首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
早老症(Hutchinson-Gilford Progeria Syndrome,HGPS)是一种早发而严重的过早老化性疾病.它是由于编码A/C型核纤层蛋白的LMNA基因发生点突变而引起.这个突变激活了基因11号外显子上一个隐蔽的剪接位点,产生了一种被截短了50个氨基酸的A型核纤层蛋白.然而,一个广泛分布于核膜上结构蛋白的突变,如何引起HGPS患者的早老表现,目前还不太清楚.最近研究发现,HGPS患者的细胞核结构与功能发生了各种异常,主要表现在:progerin蓄积与核变形、细胞核机械性质的改变、组蛋白修饰方式与外遗传控制的改变、基因表达调控异常、p53信号传导通路激活和基因组不稳定等方面.目前存在机械应激假说和基因表达失控假说两种假说解释HGPS的发病机制.对于HGPS患者,尚无有效的临床干预措施,但有学者提出了一些治疗策略,如应用法尼基化的抑制剂、反义寡核苷酸和RNA干扰方法.HGPS被认为是研究正常衰老机制的一个模型.对HGPS深入研究将有助于阐明A型核纤层蛋白和核膜的正常生理功能,及其在生理衰老和疾病中的作用.  相似文献   

2.
早老症(Hutchinson-Gilford progeria syndrome,HGPS)是一种极其罕见的遗传性疾病,它是由LMNA基因突变引起的,产生一个截短的lamin A 蛋白称为 progerin.核纤层蛋白异常A加工积累的 progerin 能够破坏核纤层的支架功能,替代正常蛋白质与其配体结合,导致细胞核畸形和早老表型.  相似文献   

3.
衰老是一种生理完整性丧失,功能受损,疾病和死亡风险增加的过程。早老症(HGPS)是一种加速化的衰老疾病,是研究人类正常衰老理想的疾病模型。由LMNA基因突变产生prelamin AΔ50在细胞内累积是造成早老症的主要原因,早老症病人表现出寿命急剧缩短,老化特征明显的现象,例如脱发、皮下脂肪减少、骨质疏松以及早逝。 锌金属蛋白酶Zmpste24 是prelamin A加工成为成熟lamin A蛋白的关键酶。敲除Zmpste24基因的小鼠表现出与早老症高度一致的衰老表型,同时也存在非常相似的发病机制,如染色质异常、DNA损伤和干细胞功能缺失等。Zmpste24缺失小鼠作为典型的早老模型小鼠因其衰老周期短,衰老特征明显而获得广泛应用。本文总结了以Zmpste24缺失早老小鼠为模型取得的早老相关分子机制的研究进展,以及抗衰老策略的最新发现。  相似文献   

4.
法尼基是指在甲羟戊酸代谢途径中产生的一种倍半萜物质,主要以15个碳基的法尼基二磷酸形式存在。蛋白法尼基转移酶可以识别法尼基二磷酸,并将法尼基转移到靶蛋白上,使其完成法尼基化修饰,进而发挥正常生理功能。已有研究证明,法尼基化修饰在肿瘤增殖与转移、早老症形成和神经性疾病中发挥重要作用,一些针对法尼基转移酶的抑制剂已经应用到临床研究中,但法尼基化修饰在机体病理中的具体过程还有待研究,寻找相对现有的法尼基转移酶抑制剂更低毒、更高效的替代物也是应用研究中的重点。  相似文献   

5.
基因组不稳定(genomic instability)是机体衰老的标志之一,也是儿童早老症(Hutchinson Gilford progeria syndrome, HGPS)患者细胞的典型特征。HGPS的发生与早老素(progerin)堆积密切相关,但早老素如何引起基因组不稳定尚缺乏系统性的阐述。基因组的结构稳定与DNA的正确复制、DNA损伤修复、端粒的维持和稳定以及表观遗传学修饰密切相关。本文主要讨论早老素在改变正常核纤层结构的基础上,通过影响相关通路关键蛋白质的水平或者定位,引起细胞内氧化应激增强、DNA复制应激和DNA损伤修复障碍,细胞DNA损伤增多和端粒的加速缩短,并在改变组蛋白甲基化和乙酰化方面导致基因组不稳定的机制。  相似文献   

