首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
唐生森  陈虎  覃永康  杨章旗  汪挺  韦兵览 《广西植物》2021,41(12):2061-2068
为探究秋季枫叶呈色的关键生理因素,该文以转色期叶色为绿色、黄色和红色的枫香单株为试材,研究了L*、a*、b*值变化与叶片色素、可溶性糖及可溶性蛋白质含量变化的相关性。结果表明:(1)在变色期,3种色彩枫香叶片叶绿素a、叶绿素b、总叶绿素和类胡萝卜素均大量降解,花色素苷不同程度积累。(2)绿色叶单株叶绿素和类胡萝卜素始终保持较高含量,花色素苷含量上升4.2倍,叶片内色素含量比值始终保持稳定; 黄色叶单株叶绿素和类胡萝卜素含量最低,花色素苷含量上升4.4倍,b*值与叶绿素含量极显著负相关,与类胡萝卜素含量显著负相关,与花色素苷/类胡萝卜素含量比值极显著正相关; 红色叶单株叶绿素和类胡萝卜素含量略高于黄色叶单株,花色素苷含量上升27.2倍,a*值与叶绿素含量、类胡萝卜素含量极显著负相关,与花色素苷含量显著正相关,与色素含量比值无显著相关性。(3)红色叶单株具有较高的可溶性糖含量和可溶性蛋白质含量。因此,在枫香叶片变色期,保持较高的叶绿素和类胡萝卜素含量,维持色素含量比值稳定使叶片呈现绿色; 叶绿素和类胡萝卜素的大量降解,以及花色素苷/类胡萝卜素含量比值的升高使叶片呈现黄色; 叶绿素的降解和花色素苷的大量合成使叶片呈现红色。  相似文献   

2.
Mesophyll structure and content of photosynthetic pigments in the leaves of three species of steppe plants, Centaurea scabiosa L., Euphorbia virgata Waldst. et Kit., Helichrysum arenarium (L.) Moench, were investigated in four geographical sites of the Volga region and the Urals located in the forest-steppe and steppe zones. Variations of the studied parameters between geographical points depended both on the species and on the structural organization of the leaf. The highest level of variation was observed for leaf area and pigment content per unit leaf area, the size and the number of chloroplasts in the cell changed to a lesser extent. The leaf thickness, leaf area and mesophyll cell sizes mostly depended on the plant species. C. scabiosa had large leaves (40–50 cm2) with large thickness (280–290 μm) and large mesophyll cells (up to 15000 μm3). The leaves of H. arenarium and E. virgata were ten times smaller and characterized by 1.5 times smaller thickness and 2?3 times smaller cell size. Geographical location and climate of the region affected leaf density, proportion of partial tissue volume, and the ratio of the photosynthetic pigments. In the southern point of Volga region with the highest climate aridity, all studied species were characterized by maximum values of volumetric leaf density (LD), due to the high proportion of sclerenchyma and vascular bundles, and specificity of the mesophyll structure. With the decline in latitude, chlorophyll (Chl) and carotenoid (Car) contents in leaf area were reduced, the ratio Chl/Car was increased, and the ratio Chl a/b was declined. The reduction of the pigment content in the leaf in all species was associated with a reduction in the amount of Chl per chloroplast, and for C. scabiosa and H. arenarium it was associated also with the reduction of chloroplast amount in the leaf area. In turn, chloroplast number per leaf area and the total cell area (Ames/A) depended on the ratio of the number and size of mesophyll cells inherent to this plant species. At the same time, we found a similar mechanism of spatial organization of leaf restructuring for all studied species—decrease in Ames/A was accompanied by increasing in the proportion of intercellular air spaces in the leaf. It is concluded that variations in structural and functional parameters of the photosynthetic apparatus of steppe plants were associated with plant adaptation to climate features. General direction of the changes of leaf parameters of the studied species with aridity was the increase of LD and the decrease of pigment content per leaf area however the cellular mechanisms of changes in the pigment content and integral parameters of mesophyll were determined by the plant species properties.  相似文献   

