monoclonal antibodies (MAb). One MAb specific to glutathione-S-transferase (GST) and 6 MAb specific to VP3 were selected using dot blotting and Western blotting. MAb specific to VP3 could be used to detect natural TSV infections in farmed whiteleg shrimp Penaeus vannamei by dot blotting and Western blotting, without cross reaction to shrimp tissues or other shrimp viruses, such as white spot syndrome virus (WSSV), yellow head virus (YHV), monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). These MAb were also used together with those specific for WSSV to successfully detect TSV and WSSV in dual infections in farmed P. vannamei.  相似文献   

10.
VP37 of white spot syndrome virus interact with shrimp cells   总被引:2,自引:0,他引:2  
Aims:  To investigate VP37 [WSV 254 of White spot syndrome virus (WSSV) genome] interacting with shrimp cells and protecting shrimp against WSSV infection.
Methods and Results:  VP37 was expressed in Escherichia coli and was confirmed by Western blotting. Virus overlay protein binding assay (VOPBA) technique was used to analyse the rVP37 interaction with shrimp and the results showed that rVP37 interacted with shrimp cell membrane. Binding assay of recombinant VP37 with shrimp cell membrane by ELISA confirmed that purified rVP37 had a high-binding activity with shrimp cell membrane. Binding of rVP37 to shrimp cell membrane was a dose-dependent. Competition ELISA result showed that the envelope protein VP37 could compete with WSSV to bind to shrimp cells. In vivo inhibition experiment showed that rVP37 provided 40% protection. Inhibition of virus infection by rVP37 in primary cell culture revealed that rVP37 counterparted virus infection within the experiment period.
Conclusions:  VP37 has been successfully expressed in E . coli . VP37 interacted with shrimp cells.
Significance and Impact of the Study:  The results suggest that rVP37 has a potential application in prevention of virus infection.  相似文献   

11.
AIMS: Production of a monoclonal antibody (MAb) to Escherichia coli O157 to develop a rapid test using a sandwich ELISA (sELISA) format. METHODS AND RESULTS: A MAb (7A6) was developed to the long-chain lipopolysaccharide of E. coli O157. A sELISA developed with the MAb reacted with 28 bovine and seven human enterohaemorrhagic E. coli (EHEC) O157 strains and also with two enterotoxigenic E. coli O157 strains. Cross-reaction to a rabbit diarrhoeal E.coli O15, Citrobacter freundii, Salmonella urbana and Vibrio cholerae O1 Inaba was detected. CONCLUSION: A MAb-based sELISA to detect E. coli O157 was produced. Its application to field samples is required to fully determine its prospective use for the detection of EHEC O157, to evaluate the non-specific interference of the cross-reacting strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The assay produced is not wholly specific to EHEC O157, but has the potential to be used as a rapid method for screening large numbers of samples for E. coli O157.  相似文献   

12.
The gene encoding the VP28 envelope protein of White spot syndrome virus (WSSV) was cloned into expression vector pET-30a and transformed into the Escherichia coli strain BL21.After induction,the recombinant VP28 (rVP28) protein was purified and then used to immunize Balb/c mice for monoclonal antibody (MAb) production.It was observed by immuno-electron microscopy the MAbs specific to rVP28 could recognize native VP28 target epitopes of WSSV and dot-blot analysis was used to detect natural WSSV infection.Co...  相似文献   

13.
In the present study, a total of 24 MAbs were produced against bluetongue virus (BTV) by polyethyleneglycol (PEG) mediated fusion method using sensitized lymphocytes and myeloma cells. All these clones were characterized for their reactivity to whole virus and recombinant BTV-VP7 protein, titres, isotypes and their reactivity with 24 BTV-serotype specific sera in cELISA. Out of 24 clones, a majority of them (n = 18) belong to various IgG subclasses and the remaining (n = 6) to the IgM class. A panel of eight clones reactive to both whole BTV and purified rVP7 protein were identified based on their reactivity in iELISA. For competitive ELISA, the clone designated as 4A10 showed better inhibition to hyperimmune serum of BTV serotype 23. However, this clone showed a variable percent of inhibition ranging from16.6% with BTV 12 serotype to 78.9% with BTV16 serotype using 24 serotype specific sera of BTV originating from guinea pig at their lowest dilutions. From the available panel of clones, only 4A10 was found to have a possible diagnostic application.  相似文献   