6.
LMNA基因编码A型和C型核纤层蛋白,参与细胞核核膜的组织,影响基因组稳定性并对细胞分化产生影响。人类肿瘤中LMNA表达异常普遍存在,其突变造成多种核纤层蛋白病,如Emery-Dreifuss肌营养不良症(Emery-Dreifussmusculardystrophy,EDMD)、扩张型心肌病(dilatedcardiomyopathy,DCM)和儿童早老症(Hutchinson-Glifordprogeriasyndrome,HGPS)等。为进一步研究LMNA在细胞内的功能,本研究利用CRISPR/Cas9技术对体外培养的293T与HepG2细胞株的LMNA基因进行编辑,获得两株LMNA基因敲除(LMNA KO)的稳定细胞系。与野生型相比,LMNAKO细胞系增殖能力相对减弱,凋亡增加。同时,细胞形态上也发生显著改变,核膜凹凸不平。本研究首次报道了LMNA KO永生细胞系构建和形态研究结果,为后续LMNA基因功能研究和致病突变体研究奠定基础。  相似文献   

7.
目的:探讨A型核纤层蛋白前体( prelamin A)在细胞内堆积造成细胞早老的机理,筛选了prelamin A相互作用蛋白并研究其在早老细胞中的表达情况.方法:以prelamin A的C末端区域为诱饵蛋白,采用酵母双杂交方法从人骨骼肌cDNA文库中筛选prelamin A相互作用蛋白.构建了prelaminA识别因子(Narf)与绿色荧光蛋白融合表达载体pEGFP - Narf,与红色荧光蛋白- prelamin A融合表达质粒pDsRed - PLA共转染HEK293细胞,激光共聚焦显微观察共定位情况.Western blotting检测Narf在衰老表型HEK293PLA细胞的表达情况.结果:筛选得到包括Narf在内的7个候选相互作用蛋白.Narf与prelamin A能相互作用并共定位于核纤层,在prelamin A过表达的HEK293PLA细胞中Narf表达没有升高.结论:Narf在细胞内与prelamin A相互作用,且表达量不受后者影响.  相似文献   

8.
Aβ(βAmyloid)在脑内的沉积是Alzheimer病的病理现象。对Alzheimer病的研究揭示Aβ的生成与早老蛋白和淀粉样沉淀前体蛋白相互作用密切相关。早老蛋白和淀粉样沉淀前体蛋白基因的突变均能改变淀粉样沉淀前体蛋白的正常切割,使得Aβ的生成量增加。转基因小鼠模型的建立为早老蛋白与淀粉样沉淀前体蛋白相互作用及Aβ生成机理的研究奠定了基础。  相似文献   

9.
早老素(progerin)的累积导致儿童早老症(Hutchinson Gilford progeria syndrome, HGPS)的发生,并与正常衰老相关。早老素能使细胞内稳态失衡但分子机制仍有待深入研究。本研究旨在探讨早老素导入人胚胎肾293T细胞(human embryo kidney 293T cell, HEK293T)后细胞增殖、周期变化的分子机制。形态学观察发现过表达早老素的HEK293T细胞密度下降,(57±2.47)%细胞核形态皱缩。细胞增殖和周期实验证明早老素使细胞增殖减慢,发生G1/S期阻滞,G1细胞从 (42.3±1.31)%升至(47.2±1.26)%,而S期细胞从 (43.1±1.36)%降至 (38.5±1.42)%。Western印迹结果显示早老素的高表达引起p21蛋白表达上调(103.2±1.49)%,CDK4下调(63±1.52)%,而p53、ATM、CyclinE1以及p16等蛋白质水平均不变;HEK293T细胞中早老素的过表达导致γ H2AX水平下调(53±1.36)%,H2O2处理后变化趋势不变。我们的研究结果提示,早老素通过上调p21和下调CDK4使细胞发生周期阻滞,不能增加HEK293T细胞的损伤及衰老。  相似文献   

10.
核纤层蛋白(lamin)是中间纤维蛋白家族的重要成员,其多聚体组成的网格状结构紧贴于核膜内侧,在维持细胞核的正常及有丝分裂过程中发挥着重要的作用。近年来,大量研究表明编码核纤层蛋白的基因尤其是lamin A编码基因(LMNA)突变会引起一系列的疾病,即核纤层病(lami-nopathy)。该文就核纤层蛋白和核纤层病的关系进行综述,有助于读者了解核纤层蛋白的重要性,也为核纤层病的治疗提供线索。  相似文献   