3.
植物叶片解剖结构随放牧强度的变化而发生变化。以短花针茅荒漠草原长期(19年)固定监测放牧样地为研究区,以建群种短花针茅叶片作为实验材料,测量不同放牧强度(对照(CK)、轻度放牧(LG)、中度放牧(MG)、重度放牧(HG))下短花针茅叶片保护组织、输导组织、机械组织、同化组织有关的14个解剖结构指标,分析短花针茅叶片解剖结构随长期不同放牧强度的变化,从生理角度探讨荒漠草原植物对长期放牧的适应及响应。研究结果表明:(1)叶片层次上,短花针茅通过增加其叶片横切面面积和叶厚度去适应放牧干扰;(2)保护组织方面,与对照区相比,重度放牧区角质层厚度增加,但未达到差异显著性(P>0.05),角质层厚度占叶厚度比例随放牧强度的增加整体呈增加趋势;(3)输导组织方面,木质部面积随放牧强度的增加呈下降趋势,而韧皮部面积、主导管面积、维管束面积等指标均随放牧强度的增加呈增加趋势,但没有达到显著性(P>0.05);(4)机械组织方面,厚壁组织面积和厚壁组织占叶面积比例均随放牧强度的增加呈增加趋势;(5)同化组织方面,随着放牧强度的增加,短花针茅叶片叶肉组织面积显著增加(P<0.05)。可见,...  相似文献   

4.
Variation in the photosynthetic function ofAbies amabilis foliage within a canopy was examined and related to three different processes that affect foliage function: foliage aging, sun-shade acclimation that occurred while foliage was expanding, and reacclimation after expansion was complete. Foliage produced in the sun had higher photosynthesis at light saturation (A max, mol·m-2·s-1), dark respiration (mol·m-2·s-1), nitrogen content (g·m-2), chlorophyll content (g·m-2), and chlorophylla:b ratio, and a lower chlorophyll to nitrogen ratio (chl:N), than foliage produced in the shade. As sun foliage becomes shaded, it becomes physiologically similar to shade foliage, even though it still retains a sun morphology. Shaded sun foliage exhibited lowerA max, dark respiration, nitrogen content, and chlorophylla:b ratio, and a higher chl:N ratio than sun foliage of the same age remaining in the open. However, shaded sun foliage had a higher chlorophyll content than sun foliage remaining in the open, even though true shade foliage had a lower chlorophyll content than sun foliage. This anomaly arises because as sun foliage becomes shaded, it retains a higher nitrogen content than shade foliage in a similar light environment, but the two forms have similar chl:N ratios. Within the canopy, most physiological indicators were more strongly correlated with the current light environment than with foliage age or leaf thickness, with the exception of chlorophyll content.A max decreased significantly with both decreasing current light environment of the foliage and increasing foliage age. The same trend with current light and age was found for the chlorophylla:b ratio. Foliage nitrogen content also decreased with a decrease in current light environment, but no distinct pattern was found with foliage age. Leaf thickness was also important for predicting leaf nitrogen content: thicker leaves had more nitrogen than thinner leaves regardless of light environment or age. The chl:N ratio had a strong negative correlation with the current light environment, and, as with nitrogen content, no distinct pattern was found with foliage age. Chlorophyll content of the foliage was not well correlated with any of the three predictor variables: current light environment, foliage age or leaf thickness. On the other hand, chlorophyll content was positively correlated with the amount of nitrogen in a leaf, and once nitrogen was considered, the current light environment was also highly significant in explaining the variation in chlorophyll content. It has been suggested that the redistribution of nitrogen both within and between leaves is a mechanism for photosynthetic acclimation to the current light environment. Within theseA. amabilis canopies, both leaf nitrogen and the chl:N ratio were strongly correlated with the current light environment, but only weakly with leaf age, supporting the idea that changing light is the driving force for the redistribution of nitrogen both within and between leaves. Thus, our results support previous theories on nitrogen distribution and partitioning. However,A max was significantly affected by both foliage age and the current light environment, indicating that changes in light alone are not enough to explain changes inA max with time.  相似文献   

5.
Abstract: The relationship between abundance of rose‐grain aphid Metopolophium dirhodum (Walker) and leaf chlorophyll content of spring wheat, spring oats and winter barley was investigated. Within production stands of each crop 18–25 plots were established, located at places with different plant quality where aphids were counted on particular leaves of 50–100 tillers, and the leaf chlorophyll content and area were determined. In all stands aphid numbers × tiller?1 increased exponentially with chlorophyll content (r2 = 0.783–0.933). This parallel variation may be explained by increased nitrogen content and assimilate production of vigorous chlorophyll‐rich plants. The aphid numbers on leaves of particular order (within‐plant distribution) were also correlated with leaf chlorophyll content (r2 = 0.373–0.827). However, in oats and barley the analysis of variance of residuals of log aphids × leaf?1 versus leaf chlorophyll regression revealed a significant effect of leaf position (the order of the leaf from the top of the plant). The magnitude of residuals was positively related to leaf size and may be related to the intensity of phloem transport from the source leaves to sink organs.  相似文献   

