首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长白山林线树种岳桦幼树叶功能型性状随海拔梯度的变化   总被引:3,自引:0,他引:3  
胡启鹏  郭志华  孙玲玲  王彬 《生态学报》2013,33(12):3594-3601
通过研究沿不同海拔岳桦幼树叶功能型性状,揭示其对环境的响应机制.结果表明:①随海拔升高,岳桦叶面积(LA)逐渐降低,比叶重(LMA)增加,但LMA较高的可塑性指数表明其适应更依赖叶片的薄厚变化;②岳桦叶绿素含量随海拔升高而显著下降,但类胡萝卜素Car和Car/Chl显著升高,Chlb和Car/Chl表现出较高的可塑性指数,更倾向于吸收蓝紫光和保护光合器官;③岳桦叶氮含量(Narea和Nmass)在海拔1800-1900m间最低,在低海拔和高海拔均表现较高,但Chl/Nmass却随海拔升高而显著增加,Nmasss比Narea具有较高的可塑性指数,对光能的吸收更依赖Nmass对Chl的贡献,高海拔主要将更多的氮投资于光合器官的保护(1900m以上),低海拔则更倾向于光合生产(1800m以下);④随海拔升高,MDA增加,但随之抗氧化物质DS、Pro和APX活性增加,负责对活性氧的抵御和清除,但APX活性最大的可塑性指数表明活性氧的清除更依赖于酶促系统,但在海拔1900m以上,APX活性差异不显著,生理抗性逐渐下降,限制岳桦继续向高海拔生长;⑤抗氧化物质可塑性指数最高,叶绿素和叶形态次之,叶氮最低,表明随海拔升高,岳桦林以保护自身的生存为最主要的适应策略机制,然后以增加吸收光能的Chlb及LMA指标为主要生长策略.  相似文献   

2.
在全面调查昆仑山北坡前山带塔里木沙拐枣(Calligonumroborovskii A.Los.)分布的基础上,设置3个海拔梯度:A1(2190m)、A2(2355m)、A3(2495m),对不同海拔梯度塔里木沙拐枣的生理生态特性进行研究。结果显示:叶绿素a(Chla)、叶绿素b(Chlb)和总叶绿素(chl(a+b))含量均随着海拔的上升而增大,高海拔A3与低海拔A1相比,Chla、Chlb和Chl(a+b)含量分别增大了48.30%、40.10%和43.71%,差异均达显著水平(P0.05)。SLA和Nmass随着海拔的升高都增大,A3与A1相比分别增大了33.99%和20.97%,差异达到显著水平(P0.05)。LMA随着海拔升高而减小,A3与A1相比减小了30.15%,差异达到显著水平(P0.05)。丙二醛(MDA)含量和质膜透性(MP)变化较为一致,随着海拔上升而减小,A3与A1相比分别减小了184.06%和58.33%,差异均达显著水平(P0.05),说明在A1受到的伤害更大。类胡萝卜素(Car)、脯氨酸(Pro)和抗坏血酸(AsA)含量随着海拔的上升呈下降趋势,A3与A1相比分别下降了65.88%、290.21%和38.97%,差异均达显著水平(P0.05),说明A1处非酶类保护物质含量最高。酶保护系统中的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX),只有CAT活性随海拔上升而升高,其余3种酶的活性均随着海拔的升高而降低,A3与A1相比分别降低了18.75%、122.37%、23.03%%,差异均达到显著水平(P0.05)。与此同时,随着海拔的升高,超氧阴离子自由基(O2-)和过氧化氢(H2O2)含量也呈下降趋势,A3与A1相比分别下降了54.48%、9.69%,差异达显著水平(P0.05)。在整个研究区域,AOS维持在低浓度范围,而低浓度AOS正好诱导防御基因表达,及时清除活性氧,另外非酶类保护物质含量的增加也有利于清除细胞内的活性氧,维持细胞膜的稳定性,从而保证塔里木沙拐枣正常的生理功能。  相似文献   