14.
An immunoaffinity chromatography (IAC) method was optimized for the selective capture of bluetongue virus (BTV) from blood samples and isolation of the virus in cell culture. The antibody against BTV core particles (lacking the outer capsid proteins VP2 and VP5) was used for the optimization of IAC technique. The antibody against BTV core particle was conjugated with Protein A-virus complex and the complex was dissociated using elution buffer (4 M MgCl2 with 75 mM HEPES, pH 6.5). The optimized IAC method specifically purified the BTV without capturing other commonly infecting small ruminant’s viruses like gaotpox virus (GTPV), sheeppox virus (SPPV), Peste des petits ruminants virus (PPRV) and Foot and mouth disease virus (FMDV). The blood samples (n?=?22), positive for BTV antigen in sandwich-ELISA were attempted for virus isolation in the BHK-21 cell using the optimized IAC method. A total of seven BTV were isolated by selective capturing of the virion particles. The isolated viruses were characterized by RNA-PAGE, sequence analysis and serum neutralization test (SNT). Electropherotypic analysis of viral dsRNA in the RNA-PAGE revealed the presence of ten dsRNA segments characteristic of BTV. Out of seven isolates, four isolates were identified as BTV-1 and three isolates were identified as BTV-16 based on nucleotide sequences of segment-2. Phylogenetic analysis of segment-2 nucleotide sequence segregated BTV-1 and BTV-16 isolates to monophyletic cluster at close proximity to other eastern topotype. In SNT, hyperimmune serum (HIS) against BTV-1 neutralized the four BTV-1 isolates up to a titer?>?256 and HIS against BTV-16 neutralized the three BTV-16 isolates up to a titer?>?128. The IAC technique will be useful for the selective capture of BTV from mixed infection (BTV with other small ruminant’s viruses) and isolation from blood sample having low viral load by enrichment.  相似文献   

15.
群特异性蓝舌病病毒单克隆抗体的制备和鉴定   总被引:1,自引:0,他引:1  
目的:制备群特异性抗蓝舌病病毒(BTV)单克隆抗体,并对其特性进行鉴定,为建立检测BTV抗原及抗体的ELISA方法奠定基础。方法:用纯化的BTV颗粒为免疫抗原免疫BALB/c鼠,以大肠杆菌表达的VP7蛋白作为筛选抗原,用间接ELISA法筛选杂交瘤细胞株;选取抗体效价最高的一株制备BTV单克隆抗体,以该抗体为捕获抗体与8种不同血清型BTV进行ELISA反应,结果与细胞病变反应进行比对;以该抗体为竞争抗体,与12种不同血清型绵羊BTV抗血清进行竞争ELISA反应,并将结果与参比c-ELISA试剂盒结果进行比对。结果:筛选出5株稳定分泌BTV单克隆抗体的杂交瘤细胞株,并选其中一株(3E2)制备了高纯度的单克隆抗体;该单抗用于检测不同血清型BTV,与细胞病变反应结果完全相符;用于检测不同血清型绵羊BTV抗血清,其结果与参比c-ELISA试剂盒符合率为100%,与鹿流行性出血热病毒抗原和抗体均无交叉反应。结论:制备的BTV单克隆抗体具有良好的群特异性,可用于检测不同血清型BTV抗原及BTV抗体。  相似文献   