6.
Abstract

In order to test the hypothesis that arthropod-induced neoplastic formations on trees affect biochemical characteristics of both the newly formed galls and host plant tissues, biochemical characteristics with a possible adaptive role were determined in nine gall-former–host tree combinations. Photosynthetic pigments, extractable protein content, and oxidative enzyme activities were determined in gall tissues, leaf tissues of galled leaves, and leaves on ungalled tree branches. Neoplastic tissues were characterized by a low content of photosynthetic pigments, decreased chlorophyll a/b ratio, lower extractable protein content, and decreased activities of peroxidase and polyphenol oxidase as compared with ungalled host leaf tissues. In galled leaves or in leaves adjacent to galls, increased level of peroxidase activity was found. In several gall-inducer–host plant combinations, galled host plant tissues contained increased activity of polyphenol oxidase as well. The presented data reflect long-term systemic effects of neoplastic formation on host tree physiology suggesting that gall inducers affect potential adaptive responses of host plants.  相似文献   

7.
不同种源黄连木秋季色素含量与叶色参数的关系   总被引:2,自引:0,他引:2  
该研究以陕西汉中、河南林州、河北涉县和北京中国科学院植物研究所4个种源黄连木(Pistacia chinensis Bunge)的苗木为对象,用分光光度计和色差仪对其叶绿素、类胡萝卜素、花色素苷含量及叶色参数(L*、a*、b*)进行了测定分析,探讨不同种源苗木秋季叶色变化规律及差异,揭示黄连木叶色呈现与叶片色素含量之间的内在关联,为筛选适合城市绿化的优良黄连木种源提供依据。结果表明:(1)在秋季叶片转色期,随着时间的推移,4个种源黄连木叶片的叶绿素、类胡萝卜素和花色素苷含量的比例呈现不同的变化趋势,其中:河北种源的花色素苷含量较高,叶片呈现红色;陕西种源叶绿素含量较高,叶片呈现绿色的时间较长;河南、北京种源处于两者之间。(2)各个种源黄连木的叶色参数a*值(红/绿)均与花色素苷含量呈正相关关系,与叶绿素含量呈负相关关系,且相关系数均达到显著水平(P0.05),各个种源叶色参数L*值(光泽明亮度)也与叶绿素含量间表现出显著或极显著的正相关性。研究发现,河北种源黄连木秋季的叶色最红,陕西种源黄连木叶片呈现绿色的时间最长;色差仪的应用实现了叶色和各色素含量间量化的关系。  相似文献   

8.
Changes in some leaf characteristics: leaf mass area (LMA), content of photosynthetic pigments and nitrogen in the leaves, leaf mass ratio (LMR) and leaf area ratio (LAR) were investigated in steppe plants of the Volga land along the gradient of aridity. When drought stress became stronger, the content of chlorophylls in the leaves, LMR and LAR decreased, whereas LMA and the proportion of carotenoids in the leaves rose. In the North to South direction, the content of pigments and nitrogen per unit whole plant weight considerably decreased (4 and 2 times, respectively). The relationship between leaf indices (chlorophyll and nitrogen contents and LMA) differed along this gradient. It was concluded that adaptation of steppe plants to drought stress generally depended on predominant development of heterotrophic tissues in the leaf and the whole plant. During aridization, the stress-tolerant species became more numerous.  相似文献   

9.
We studied the content of chlorophylls and carotenoids in the leaves of steppe plants of South Ural growing along a latitudinal gradient from southern steppe to forest-steppe. The content of chlorophylls (a + b) was 5–6 mg per 1 g of the leaf dry weight and did not depend on the latitude, whereas the content of carotenoids in the leaves increased northward from 1.0 to 1.5 mg/g dry wt. At the same time, the greatest changes occurred in the ratios between the forms of pigments: the chlorophyll a/b ratio increased from 1.8 to 2.8, and the chlorophyll/carotenoid ratio decreased from 5.6 to 3.5. The obtained results indicate that adaptation of the pigment apparatus of steppe plants growing along the latitudinal gradient occurs due to the transformation of the light-harvesting complex.  相似文献   