3.
不同海拔长白山岳桦的生理变化   总被引:8,自引:1,他引:7  
通过分析长白山国家级自然保护区内不同海拔(A1:1700 m, A2:1800 m, A3:1900 m, A4:2000 m, A5:2050 m)梯度岳桦叶片中各种生理指标含量的变化,探讨了林线树木适应高山环境的生理机制.结果表明:随着海拔的升高,比叶面积(SLA)显著减小,A5与A1相比下降了35.90%,差异达到显著水平;叶绿素含量随海拔梯度升高而降低,但叶绿素a/b比值(Chla/Chlb)和Car的相对含量(Car/Chl)随海拔梯度升高而增加;在海拔1900 m左右,MDA含量和MP均处于最低水平,各种酶的活性均为最低;当海拔超过2000 m,接近森林分布的界限时,MDA含量和MP升高,并达到最大值,各种酶的活性都出现了一定程度的下降.综合本次研究表明, 在海拔1900 m比较适合岳桦的生长;海拔超过2000 m,岳桦体内生理抗性下降,不利于岳桦的生长发育,因此高海拔限制了岳桦的分布.  相似文献   

4.
Martin RE  Asner GP  Sack L 《Oecologia》2007,151(3):387-400
Coordinated variation has been reported for leaf structure, composition and function, across and within species, and theoretically should occur across populations of a species that span an extensive environmental range. We focused on Hawaiian keystone tree species Metrosideros polymorpha, specifically, 13-year old trees grown (2–4 m tall) in a common garden (approximately 1 ha field with 2–3 m between trees) from seeds collected from 14 populations along an altitude–soil age gradient. We determined the genetic component of relationships among specific leaf area (SLA), the concentrations of nitrogen (N) and pigments (chlorophylls, carotenoids, and anthocyanins), and photosynthetic light-use efficiency. These traits showed strong ecotypic variation; SLA declined 35% with increasing source elevation, and area-based concentrations of N, Chl a + b and Car increased by 50, 109 and 96%, respectively. Concentrations expressed on a mass basis were not well related to source elevation. Pigment ratios expressed covariation that suggested an increased capacity for light harvesting at higher source elevation; Chl/N and Car/Chl increased with source elevation, whereas Chl a/b declined; Chl a/b was higher for populations on younger soil, suggesting optimization for low N supply. Parallel trends were found for the photosynthetic reactions; light-saturated quantum yield of photosystem II (Φ PSII) and electron transport rate (ETR) increased with source elevation. Correlations of the concentrations of photosynthetic pigments, pigment ratios, and photosynthetic function across the ecotypes indicated a stoichiometric coordination of the components of the light-harvesting antennae and reaction centers. The constellation of coordinated morphological, biochemical and physiological properties was expressed in the leaf reflectance and transmittance properties in the visible and near-infrared wavelength region (400–950 nm), providing an integrated metric of leaf status among and between plant phenotypes.  相似文献   

5.
A variety of ecophysiological parameters were monitored in leaves of Hevea brasiliensis (rubber tree) during seasonal leaf senescence. Higher levels of hydrogen peroxide and malondialdehyde, and lower content of total protein and efficiency of photochemistry of photosystem II (PSII) were observed in the senescent leaves (SL) compared to the mature leaves (ML). A significant decrease in the contents of chlorophyll (Chl) and carotenoids (Car) in SL was also observed, but with increase in ratio of Car/Chl. Moreover, activities of superoxide dismutases, catalase, and glutathione reductase in SL were strongly suppressed. In contrast, the activities of guaiacol peroxidase (POD) and ascorbate peroxidase (APX), and the contents of reduced ascorbate, total ascorbate, reduced glutathione and total glutathione were considerably increased in SL compared to ML. In addition, α-pinene, β-pinene, sabinene and total monoterpene pool in SL were drastically decreased. Taken together, these results indicate that the enhanced activities of POD and APX, and further activation of ascorbate-glutathione cycle conferred an important photoprotection against oxidative stress in senescent leaves of rubber trees. The increased Car/Chl could give the protection against photoxidation as well.  相似文献   