11.
Hutchinson-Gilford progeria syndrome (HGPS) is caused by a LMNA mutation that leads to the synthesis of a mutant prelamin A that is farnesylated but cannot be further processed to mature lamin A. A more severe progeroid disorder, restrictive dermopathy (RD), is caused by the loss of the prelamin A-processing enzyme, ZMPSTE24. The absence of ZMPSTE24 prevents the endoproteolytic processing of farnesyl-prelamin A to mature lamin A and leads to the accumulation of farnesyl-prelamin A. In both HGPS and RD, the farnesyl-prelamin A is targeted to the nuclear envelope, where it interferes with the integrity of the nuclear envelope and causes misshapen cell nuclei. Recent studies have shown that the frequency of misshapen nuclei can be reduced by treating cells with a farnesyltransferase inhibitor (FTI). Also, administering an FTI to mouse models of HGPS and RD ameliorates the phenotypes of progeria. These studies have prompted interest in testing the efficacy of FTIs in children with HGPS.  相似文献   

12.
Protein farnesyltransferase (FTase) inhibitors, generally called "FTIs," block the farnesylation of prelamin A, inhibiting the biogenesis of mature lamin A and leading to an accumulation of prelamin A within cells. A recent report found that a GGTI, an inhibitor of protein geranylgeranyltransferase-I (GGTase-I), caused an exaggerated accumulation of prelamin A in the presence of low amounts of an FTI. This finding was interpreted as indicating that prelamin A can be alternately prenylated by GGTase-I and that inhibiting both protein prenyltransferases leads to more prelamin A accumulation than blocking FTase alone. Here, we tested an alternative hypothesis-GGTIs are not specific for GGTase-I, and they lead to prelamin A accumulation by inhibiting ZMPSTE24 (a zinc metalloprotease that converts farnesyl-prelamin A to mature lamin A). In our studies, commonly used GGTIs caused prelamin A accumulation in human fibroblasts, but the prelamin A in GGTI-treated cells exhibited a more rapid electrophoretic mobility than prelamin A from FTI-treated cells. The latter finding suggested that the prelamin A in GGTI-treated cells might be farnesylated (which would be consistent with the notion that GGTIs inhibit ZMPSTE24). Indeed, metabolic labeling studies revealed that the prelamin A in GGTI-treated fibroblasts is farnesylated. Moreover, biochemical assays of ZMPSTE24 activity showed that ZMPSTE24 is potently inhibited by a GGTI. Our studies show that GGTIs inhibit ZMPSTE24, leading to an accumulation of farnesyl-prelamin A. Thus, caution is required when interpreting the effects of GGTIs on prelamin A processing.  相似文献   

13.
HIV protease inhibitors (HIV-PIs) are key components of highly active antiretroviral therapy, but they have been associated with adverse side effects, including partial lipodystrophy and metabolic syndrome. We recently demonstrated that a commonly used HIV-PI, lopinavir, inhibits ZMPSTE24, thereby blocking lamin A biogenesis and leading to an accumulation of prelamin A. ZMPSTE24 deficiency in humans causes an accumulation of prelamin A and leads to lipodystrophy and other disease phenotypes. Thus, an accumulation of prelamin A in the setting of HIV-PIs represents a plausible mechanism for some drug side effects. Here we show, with metabolic labeling studies, that lopinavir leads to the accumulation of the farnesylated form of prelamin A. We also tested whether a new and chemically distinct HIV-PI, darunavir, inhibits ZMPSTE24. We found that darunavir does not inhibit the biochemical activity of ZMPSTE24, nor does it lead to an accumulation of farnesyl-prelamin A in cells. This property of darunavir is potentially attractive. However, all HIV-PIs, including darunavir, are generally administered with ritonavir, an HIV-PI that is used to block the metabolism of other HIV-PIs. Ritonavir, like lopinavir, inhibits ZMPSTE24 and leads to an accumulation of prelamin A.  相似文献   

14.

Background

The proteolytic maturation of the nuclear protein lamin A by the zinc metalloprotease ZMPSTE24 is critical for human health. The lamin A precursor, prelamin A, undergoes a multi-step maturation process that includes CAAX processing (farnesylation, proteolysis and carboxylmethylation of the C-terminal CAAX motif), followed by ZMPSTE24-mediated cleavage of the last 15 amino acids, including the modified C-terminus. Failure to cleave the prelamin A “tail”, due to mutations in either prelamin A or ZMPSTE24, results in a permanently prenylated form of prelamin A that underlies the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) and related progeroid disorders.

