首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study demonstrated a newly developed method using adipose tissue-derived stromal cells (ADSCs) and hydroxypropylmethylcellulose (HPMC) in building injectable tissue engineered cartilage in vivo. ADSCs from rabbit subcutaneous fatty tissue were cultured in chondrogenic differentiation medium and supplemented with transforming growth factor-β1 (TGF-β1) and basic fibroblast growth factor (bFGF). Histological, immunohistochemistry and RT-PCR analysis confirmed that the ADSCs differentiated into chondrocytes following induction. Induced ADSCs mixed with 15 % HPMC were injected into the subcutaneous tissue of nude mice and, after a period of 8 weeks, newly formed cartilage was observed at the site of injection. The ability of ADSCs cultured in the induction medium with TGF-β1 and bFGF to differentiate into chondrocytes and construct new cartilage indicates that ADSCs are suitable for use as seed cells in cartilage tissue engineering. HPMC, according to its good water solubility and being able to transform from liquid to solid at body temperature, was found to be an ideal scaffold for tissue engineering.  相似文献   

2.
目的:探讨线粒体靶向抗氧化剂mitoTEMPO对糖尿病小鼠脂肪干细胞(Adipose-derived stem cells,ADSCs)氧化损伤的影响。方法:采用60%高脂饮食喂养雄性C57小鼠(4周龄)连续8周,并在高脂喂养第2周,对小鼠进行连续5天腹腔注射低剂量链脲佐菌素(streptozotocin,STZ)(25 mg·kg-1)制备2型糖尿病小鼠模型。喂养2周后,检测小鼠血浆葡萄糖水平等指标符合2型糖尿病标准者纳入实验。分别从正常小鼠与STZ诱导的糖尿病小鼠的腹股沟处皮下脂肪组织分离培养脂肪干细胞(ADSCs),并将其各分为4组:DMEM培养的正常ADSCs组(nADSCs组),DMEM培养的糖尿病ADSCs组(dADSCs组),TEMPO治疗的糖尿病ADSCs组(T-dADSCs组),mitoTEMPO治疗的糖尿病ADSCs组(mitoT-dADSCs组)。采用细胞计数试剂盒-8(CCK-8)检测细胞存活能力;油红-O和茜素红染色分别检测成脂细胞分化与成骨细胞分化能力;划痕实验和Transwell试验分别测定细胞迁移能力;DCF和mito SOX染色荧光成像分别检测细胞内和线粒体中的活性氧簇(Reactive oxygen species, ROS)水平。结果:①与nADSCs组相比,d ADSCs组的细胞活力明显下降(P0.05)、成骨细胞分化与成脂细胞分化程度明显下降(P0.05)、脂肪干细胞迁移能力明显下降(P0.05)、细胞内和线粒体中ROS水平明显升高(P0.05)。②与dADSCs组相比,T-dADSCs和mitoT-dADSCs组的细胞内和线粒体中的ROS水平明显降低(P0.05);与dADSCs组相比,mitoT-dADSCs组的成骨细胞分化与成脂细胞分化能力明显提升(P0.05),基本达到nADSCs组的分化水平;与dADSCs组相比,mitoT-dADSCs治疗组的细胞迁移能力显著升高(P0.05)、T-dADSCs组的细胞迁移能力增长无明显差异。结论:mitoTEMPO可以减轻糖尿病时线粒体内活性氧簇蓄积造成的脂肪干细胞的氧化应激损伤与功能紊乱。  相似文献   

3.
Engineered adipose tissue could be used for the reconstruction or augmentation of soft tissues lost due to mastectomy or lumpectomy in plastic and reconstructive surgery. Preadipocytes are a feasible cell source for adipose tissue regeneration. However, the enhancement of the in vivo adipogenic conversion of preadipocytes remains a major task. In vitro, the adipogenic differentiation of preadipocytes prior to implantation might enhance the adipose tissue regeneration. In the present study, we investigated whether implantation of adipogenic-differentiated preadipocytes enhances the adipose tissue formation compared with implantation of undifferentiated preadipocytes. We also investigated whether basic fibroblast growth factor (bFGF) further enhances the adipose tissue formation mediated by the implantation of adipogenic-differentiated preadipocytes. A fibrin matrix containing human preadipocytes cultured in adipogenic differentiation-inducing conditions with (group 1) or without (group 2) bFGF was injected into the subcutaneous spaces of athymic mice. Fibrin matrices containing undifferentiated human preadipocytes with (group 3) or without (group 4) bFGF were also implanted. Six weeks after implantation, the implanted cells formed new tissues in all groups. Importantly, the implantation of adipogenic-differentiated preadipocytes resulted in more extensive adipogenesis than the implantation of undifferentiated preadipocytes, as evaluated by adipose tissue area and human adipocyte-specific gene expression in the newly formed tissues. In addition, bFGF enhanced neovascularization in the newly formed tissues and further enhanced the adipogenesis mediated by the adipogenic-differentiated preadipocytes. The present study demonstrates that the implantation of adipogenic-differentiated preadipocytes enhances adipose tissue regeneration, as compared with the implantation of undifferentiated preadipocytes, and that cell transplantation-mediated adipogenesis can be further enhanced by the delivery of bFGF.  相似文献   