6.
Photosynthetic pigments, gas exchange, chlorophyll (Chl) a fluorescence kinetics, antioxidant enzymes and chloroplast ultrastructure were investigated in ginkgo (Ginkgo biloba L.) leaves from emergence to full size. Under natural conditions, the net photosynthetic rate (PN), contents of Chl a, Chl b and total soluble proteins and fresh and dry leaf mass gradually increased during leaf expansion. The maximum photochemical efficiency of photosystem (PS) 2 (variable to maximum fluorescence ratio, Fv/Fm) was considerably higher at the early stages of leaf development than in fully expanded leaves. During daily course, only reversible decrease in Fv/Fm was distinguished at various stages, implying that no photo-damage occurred. Absorption flux per cross section (CS) and trapped energy flux per CS were significantly lower in newly expanding leaves compared with fully expanded ones, however, dissipated energy flux per CS was only slightly lower in expanding leaves. The ratio of carotenoids (Car)/Chl decreased gradually during leaf expansion due to increasing Chl content. Moreover, activities of the antioxidant enzymes, such as superoxide dismutase, ascorbate peroxidase, catalase and peroxidase, increased at the early stages of leaf expansion. The appearance of osmiophilic granules in fully expanded leaves further proves that photo-protection is significantly strengthened at the early stages of leaf expansion.  相似文献   

7.
Paphiopedilum and Cypripedium are closely related in phylogeny, but have contrasting leaf traits and habitats. To understand the divergence in leaf traits of Paphiopedilum and Cypripedium and their adaptive significance, we analyzed the leaf anatomical structures, leaf dry mass per area (LMA), leaf lifespan (LL), leaf nitrogen concentration (N mass), leaf phosphorus concentration (P mass), mass-based light-saturated photosynthetic rate (A mass), water use efficiency (WUE), photosynthetic nitrogen use efficiency (PNUE) and leaf construction cost (CC) for six species. Compared with Cypripedium, Paphiopedilum was characterized by drought tolerance derived from its leaf anatomical structures, including fleshy leaves, thick surface cuticles, huge adaxial epidermis cells, lower total stoma area, and sunken stomata. The special leaf structures of Paphiopedilum were accompanied by longer LL; higher LMA, WUE, and CC; and lower N mass, P mass, A mass, and PNUE compared with Cypripedium. Leaf traits in Paphiopedilum helped it adapt to arid and nutrient-poor karst habitats. However, the leaf traits of Cypripedium reflect adaptations to an environment characterized by rich soil, abundant soil water, and significant seasonal fluctuations in temperature and precipitation. The present results contribute to our understanding of the divergent adaptation of leaf traits in slipper orchids, which is beneficial for the conservation of endangered orchids.  相似文献   