16.
为研究本实验室制备的一株抗蓝舌病病毒8型(BTV-8)VP2蛋白的单克隆抗体(MAb)3G11识别的B细胞抗原表位,利用噬菌体肽库展示技术对3G11识别的抗原表位进行筛选并鉴定。经过4轮淘选后挑取蓝斑测序,测序结果经分析后获得KLLAT序列,与BTV-8 VP2蛋白氨基酸序列比对后获得共同的短肽序列为283LL284;合成4种短肽序列:KLLAA、KALAT、KLAAT和KLLAT,与3G11细胞上清和腹水分别进行间接ELISA鉴定,结果表明,短肽KLLAA和KLLAT与3G11细胞上清及腹水具有较强的结合能力;与24种BTV标准阳性血清反应结果表明,这两种短肽都可与BTV-8阳性血清发生特异性反应;序列分析结果可见,该表位的氨基酸序列283LL284在不同来源的BTV-8毒株间保守,确定283LL284为MAb3G11识别抗原表位的关键氨基酸。本研究为建立8型BTV特异性的免疫学检测方法和相关病毒蛋白的功能研究奠定了基础。  相似文献   

17.
利用生物条形码技术对蓝舌病毒VP7蛋白进行微量检测   总被引:1,自引:0,他引:1  
目的:建立高灵敏检测蓝舌病毒VP7蛋白的生物条形码检测方法。方法:制备VP7蛋白的多抗及特异DNA链标记的金纳米颗粒探针(NP)和VP7蛋白单抗标记的磁性微球探针(MMP),形成MMP-VP7蛋白-NP三明治复合物后,再利用去杂交将NP探针上标记的DNA链释放出来,通过PCR或芯片检测方法鉴定释放的DNA链,确定VP7蛋白的存在。结果:建立了蓝舌病毒VP7蛋白的生物条形码检测体系,检测灵敏度可达10fg/mL,为常规ELISA检测的106倍。结论:为发展高灵敏度的蓝舌病毒生物条形码检测试剂盒鉴定了基础。  相似文献   

18.
19.
An indirect enzyme-linked immunosorbent assay (ELISA), using cell-associated viral antigen, was developed for detection of antibody to bluetongue virus (BTV) in field-collected pronghorn (Antilocapra americana) sera. To test the applicability of the ELISA to seroepizootiologic studies, pronghorn serum samples from three Wyoming counties (USA) were tested. Bluetongue virus ELISA results were compared to those of the bluetongue immunodiffusion assay. Discrepant serum samples were retested for reaction to either BTV or epizootic hemorrhagic disease virus. The pronghorn BTV ELISA gave rapid, quantitative, objective results and should facilitate testing large numbers of sera for BT diagnostic and seroepizootiologic studies.  相似文献   

20.
Hassan SS  Roy P 《Journal of virology》1999,73(12):9832-9842
Segment 2 of bluetongue virus (BTV) serotype 10, which encodes the outer capsid protein VP2, was tagged with the S-peptide fragment of RNase A and expressed by a recombinant baculovirus. The recombinant protein was subsequently purified to homogeneity by virtue of the S tag, and the oligomeric nature of the purified protein was determined. The data obtained indicated that the majority of the protein forms a dimer and, to a lesser extent, some trimer. The recombinant protein was used to determine various biological functions of VP2. The purified VP2 was shown to have virus hemagglutinin activity and was antigenically indistinguishable from the VP2 of the virion. Whether VP2 is responsible for BTV entry into permissive cells was subsequently assessed by cell surface attachment and internalization studies with an immunofluorescence assay system. The results demonstrated that VP2 alone is responsible for virus entry into mammalian cells. By competition assay, it appeared that both VP2 and the BTV virion attached to the same cell surface molecule(s). The purified VP2 also had a strong affinity for binding to glycophorin A, a sialoglycoprotein component of erythrocytes, indicating that VP2 may be responsible for BTV transmission by the Culicoides vector to vertebrate hosts during blood feeding. Further, by various enzymatic treatments of BTV-permissive L929 cells, preliminary data have been obtained which indicated that the BTV receptor molecule(s) is likely to be a glycoprotein and that either the protein moiety of the glycoprotein or a second protein molecule could also serve as a coreceptor for BTV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号