4.
目的:通过组织块培养法得到脂肪干细胞(adipose-derived stem cells,ADSCs),探讨其诱导分化潜能,并初步研究ADSCs的来源。方法:用脂肪组织块培养法培养原代人ADSCs。第三代ADSCs进行成脂和成骨诱导分化,分别用油红O和茜素红S染色进行鉴定。脂肪组织块培养七天后取脂肪组织进行Hematoxylin-eosin Staining(HE)染色观察ADSCs组织分布。结果:用脂肪组织块培养法成功培养出原代人ADSCs。ADSCs传代到第8代,依然保持着良好的增殖能力和细胞形态。ADSCs能成功诱导成脂肪细胞和骨细胞。通过对培养七天后的脂肪组织块进行HE染色,发现ADSCs主要分布在脂肪组织的间质血管和结缔组织周围。结论:用脂肪组织块培养出来的ADSCs具有成脂和成骨分化的潜能。ADSCs主要定位于间质血管和结缔组织周围。  相似文献   

5.
Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate) (PBLG) polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs) seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group) was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group) and non-induced hASC/PBLG complex (ASC/PBLG group) served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.  相似文献   

6.
Background aimsAdipose tissue-derived mesenchymal stromal cells (MSCs) have a higher capacity for proliferation and differentiation compared with other cell lineages. Although distraction osteogenesis is the most important therapy for treating bone defects, this treatment is restricted in many situations. The aim of this study was to examine the therapeutic potential of adipose tissue-derived MSCs and osteoblasts differentiated from adipose tissue-derived MSCs in the treatment of bone defects.MethodsBone defects were produced in the tibias of New Zealand rabbits that had previously undergone adipose tissue extraction. Tibial osteotomy was performed, and a distractor was placed on the right leg of the rabbits. The rabbits were placed in control (group I), stem cell (group II) and osteoblast-differentiated stem cell (group III) treatment groups. The rabbits were sacrificed, and the defect area was evaluated by radiologic, biomechanical and histopathologic tests to examine the therapeutic effects of adipose tissue-derived MSCs.ResultsRadiologic analyses revealed that callus density and the ossification rate increased in group III compared with group I and group II. In biomechanical tests, the highest ossification rate was observed in group III. Histopathologic studies showed that the quality of newly formed bone and the number of cells active in bone formation were significantly higher in group III rabbits compared with group I and group II rabbits.ConclusionsThese data reveal that osteoblasts differentiated from adipose tissue-derived MSCs shorten the consolidation period of distraction osteogenesis. Stem cells could be used as an effective treatment for bone defects.  相似文献   

7.
Bone marrow and adipose tissue have provided two suitable sources of mesenchymal stem cells. Although previous studies have confirmed close similarities between bone marrow-derived stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs), the molecular phenotype of ADSCs is still poorly identified. In the present study, mouse ADSCs were isolated from the inguinal fat pad of 12-14 weeks old mice. Freshly isolated and three passaged ADSCs were analyzed for the expression of OCT4, Sca-1, c-kit and CD34 by RT-PCR. Three passaged ADSCs were analyzed by flow cytometry for the presence of CD11b, CD45, CD31, CD29 and CD44. Moreover, cardiogenic, adipogenic and neurogenic differentiation of ADSCs were induced in vitro. Freshly isolated ADSCs showed the expression of OCT4, Sca-1, c-kit and CD34, and two days cultured ADSCs were positively immunostained with anti-OCT4 monoclonal antibody. After three passages, the expression of OCT4, c-kit and CD34 eliminated, while the expression of Sca-1 showed a striking enhancement. These cells were identified positive for CD29 and CD44 markers, and they showed the lack of CD45 and CD31 expression. Three passaged ADSCs were differentiated to adipocyte-, cardiomyocyte- and neuron-like cells that were identified based on the positive staining with Sudan black, anti-cardiac troponin I antibody and anti-map-2 antibody, respectively. In conclusion, adipose tissue contains a stem cell population that seems to be a good multipotential cell candidate for the future cell replacement therapy.  相似文献   

8.