10.
叶片作为植物与外界进行物质交换的桥梁,其解剖性状能够相互协调以应对外界环境对植物生长造成的不利影响,从而反映出植物对环境变化所采取的适应策略。通过对黄土高原不同植被带(森林草原带、典型草原带、荒漠草原带)草地群落中常见115种植物(包括单子叶植物,双子叶植物,木本植物和草本植物四种功能型植物)叶片进行取样,并运用石蜡制片技术和光学显微技术获得叶片解剖性状(包括表皮厚度、栅栏组织厚度、海绵组织厚度、叶肉厚度和叶片厚度),旨在研究不同植被带内草地植物叶片解剖性状的变异规律及其与群落内物种相对优势度之间的关系,为黄土高原植被恢复和生态环境改善提供理论依据。结果表明:(1)沿着干旱梯度,从森林草原带、典型草原带到荒漠草原带,除叶肉厚度外,植物各叶片解剖性状值均呈现增大趋势,表明干旱地区叶片的旱生结构特征明显。(2)不同功能型植物叶片解剖性状与环境因子的关系各异。木本植物和草本植物的栅栏组织厚度和栅海比均与降水和土壤养分呈显著负相关关系(P<0.05)。同时,木本植物的叶片厚度与水分呈显著负相关关系(P<0.05),而草本植物表皮厚度仅与土壤养分呈显著负相关关系(P<0.05)...  相似文献   

11.
The concentration of chlorophyll and a carotenoids in the bark of stems of different age and in the leaves of lilac (Syringa vulgaris L.) was determined. The thickness of bark changes with the age of the stems, ranging from 0.73 mm in the current-year stems to 1.22 mm in 3-year-old ones. Chlorophyll and carotenoids were present through the whole thickness of the bark, except the cork. It was found that chlorophyll and carotenoids are located mainly in the outer layer of the bark, immediately under the cork, to a depth of 400 μm. In this layer the chlorophyll a/b ratio is the highest and the content of chlorophyll is four times larger than that of carotenoids. When penetrating deeper into the bark, the content of chlorophyll and carotenoids as well as the chlorophyll a/b ratio diminishes. Investigations of the leaves showed that most of the chlorophyll is found in the palisade parenchyma, the chlorophyll a/b ratio is the highest in the upper layer. The highest concentration of chlorophyll in the bark is 0.44 mg·dm−2 and in leaves −1.2 mg−2·dm−2. The highest value of the chlorophyll a/b ratio in the bark is 3.8, and the lowest 0.5, while in the leaves it varies from 4.5 to 3.8 Low values of the chlorophyll a/b ratio are due to the shade conditions existing in the bark and they are evidence of very great differentiation of light conditions within it.  相似文献   

12.
Annual plants transport a large portion of carbohydrates and nitrogenous compounds from leaves to seeds during the phase of reproductive growth. This study aimed to clarify how reproductive growth affects photosynthetic traits in leaves and matter transport within the plant in the annual herb Chenopodium album L. Plants were grown in pots and either reproductive tissues or axillary leaves were removed at anthesis. Matter transport was evaluated as temporal changes in dry mass (as a substitute of carbohydrates) and nitrogen content of aboveground organs: leaves, axillary leaves, stems and reproductive tissues. Photosynthetic capacity (light-saturated photosynthetic rate under ambient CO2 concentration), nitrogen, chlorophyll and soluble protein content were followed in the 20th leaf that was mature at the start of the experiment. Removal of reproductive tissues resulted in accumulation of dry mass in leaves and axillary leaves, and accumulation of nitrogen in stem as nitrogen resorption from leaves and axillary leaves proceeded with time. Removal of axillary leaves proportionally reduced dry mass and nitrogen allocation to reproductive tissues, thus affecting the quantity but not quality of seeds. Removal treatments did not alter the time course of photosynthetic capacity, nitrogen, chlorophyll or soluble protein content during senescence in the 20th leaf, but changed the photosynthetic capacity per unit of leaf nitrogen according to demand from reproductive tissues. Together, the results indicate that reproductive tissues affected carbon and nitrogen economy separately. The amount of carbon was adjusted in leaves through photosynthetic capacity and carbohydrate export from them, and the amount of nitrogen was adjusted by transport from stem to reproductive tissues. The plant’s ability to independently regulate carbon and nitrogen economy should be important in natural habitats where the plant carbon-nitrogen balance can easily be disturbed by external factors.  相似文献   