8.
Questions: How are leaf attributes and relative growth rate (RGR) of the dominant tree species of tropical deciduous forest (TDF) affected by seasonal changes in soil moisture content (SMC)? What is the relationship of functional attributes with each other? Can leaf attributes singly or in combination predict the growth rate of tree species of TDF? Location: Sonebhadra district of Uttar Pradesh, India. Methods: Eight leaf attributes, specific leaf area (SLA); leaf carbon concentration (LCC); leaf nitrogen concentration (LNC); leaf phosphorus concentration (LPC); chlorophyll concentration (Chl), mass‐based stomatal conductance (Gsmass); mass based photosynthetic rate (Amass); intrinsic water use efficiency (WUEi); and relative growth rate (RGR), of six dominant tree species of a dry tropical forest on four sites were analysed for species, site and season effects over a 2‐year period. Step‐wise multiple regression was performed for predicting RGR from mean values of SMC and leaf attributes. Path analysis was used to determine which leaf attributes influence RGR directly and which indirectly. Results: Species differed significantly in terms of all leaf attributes and RGR. The response of species varied across sites and seasons. The attributes were positively interrelated, except for WUEi, which was negatively related to all other attributes. The positive correlation was strongest between Gsmass and Amass and the negative correlation was strongest between Gsmass and WUEi. Differences in RGR due to site were not significant when soil moisture was controlled, but differences due to season remained significant. The attributes showed plasticity across moisture gradients, which differed among attributes and species. Gsmass was the most plastic attribute. Among the six species, Terminalia tomentosa exhibited the greatest plasticity in six functional attributes. In the step‐wise multiple regression, Amass, SLA and Chl among leaf attributes and SMC among environmental factors influenced the RGR of tree species. Path analysis indicated the importance of SLA, LNC, Chl and Amass in determining RGR. Conclusion: A mass, SMC, SLA and Chl in combination can be used to predict RGR but could explain only three‐quarters of the variability in RGR, indicating that other traits/factors, not studied here, are also important in modulating growth of tropical trees. RGR of tree species in the dry tropical environment is determined by soil moisture, whereas the response of mature trees of different species is modulated by alterations in key functional attributes such as SLA, LNC and Chl.  相似文献   

9.
 在全面调查大盘山国家级自然保护区香果树(Emmenopterys henryi)分布的基础上, 设置了4个海拔段(A1: 550 ~ 650 m, A2: 680 ~ 770 m, A3: 810 ~ 900 m, A4: 970 ~ 1 100 m), 对不同海拔段内香果树的生理生态特性进行研究, 结果显示, 叶绿素a (Chla)、叶绿素b (Chlb)和总叶绿素(Chl(a+b))含量均随着海拔的上升而减小, 高海拔A4与低海拔A1相比, Chla、Chlb和Chl(a+b)含量分别下降了21.32%、31.53%和24.96%, 差异均达到显著水平。分析认为, 主要是由于相对较强的光照以及干旱胁迫的增强所致。同样, 比叶面积(SLA)也随着海拔的上升而减小, A4与A1相比下降了27.55%, 差异达到显著水平。丙二醛(MDA)含量和质膜透性(MP)变化较为一致, 两者均在A3处达到最低水平, 在A4处达到最高, 说明在A3受到的伤害最小而在A4受到的伤害最大; 脯氨酸(Pro)和抗坏血酸(AsA)含量先升高再降低, 在A3处则均达到最高, 与A1相比分别增加了139.33%和10.60%; 酶保护系统中的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性在A1均最小, 随着海拔的升高, 其活性变化则不太一致: SOD活性一直增加, POD、CAT和APX活性虽然都是先增加后减小, 但POD和APX在A3达到最高, CAT则是在A2最高。非酶类保护物质含量的增加和酶活性的增强有利于清除细胞内的活性氧, 维持细胞膜的稳定性, 从而保证植物的正常生长。综合此次实验结果表明, 在中海拔(810~900 m)比较适合香果树的生长, 而高海拔(970~1 100 m)则不适合香果树的生长。  相似文献   

10.
Global patterns of intraspecific leaf trait responses to elevation   总被引:1,自引:0,他引:1  
Elevational gradients are often used to quantify how traits of plant species respond to abiotic and biotic environmental variations. Yet, such analyses are frequently restricted spatially and applied along single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to elevation across the globe, we here perform a global meta‐analysis of leaf traits in 109 plant species located in 4 continents and reported in 71 studies published between 1983 and 2018. We quantified the intraspecific change in seven morpho‐ecophysiological leaf traits along global elevational gradients: specific leaf area (SLA), leaf mass per area (LMA), leaf area (LA), nitrogen concentration per unit of area (Narea), nitrogen concentration per unit mass (Nmass), phosphorous concentration per unit mass (Pmass) and carbon isotope composition (δ13C). We found LMA, Narea, Nmass and δ13C to significantly increase and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant pattern with elevation worldwide. We found significantly larger increase in Narea, Nmass, Pmass and δ13C with elevation in warmer regions. Larger responses to increasing elevation were apparent for SLA of herbaceous compared to woody species, but not for the other traits. Finally, we also detected evidences of covariation across morphological and physiological traits within the same elevational gradient. In sum, we demonstrate that there are common cross‐species patterns of intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such variation is genetically determined via local adaptation or attributed to phenotypic plasticity, the leaf trait patterns quantified here suggest that plant species are adapted to live on a range of temperature conditions. Since the distribution of mountain biota is predominantly shifting upslope in response to changes in environmental conditions, our results are important to further our understanding of how plants species of mountain ecosystems adapt to global environmental change.  相似文献   