Background  

Previous studies on the effects of aging in human and mouse mesenchymal stem cells suggest that a decline in the number and differentiation potential of stem cells may contribute to aging and aging-related diseases. In this report, we used stromal cells isolated from adipose tissue (ADSCs) of young (8-10 weeks), adult (5 months), and old (21 months) mice to test the hypothesis that mechanical loading modifies aging-related changes in the self-renewal and osteogenic and adipogenic differentiation potential of these cells.  相似文献   

9.
目的:探索非诱导ADSCs膜片/PRF复合植入物修复兔子下颌骨髁状突软骨缺损的可行性及效果。方法:选取36只3月龄新西兰雄性大白兔,随机分为3个组即ADSCs膜片/PRF组、PRF组、空白对照组,在3%戊巴比妥钠麻醉下解剖暴露出髁状突关节面并用裂钻分别在双侧髁状突软骨面上制备一3 mm直径、3 mm深的髁突表面软骨缺损区,按实验设计每个分组分别填入相应的植入物。分别在术后4周、8周、12周处死相应时间点的动物采集髁突标本,标本进行大体及组织学检查比较。结果:术后12周时空白对照组的下颌髁状突软骨缺损未能修复,PRF组有少量不规则、不连续的软骨形成,ADSCs膜片/PRF组的修复效果较好,表面软骨接近正常纤维软骨,与周围软骨连续性较好。组织学染色也显示ADSCs膜片/PRF组优于PRF组和空白对照组。结论:证明了ADSCs膜片/PRF复合物修复髁状突软骨缺损的可行性。  相似文献   

10.
This study was undertaken to characterize the duration of long-term growth factor delivery by poly(lactic-co-glycolic-acid)-polyethylene glycol (PLGA/PEG) microspheres and to evaluate the potential of long-term delivery of insulin and insulin-like growth factor-1 (IGF-1) for the de novo generation of adipose tissue in vivo. PLGA/PEG microspheres containing insulin and IGF-1, separately, were produced by a double-emulsion solvent-extraction technique. In the first phase of the experiment, the in vitro release kinetics of the microspheres were evaluated for the optical density and polyacrylamide gel electrophoresis of solutions incubated with insulin-containing microspheres for four different periods of time (n = 1). The finding of increased concentrations of soluble insulin with increased incubation time confirmed continual protein release. In the second stage of the experiment, 16 rats were divided equally into four study groups (insulin, IGF-1, insulin + IGF-1, and blank microspheres) (n = 4). Insulin and IGF-1 containing microspheres were administered directly to the deep muscular fascia of the rat abdominal wall to evaluate the potential for de novo adipose tissue generation via adipogenic differentiation from native nonadipocyte cell pools in vivo. Animals treated with blank microspheres served as an external control group. At the 4-week harvest period, multiple ectopic islands of adipose tissue were observed on the abdominal wall of the animals treated with insulin, IGF-1, and insulin + IGF-1 microspheres. Such islands were not seen in the blank microsphere group. Hematoxylin and eosin-stained sections of the growth factor groups demonstrated mature adipocytes interspersed with fibrous tissue superficial to the abdominal wall musculature and continuous with the fascia. Oil-Red-O stained sections demonstrated that these cells contained lipid. Computer-aided image analysis of histologic sections confirmed that there were statistically significant increases in the amount of "ectopic" adipose neotissue developed on the abdominal wall of animals treated with growth factor microspheres. In conclusion, this study confirms the long-term release of proteins from PLGA/PEG microspheres up to 4 weeks and demonstrates the potential of long-term local insulin and IGF-1 to induce adipogenic differentiation to mature lipid-containing adipocytes from nonadipocyte cell pools in vivo at 4 weeks.  相似文献   