Methodology/Principal Findings

Here we have investigated the features of the prelamin A substrate that are required for efficient cleavage by ZMPSTE24. We find that the C-terminal 41 amino acids of prelamin A contain sufficient context to allow cleavage of the tail by ZMPSTE24. We have identified several mutations in amino acids immediately surrounding the cleavage site (between Y646 and L647) that interfere with efficient cleavage of the prelamin A tail; these mutations include R644C, L648A and N650A, in addition to the previously reported L647R. Our data suggests that 9 of the 15 residues within the cleaved tail that lie immediately upstream of the CAAX motif are not critical for ZMPSTE24-mediated cleavage, as they can be replaced by the 9 amino acid HA epitope. However, duplication of the same 9 amino acids (to increase the distance between the prenyl group and the cleavage site) impairs the ability of ZMPSTE24 to cleave prelamin A.

Conclusions/Significance

Our data reveals amino acid preferences flanking the ZMPSTE24 cleavage site of prelamin A and suggests that spacing from the farnesyl-cysteine to the cleavage site is important for optimal ZMPSTE24 cleavage. These studies begin to elucidate the substrate requirements of an enzyme activity critical to human health and longevity.  相似文献   

15.
Several progeroid disorders are caused by deficiency in the endoprotease ZMPSTE24 which leads to accumulation of prelamin A at the nuclear envelope. ZMPSTE24 cleaves prelamin A twice: at the third carboxyl‐terminal amino acid following farnesylation of a –CSIM motif; and 15 residues upstream to produce mature lamin A. The carboxyl‐terminal cleavage can also be performed by RAS‐converting enzyme 1 (RCE1) but little is known about the importance of this cleavage for the ability of prelamin A to cause disease. Here, we found that knockout of RCE1 delayed senescence and increased proliferation of ZMPSTE24‐deficient fibroblasts from a patient with non‐classical Hutchinson‐Gilford progeria syndrome (HGPS), but did not influence proliferation of classical LMNA‐mutant HGPS cells. Knockout of Rce1 in Zmpste24‐deficient mice at postnatal week 4–5 increased body weight and doubled the median survival time. The absence of Rce1 in Zmpste24‐deficient fibroblasts did not influence nuclear shape but reduced an interaction between prelamin A and AKT which activated AKT‐mTOR signaling and was required for the increased proliferation. Prelamin A levels increased in Rce1‐deficient cells due to a slower turnover rate but its localization at the nuclear rim was unaffected. These results strengthen the idea that the presence of misshapen nuclei does not prevent phenotype improvement and suggest that targeting RCE1 might be useful for treating the rare progeroid disorders associated with ZMPSTE24 deficiency.  相似文献   

16.
Ageing research benefits from the study of accelerated ageing syndromes such as Hutchinson-Gilford progeria syndrome (HGPS), characterized by the early appearance of symptoms normally associated with advanced age. Most HGPS cases are caused by a mutation in the gene LMNA, which leads to the synthesis of a truncated precursor of lamin A known as progerin that lacks the target sequence for the metallopotease FACE-1/ZMPSTE24 and remains constitutively farnesylated. The use of Face-1/Zmpste24-deficient mice allowed us to demonstrate that accumulation of farnesylated prelamin A causes severe abnormalities of the nuclear envelope, hyper-activation of p53 signalling, cellular senescence, stem cell dysfunction and the development of a progeroid phenotype. The reduction of prenylated prelamin A levels in genetically modified mice leads to a complete reversal of the progeroid phenotype, suggesting that inhibition of protein farnesylation could represent a therapeutic option for the treatment of progeria. However, we found that both prelamin A and its truncated form progerin can undergo either farnesylation or geranylgeranylation, revealing the need of targeting both activities for an efficient treatment of HGPS. Using Face-1/Zmpste24-deficient mice as model, we found that a combination of statins and aminobisphosphonates inhibits both types of modifications of prelamin A and progerin, improves the ageing-like symptoms of these mice and extends substantially their longevity, opening a new therapeutic possibility for human progeroid syndromes associated with nuclear-envelope defects. We discuss here the use of this and other animal models to investigate the molecular mechanisms underlying accelerated ageing and to test strategies for its treatment.  相似文献   