11.
Long-term (30 d) effects of 100, 200, 300, and 400 mM NaCl on photosystem 2 (PS 2)-mediated electron transport activity and content of D1 protein in the thylakoid membranes of chrysanthemum (Dendranthema grandiflorum) cultured in vitro at low irradiance 20 μmol(photon) m−2 s−1 were investigated. 100 mM NaCl increased contents of chlorophylls (Chl) a and b, carotenoids (Car; xanthophylls + carotenes), and the ratio of Chl a/b, and Car/Chl a+b. However, further increase in NaCl concentration led to the significant reduction in the contents of Chl a, and Chl b, and increase in the ratio of Chl a/b and Car/Chl a+b. NaCl treatment decreased the PS 2-mediated electron transport activity and contents of various thylakoid membrane polypeptides including D1 protein.  相似文献   

12.
Changes in growth, leaf water status, pigments, osmolytes, activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), and ascorbic acid (ASA) content were investigated in Chinese cork oak (Quercus variabilis Bl.) seedlings. Three-month-old seedlings were subjected to four drought cycles (30, 60, 90, and 120 days) and four drought intensities (80, 60, 40, and 20% field capacity (FC)). The seedlings had optimal height, basal diameter, and leaf water status at 80% FC. These parameters significantly decreased as drought intensity increased. The total root length, diameter, and surface area at 60% FC significantly increased compared with those at 80% FC. However, at 40 and 20% FC these parameters significantly decreased compared with those at 80% FC. The ratio of total root length to seedling height significantly increased with increasing drought intensity. The contents of chlorophyll a + b (Chl a + b ) and carotenoids (Car) significantly decreased at 40 and 20% FC. However, no significant changes in Chl a /Chl b and Car/Chl a + b ratios were observed among the four drought intensities. Comparatively, the seedlings accumulated more soluble sugars and proline, as well as they demonstrated the higher POD, SOD, CAT, APX activities and ASA content at >40% FC. However, prolonged drought stress at 20% FC suppressed antioxidant activities and osmolyte accumulation, leading to a rapid increase in lipid peroxidation. These results suggest that a water supply >40% FC is required to support the growth and survival of the current-year seedlings of Chinese cork oak  相似文献   

13.
Net photosynthetic rate of yellow upper leaves (UL) of Ligustrum vicaryi was slightly, but not significantly higher than that of green lower leaves (LL). Diurnally, maximum photochemical efficiency of photosystem 2, PS2 (Fv/Fm) of LL did not significantly decline but the UL showed fairly great daily variations. Yield of PS2 of UL showed an enantiomorphous variation to the photosynthetically active radiation and was significantly lower than in the LL. Unlike Fv/Fm, the efficiency of energy conversion in PS2 and both non-photosynthetic and photosynthetic quenching did not differ in UL and LL. Significant differences between UL and LL were found in contents of chlorophyll (Chl) a, b, and carotenoids (Car) and ratios of Chl a/b, Chl b/Chl (a+b), and Car/Chl (a+b). Leaf colour dichotocarpism in L. vicaryi was mainly caused by different photon utilization; sunflecks affected the LL.  相似文献   