11.
12.
13.
In obese adipose tissue, infiltrating macrophages release proinflammatory cytokines that trigger insulin resistance. An adipocyte-based platform from visceral fat would be useful to elucidate the pathology of adipose inflammation and to develop therapeutic drugs for insulin resistance. ADSCs (adipose tissue-derived mesenchymal stromal cells) expanded from subcutaneous fat are intensively studied as sources for regenerative medicine. However, the adipocyte culture system from visceral fat tissue has not been utilized yet. We aimed to establish the bioactive adipocyte platform using ADSCs from visceral fat pad. Stromal vascular fractions were processed from epididymal fat pads of Sprague-Dawley rats and three human omental fat pads, and the ADSCs were expanded using a low-serum culture method. The responses of ADSCs and ADSC-adipocytes (their adipogenic lineages) to pioglitazone, a therapeutic drug for diabesity, were evaluated by gene expression and ELISA. ADSCs (1×108) were expanded from 10 g of rat epididymal fat pads or human omental fat pads over five passages. Cell surface marker expressions revealed that visceral ADSCs were equivalent to mesenchymal stem cells. ADSC-adipocytes expanded in the low-serum culture system significantly showed higher expression of adipogenic markers [PPAR (peroxisome proliferator-activated receptor) γ, LPL (lipoprotein lipase) and FABP4 (fatty acid-binding protein 4)] and adipocytokines [adiponectin, resistin, leptin, PAI-1 (plasminogen-activator inhibitor 1) and IL (interleukin)-10] than those expanded in a high-serum culture system. Pioglitazone accelerated the adipogenic induction and increased adiponectin expression in human ADSCs by 57.9±5.8-fold (mean±S.E.M.) relative to control cells (P<0.001). Both in rat and human ADSC-adipocytes, TNF-α significantly induced proinflammatory cytokines [MCP-1 (monocyte chemoattractant protein-1) and IL-6] and suppressed adiponectin expression, while pioglitazone antagonized these effects. The present findings suggest that visceral ADSC-adipocytes expanded in low-serum culture would be useful for adiposcience and pharmacological evaluations.  相似文献   

14.
Mesenchymal stem cells (MSCs) have been investigated as promising candidates for use in new cell-based therapeutic strategies such as mesenchyme-derived tissue repair. MSCs are easily isolated from adult tissues and are not ethically restricted. MSC-related literature, however, is conflicting in relation to MSC differentiation potential and molecular markers. Here we compared MSCs isolated from bone marrow (BM), umbilical cord blood (UCB), and adipose tissue (AT). The isolation efficiency for both BM and AT was 100%, but that from UCB was only 30%. MSCs from these tissues are morphologically and immunophenotypically similar although their differentiation diverges. Differentiation to osteoblasts and chondroblasts was similar among MSCs from all sources, as analyzed by cytochemistry. Adipogenic differentiation showed that UCB-derived MSCs produced few and small lipid vacuoles in contrast to those of BM-derived MSCs and AT-derived stem cells (ADSCs) (arbitrary differentiation values of 245.57 +/- 943 and 243.89 +/- 145.52 mum(2) per nucleus, respectively). The mean area occupied by individual lipid droplets was 7.37 mum(2) for BM-derived MSCs and 2.36 mum(2) for ADSCs, a finding indicating more mature adipocytes in BM-derived MSCs than in treated cultures of ADSCs. We analyzed FAPB4, ALP, and type II collagen gene expression by quantitative polymerase chain reaction to confirm adipogenic, osteogenic, and chondrogenic differentiation, respectively. Results showed that all three sources presented a similar capacity for chondrogenic and osteogenic differentiation and they differed in their adipogenic potential. Therefore, it may be crucial to predetermine the most appropriate MSC source for future clinical applications.  相似文献   

15.
ADSCs (adipose‐derived mesenchymal stem cells) are candidate adult stem cells for regenerative medicine. Notch signalling participates in the differentiation of a heterogeneous ADSC population. We have isolated, human adipose tissue‐derived single‐cell clones using a cloning ring technique and characterized for their stem cell characteristics. The role of Notch signalling in the differentiation capacity of these adipose‐derived single‐cell‐clones has also been investigated. All 14 clones expressed embryonic and mesenchymal stem cell marker genes. These clones could differentiate into both osteogenic and adipogenic lineages. However, the differentiation potential of each clone was different. Low adipogenic clones had significantly higher mRNA expression levels of Notch 2, 3 and 4, Jagged1, as well as Delta1, compared with those of high adipogenic clones. In contrast, no changes in expression of Notch signalling component mRNA between low and high osteogenic clones was found. Notch receptor mRNA expression decreased with the adipogenic differentiation of both low and high adipogenic clones. The γ‐secretase inhibitor, DAPT (N‐[N‐(3,5‐difluorophenacetyl)‐l ‐alanyl]‐(S)‐phenylglycine t‐butyl ester), enhanced adipogenic differentiation. Correspondingly, cells seeded on a Notch ligand (Jagged1) bound surface showed lower intracellular lipid accumulation. These results were noted in both low and high adipogenic clones, indicating that Notch signalling inhibited the adipogenic differentiation of adipose ADSC clones, and could be used to identify an adipogenic susceptible subpopulation for soft‐tissue augmentation application.  相似文献   