17.
Lamin A/C belongs to type V intermediate filaments and constitutes the nuclear lamina and nuclear matrix, where a variety of nuclear activities occur. Lamin A/C protein is firstly synthesized as a precursor and is further proteolytically processed by the zinc metallo-proteinase Ste24 (Zmpste24). Lamin A/C mutations cause a series of human diseases, collectively called laminopathies, the most severe of which is Hutchinson Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) which arises due to an unsuccessful maturation of prelamin A. Although the exact underlying molecular mechanisms are still poorly understood, genomic instability, defective nuclear mechanics and mechanotransduction, have been hypothesized to be responsible for laminopathy-based premature ageing. Removal of unprocessed prelamin A (progerin) or rescue of defective DNA repair could be potential therapeutic strategies for the treatment of HGPS in future.  相似文献   

18.
Prelamin A undergoes multistep processing to yield lamin A, a structural protein of the nuclear lamina. Prelamin A terminates with a CAAX motif, which triggers farnesylation of a C-terminal cysteine (the C of the CAAX motif), endoproteolytic release of the last three amino acids (the AAX), and methylation of the newly exposed farnesylcysteine residue. In addition, prelamin A is cleaved a second time, releasing 15 more residues from the C terminus (including the farnesylcysteine methyl ester), generating mature lamin A. This second cleavage step is carried out by an endoplasmic reticulum membrane protease, ZMPSTE24. Interest in the posttranslational processing of prelamin A has increased with the recognition that certain progeroid syndromes can be caused by mutations that lead to an accumulation of farnesyl-prelamin A. Recently, we showed that a key cellular phenotype of these progeroid disorders, misshapen cell nuclei, can be ameliorated by inhibitors of protein farnesylation, suggesting a potential strategy for treating these diseases. In this article, we review the posttranslational processing of prelamin A, describe several mouse models for progeroid syndromes, explain the mutations underlying several human progeroid syndromes, and summarize recent data showing that misshapen nuclei can be ameliorated by treating cells with protein farnesyltransferase inhibitors.  相似文献   

19.
Hutchinson-Gilford Progeria (HGPS), a rare and severe developmental disorder characterized by features recalling premature aging, and Restrictive Dermopathy (RD), a neonatal lethal genodermatosis, have recently been identified as being primary or secondary < Laminopathies >. These heterogeneous disorders are caused by altered Lamin maturation pathway. In physiological conditions, mature Lamin A is obtained through a series of post-translational processing steps performed on a protein precursor, Prelamin A. The major pathophysiological mechanism involved in Progeria is an aberrant splicing due to a de novo heterozygous point mutation, leading to the accumulation of truncated Lamin A precursor. The same aberrant splicing mechanism was involved in RD, whereas the majority of RD cases are caused by ZMPSTE24/FACE1 inactivation, a key enzyme involved in the Lamin A maturation pathway. In functional terms, all these conditions share the same pathophysiological mechanism, i.e. the intranuclear accumulation of Lamin A precursors, which cannot be fully processed and exert a toxic effect on nuclear homeostasis. In this article, we review the structure and functions of A-type Lamins, focusing namely on HGPS, RD or MAD disorders, in relation to existing animal models and possible future therapeutic approaches.  相似文献   

20.
The function and localization of proteins and peptides containing C‐terminal “CaaX” (Cys‐aliphatic‐aliphatic‐anything) sequence motifs are modulated by post‐translational attachment of isoprenyl groups to the cysteine sulfhydryl, followed by proteolytic cleavage of the aaX amino acids. The zinc metalloprotease ZMPSTE24 is one of two enzymes known to catalyze this cleavage. The only identified target of mammalian ZMPSTE24 is prelamin A, the precursor to the nuclear scaffold protein lamin A. ZMPSTE24 also cleaves prelamin A at a second site 15 residues upstream from the CaaX site. Mutations in ZMPSTE24 result in premature‐aging diseases and inhibition of ZMPSTE24 activity has been reported to be an off‐target effect of HIV protease inhibitors. We report here the expression (in yeast), purification, and crystallization of human ZMPSTE24 allowing determination of the structure to 2.0 Å resolution. Compared to previous lower resolution structures, the enhanced resolution provides: (1) a detailed view of the active site of ZMPSTE24, including water coordinating the catalytic zinc; (2) enhanced visualization of fenestrations providing access from the exterior to the interior cavity of the protein; (3) a view of the C‐terminus extending away from the main body of the protein; (4) localization of ordered lipid and detergent molecules at internal and external surfaces and also projecting through fenestrations; (5) identification of water molecules associated with the surface of the internal cavity. We also used a fluorogenic assay of the activity of purified ZMPSTE24 to demonstrate that HIV protease inhibitors directly inhibit the human enzyme in a manner indicative of a competitive mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号