14.
Question: Is there any generality in terms of leaf trait correlations and the multiple role of leaf traits (response to and/or effect on) during secondary succession? Location: A secondary successional sere was sampled at four different ages since abandonment from several years to nearly 150 years on the Loess Plateau of northwestern China. Method: Specific leaf area (SLA), leaf mass per area (LMA), leaf nitrogen (Nmass, Narea), leaf phosphorus (Pmass, Parea) and leaf dry matter content (LDMC) were measured for all species recorded in the successional sere. Above‐ground net primary productivity (ANPP) and specific rate of litter mass loss (SRLML) were measured as surrogates for ecosystem properties. Soil total carbon (C) and nitrogen (N) were measured in each stage. Leaf traits were related to ecosystem properties and soil nutrient gradients, respectively. Results: LMA is correlated with Narea and Parea' and negatively with Nmass. Correlation between Narea and Parea was higher than between Nmass and Pmass. At the community level, field age, community hierarchy and their interaction explain 64.4 ‐ 93.5% of the variation in leaf traits. At the species level, field age explains 22.4 ‐ 45.5% of the variation in leaf traits (excl. Parea) while plant functional group has a significant effect only for Nmass. LDMC is correlated with ANPP and negatively with SRLML; Pmass is correlated with SRLML. Conclusions: Mean values of LMA, Nmass and Narea are close to the worldwide means, suggesting that large‐scale climate has a profound effect on leaf mass and leaf nitrogen allocation, while environmental gradients represented by succession have little influence on leaf‐trait values. Correlations between leaf traits, such as LMA‐Narea, LMA‐Parea and LMA‐Nmass shown in previous studies, are confirmed here. Although none of the leaf traits is proved to be both a response trait and an effect trait independent of time scale and community hierarchy, mass‐based leaf N is likely a sensitive response trait to soil C and N gradients. In addition, LDMC can be a marker for ANPP and SRLML, while mass‐based leaf P can be a marker for SRLML.  相似文献   

15.
以漓江水陆交错带为研究区,分两个条带分别量测了适生植物的5个叶性状指标:最大净光合速率(A_(max))、比叶重(LMA)、单位质量叶片全氮含量(N_(mass))、单位质量叶片全磷含量(P_(mass))、单位质量叶片全钾含量(K_(mass))。研究重度淹没带与微度淹没带不同功能型植物叶性状间的差异,分析并讨论重度淹没带叶性状间的关系与全球尺度是否存在差异,探究重度淹没带植物对水淹生境的生理响应机制。结果如下:(1)重度淹没带植物叶片的A_(mass)、N_(mass)、P_(mass)显著高于微度淹没带。(2)乔木、灌木叶片的LMA均显著高于草本植物,而A_(mass)、PPUE均显著低于草本植物。(3)重度淹没带草本叶性状指标的N_(mass)、P_(mass)、PNUE均显著高于微度微度淹没带,而乔木、灌木的叶性状在两个条带的差异则不显著。(4)重度淹没带植物叶性状关系与全球尺度基本一致,其植物叶片具有低LMA,高A_(mass)、Nmas s、P_(mass)。分析可知,重度淹没带植物在出露期提高叶片光合效率及相关营养水平可能是其适应水淹胁迫特殊生境的关键策略之一;不同功能型植物对同一环境的适应能力存在一定的差异,草本对于水淹环境的响应更为积极,适应能力更好;重度淹没带也存在叶经济谱,其植物在经济谱中属于"快速投资-收益"型物种。  相似文献   