13.
The present work describes a digital image analysis method based on leaf color analysis to estimate chlorophyll content of leaves of micropropagated potato plantlets. For estimation of chlorophyll content, a simple leaf digital analysis procedure using a simple digital still camera was applied in parallel to a SPAD chlorophyll content meter. RGB features were extracted from the image and correlated with the SPAD values. None of the mean brightness parameters (RGB) were correlated with the actual chlorophyll content following simple correlation studies. However, a correlation between the chromaticity co-ordinates ‘r’, ‘b’ and chlorophyll content was observed, while co-ordinate ‘g’ was not significantly correlated with chlorophyll content. Linear regression and artificial neural networks (ANN) were applied for correlating the mean brightness (RGB) and mean brightness ratio (rgb) features to chlorophyll content of plantlet leaves determined through a SPAD meter. The chlorophyll content as determined by the SPAD meter was significantly correlated (RMSE = 3.97 and 3.59, respectively, for linear and ANN models) to the rgb values of leaf image analysis. Both the models indicate successful prediction of chlorophyll content of leaves of micropropagated plants with high correlation. The developed RGB-based digital image analysis has the advantage over conventional subjective methods for being objective, fast, non-invasive, and inexpensive. The system could be utilized for real-time estimation of chlorophyll content and subsequent analysis of photosynthetic and hyperhydric status of the micropropagated plants for better ex vitro survival.  相似文献   

14.
Evergreen leaves of temperate climate plants are often subject to frosts. Changes in carbon gain patterns arise from freezing‐related tissue damage, and from interactions between light and temperature stress. We examined relationships between spatial patterns in freezing and concentrations of chlorophyll. Spatial patterns in pigmentation in leaves that had or had not been exposed to naturally occurring frosts were determined by conventional extraction techniques combined with high‐resolution hyperspectral imaging of reflectance from intact leaves. Predictive indices were developed to relate reflectance to chlorophyll content and chlorophyll a/b ratios within intact leaves. Leaves exposed to frosts had lower chlorophyll contents and more variable a/b ratios than protected leaves. In frost‐affected leaves, chlorophyll content was highest near leaf centres and decreased toward leaf tips and margins. Decline in chlorophyll content was associated with shifts in chlorophyll a/b ratios and increases in red pigmentation due to anthocyanin, with effects being greater on leaf sides exposed directly to the sun. These altered pigmentation patterns were consistent with patterns in freezing. The present results illustrate the fine scale of spatial variation in leaf response to freezing, and raise important questions about impacts of freezing on photosynthetic function in over‐wintering evergreens.  相似文献   

15.
Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance‐dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light‐emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS‐grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED‐grown leaves also displayed a more sun‐type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower.  相似文献   

16.
Morphological, anatomical, biochemical and physiological traits of sun and shade leaves of adult Quercus ilex, Phillyrea latifolia and Pistacia lentiscus shrub species co-occurring in the Mediterranean maquis at Castelporziano (Latium) were studied. Fully expanded sun leaves had 47% (mean of the three species) greater leaf mass area (LMA) and 31% lower specific leaf area (SLA) than shade leaves. Palisade parenchyma thickness contributed on an average 42% to the total leaf thickness, spongy layer 43%, upper epidermal cells 5%, and upper cuticle thickness 3%. Stomatal size was greater in sun (25.5 μm) than in shade leaves (23.6 μm). Total chlorophyll content per fresh mass was 71% greater in shade than in sun leaves, and nitrogen content was the highest in sun (13.7 mg g−1) than in shade leaves (11.8 mg g−1). Difference of net photosynthetic rates (P N) between sun and shade leaves was 97% (mean of the three species). The plasticity index (sensu Valladares et al., New Phytol 148:79–91, 2000a) was the highest for physiological leaf traits (0.86) than for morphological, anatomical and biochemical ones. Q. ilex had the highest plasticity index of morphological, anatomical and physiological leaf traits (0.37, 0.28 and 0.71, respectively) that might explain its wider ecological distribution. The higher leaf plasticity of Q. ilex might be advantageous in response to varying environmental conditions, including global change.  相似文献   