16.
脂肪源性干细胞的多向分化潜力及应用前景   总被引:1,自引:0,他引:1  
脂肪组织中含有一类具有多向分化潜力的细胞,即脂肪源性干细胞,简称脂肪干细胞。其生物学性质与骨髓间充质干细胞相类似,并可向脂肪、骨、软骨、肌肉、内皮、造血、肝、胰岛和神经等多种细胞方向分化。由于脂肪组织在人体内储量丰富,获取简便创伤小,在组织工程、器官修复、基因治疗等方面都有着广阔的应用前景,因此脂肪干细胞已成为继骨髓间充质干细胞后干细胞领域另一个备受关注的热点。通过以分析脂肪干细胞的多向分化潜力,综述了这一领域最新的研究进展,并就其应用前景及目前研究中一些争议问题进行了探讨。  相似文献   

17.
18.
脂肪组织中含有一类具有多向分化潜力的细胞,即脂肪源性干细胞,简称脂肪干细胞。其生物学性质与骨髓间充质干细胞相类似,并可向脂肪、骨、软骨、肌肉、内皮、造血、肝、胰岛和神经等多种细胞方向分化。由于脂肪组织在人体内储量丰富,获取简便创伤小,在组织工程、器官修复、基因治疗等方面都有着广阔的应用前景,因此脂肪干细胞已成为继骨髓间充质干细胞后干细胞领域另一个备受关注的热点。通过以分析脂肪干细胞的多向分化潜力,综述了这一领域最新的研究进展,并就其应用前景及目前研究中一些争议问题进行了探讨  相似文献   

19.
Taking into account the angiogenic properties of the omentum to revascularize ischemic tissues, this experimental, longitudinal, prospective, double-blind study in rabbits was designed to revascularize and preserve the mobility of a digital osteotendinous structure surgically devascularized in advance and to compare such omental angiogenic ability with that of the muscle and the panniculus carnosus. Thirty New Zealand rabbits were used. Three toes from the hind feet were surgically amputated from each rabbit. The skin was removed, exposing the bones, tendons, ligaments, and joints, to form what we termed the osteotendinous structure. Through a median laparotomy, the first part of each rabbit's own osteotendinous structure was placed inside the panniculus carnosus (group I), the second under the rectus abdominis muscle (group II), and the third was wrapped in a pediculate omental flap (group III). Three weeks later, each structure was assessed clinically for mobility and fibrosis and microscopically for fibrosis, newly formed vessels, viability, and tissue regeneration. Clinically, the group I structures showed a greater amount of fibrosis. The structures in groups II and III showed minimal fibrosis in all but four cases, which showed moderate fibrosis. Differences in joint mobility were assessed with the Kruskal-Wallis test. There was a statistically significant difference in mobility for the structures from group III, which was higher, followed by those from groups II and I. The exception was the proximal interphalangeal joints in groups II and III, for which the differences had no statistical significance. Microscopically, fibrosis and tissue necrosis were intense in the structures in group I, moderate in the group II structures, and mild in the group III structures. Conversely, vessel neoformation and tissue regeneration were intense in the structures in group III, moderate in group II, and were nil in group I. This study confirms with statistical significance that, in the rabbit, the omentum has a higher ability to revascularize degloved tissues than do the muscle and the panniculus carnosus, thus preserving a higher joint and tendon mobility. Consequently, it is suggested that a free omental flap be used in the treatment of ring avulsion injuries that lead to degloving of the digits.  相似文献   

20.
AIM To identify and characterize functionally distinct subpopulation of adipose-derived stem cells(ADSCs).METHODS ADSCs cultured from mouse subcutaneous adipose tissue were sorted fluorescence-activated cell sorter based on aldehyde dehydrogenase(ALDH) activity, a widely used stem cell marker. Differentiation potentials were analyzed by utilizing immunocytofluorescece and its quantitative analysis.RESULTS Approximately 15% of bulk ADSCs showed high ALDH activity in flow cytometric analysis. Although significant difference was not seen in proliferation capacity, the adipogenic and osteogenic differentiation capacity was higher in ALDHHi subpopulations than in ALDHLo. Gene set enrichment analysis revealed that ribosome-related gene sets were enriched in the ALDHHi subpopulation. CONCLUSION High ALDH activity is a useful marker for identifying functionally different subpopulations in murine ADSCs. Additionally, we suggested the importance of ribosome for differentiation of ADSCs by gene set enrichment analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号