17.
This study was conducted with a view to understand the effect of plant characteristics on the incidence of pests on most popular jute varieties, viz. JRO-524, JRO-632, JRO-878, JRO-7835 of olitorius jute and JRC-212, JRC-321, JRC-4444, JRC-7447 of capsularis jute. Correlation studies of plant characteristics with pest incidence in jute (Corchorus spp.) revealed that the basal girth of plant exhibited a positive significant relationship with the incidence of Apion corchori Marshall but not with other pests such as jute semilooper (Anomis sabulifera Guen.), Bihar hairy caterpillar (Spilarctia obliqua Wlk.), grey weevil (Myllocerus discolor Bohemus) and yellow mite (Polyphagotarsonemus latus Banks). However, plant height showed positive correlation with the incidence of all the major pests of jute. Leaf characteristics (number of leaves/plant, leaf area, leaf thickness, moisture and chlorophyll content of leaves of all the varieties recorded at three different growth stages, i.e. at 50, 80 and 110 days after sowing), number of leaves/plant had positive and significant relationship with the incidence of all the pests except stem weevil. However, leaf area and moisture content of leaves showed significant positive relationship with the incidence of yellow mite. Leaf moisture also showed a positive role on the infestation of grey weevil. Leaf thickness and chlorophyll content of leaves and stem, fibre thickness and moisture content of stem did show any significant effect on pest's incidence. Upon comparing the plant characteristics between the two jute species, olitorius varieties had greater fibre thickness than that of capsularis varieties but fibre thickness had no significant impact on incidence of pests.  相似文献   

18.
The pigment composition of leaves from a number of different plant species collected from field sites in the region of Sheffield, UK, have been compared using high-performance liquid chromatography. Expression of pigment content per unit leaf area was dominated by variation in the total leaf chlorophyll. Neither chlorophyll per unit area nor the chlorophyll a/b ratio were found to be correlated with the habitat from which the plants originated. When the amounts of different carotenoids were expressed relative to the total carotenoid pool, it was found that whilst neither total carotene (α- +β-carotene) nor neoxanthin correlated with ability to grow in shade, the leaf content of both lutein and the total xanthophyll cycle carotenoids (zeaxanthin, anther-axanthin and violaxanthin) did, with lutein content being high in shade species and xanthophyll cycle intermediates low. There was a strong negative correlation between the relative amounts of each of these groups of carotenoids. The ratio of lutein to xanthophyll cycle carotenoids was strongly correlated to an index of shade tolerance.  相似文献   

19.
To understand the ecophysiological adaptation mechanisms of Calligonum roborovskii to altitude variation, this study analyzed chlorophyll a (Chl a), chlorophyll b (Chl b), Chl (a + b), carotenoid (Car), malondialdehyde (MDA), ascorbate (AsA), proline (Pro), membrane permeability (MP), reactive oxygen species (ROS), specific leaf area (SLA), leaf mass per area (LMA), leaf nitrogen content based on mass (Nmass), and the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) in leaves of plants inhabiting different altitudes (A1: 2100 m, A2: 2350 m, A3: 2600 m) on the northern slope of the Kunlun Mountains. The results showed that Chl a, Chl b, Chl (a + b), SLA, Nmass, and the activity of CAT increased with increasing altitude. LMA, MP, MDA, Car, Pro, AsA, O2, H2O2 and the activities of SOD, POD, and APX decreased with increasing altitude. The test results also showed that, changes in venvironmental factors along an altitudinal gradient are not obvious. Soil water content is the main ecological factor. With increasing altitude, soil water content increased significantly. More non-enzymatic and enzymatic antioxidants played an important role in eliminating intracellular ROS. They kept the cell membrane in a stable state and ensured the normal growth of C. roborovskii.  相似文献   

20.
A single tropical plant species can harbour hundreds of endophyte species within its tissues. Beyond this, little is known about the relationship between endophyte colonization, leaf traits and spectral properties of leaves. We explore these relationships in Coccoloba cereifera, a plant well known for its symbiotic properties. Endophyte richness in C. cereifera was statistically correlated with leaf traits such as water content, the ratio of fresh weight/dry weight and polyphenol/leaf specific weight. Endophyte diversity was also related to spectral vegetation indices of chlorophyll content. The associations among endophyte diversity, leaf traits and spectral reflectance pose new questions and present new opportunities to better understand plant–fungal symbioses and related leaf optical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号