16.
17.
Community structure and leaf traits are important elements of terrestrial ecosystems. Changes of community structure and leaf traits are of particular use in the study of the influence of climate change on terrestrial ecosystems. Patterns of community structure (including species richness, above- and below-ground biomass) and leaf traits (including leaf mass per area (LMA), nitrogen content both on mass and area bases (N mass and N area), and foliar δ13C) from 19 grassland plots along an altitudinal transect at Hongchiba in Chongqing, China, were analyzed. Species richness along the altitudinal transect had a hump-shaped pattern. Above-ground biomass had a quadratic decrease along the altitudinal gradient whereas below-ground biomass had the opposite pattern. Change of above-ground biomass of various taxonomic groups with altitude was also studied. Poaceae showed strong negative relationships and Asteraceae showed a hump-shaped relationship with increase of altitude. Five common species of the grassland, Trifolium pratense, Geranium wilfordii, Aster tataricus, Leontopodium leontopodioides, and Spiraea prunifolia, were particularly studied for variation of leaf traits along the altitudinal gradient. Averaged for all species, LMA, N area and foliar δ13C had positive correlations with altitude. N mass did not change significantly as altitude increased. LMA and N area showed significant positive relationships with foliar δ13C. The adaptive features of leaf traits among different species were not consistent. The study highlights specific adaptation patterns in relation to altitude for different plant species, provides further insights into adaptive trends of community structure and leaf traits in a specific ecological region filling a gap in the definition of global patterns, and adds to the understanding of how adaptive patterns of plants may respond to global climate change.  相似文献   

18.
We conducted an experiment to assess the predictive capability of a leaf optical meter for determining leaf pigment status of Acer mono Maxim., A. ginnala Maxim., Quercus mongolica Fisch., and Cornus alba displaying a range of visually different leaf colors during senescence. Concentrations of chlorophyll (Chl) a, Chl b, and total Chl [i.e., Chl (a+b)] decreased while the concentration of carotenoids (Car) remained relatively static for all species as leaf development continued from maturity to senescence. C. alba exhibited the lowest average concentration of Chl (a+b), Chl a, and Car, but the highest relative anthocyanin concentration, while Q. mongolica exhibited the highest Chl (a+b), Chl b, and the lowest relative anthocyanin concentration. A. mono exhibited the highest Chl a and Car concentrations. The relationships between leaf pigments and the values measured by the optical meter generally followed an exponential function. The strongest relationships between leaf pigments and optical measurements were for A. mono, A. ginnala, and Q. mongolica (R 2 ranged from 0.64 to 0.95), and the weakest relationships were for C. alba (R 2 ranged from 0.13 to 0.67). Moreover, optical measurements were more strongly related to Chl a than to Chl b or Chl (a+b). Optical measurements were not related to Car or relative anthocyanin concentrations. We predicted that weak relationships between leaf pigments and optical measurements would occur under very low Chl concentrations or under very high anthocyanin concentrations; however, these factors could not explain the weak relationship between Chl and optical measurements observed in C. alba. Overall, our results indicated that an optical meter can accurately estimate leaf pigment concentrations during leaf senescence — a time when pigment concentrations are dynamically changing — but that the accuracy of the estimate varies across species. Future research should investigate how species-specific leaf traits may influence the accuracy of pigment estimates derived from optical meters.  相似文献   

19.
云丘山不同海拔梯度橿子栎叶性特征研究   总被引:1,自引:1,他引:0  
在吕梁山南段云丘山,以橿子栎为主要研究对象,采用野外调查和室内实验相结合的方法,对比叶面积(SLA)、叶面积(LA)、叶干物质含量(LDMC)、叶长宽比(L/W)、叶绿素含量(Chl)以及叶氮含量等有代表性的指标进行分析.结果表明:(1)随着海拔梯度的增加,橿子栎 L/W、Chl、SLA、LA、单位面积的叶氮含量(N area )、单位重量的叶氮含量(N mass )、叶饱和鲜重和叶干重均呈先上升后下降的趋势,在海拔1180 m 处有最大值;LDMC 与海拔呈显著负相关(P <0.05);(2)橿子栎 LA 与 SLA 和 N mass 呈极显著正相关关系(P <0.01),与 LDMC 呈显著负相关关系(P <0.05),与 N area呈极显著负相关关系(P <0.01);(3)橿子栎叶片 SLA与 L/W 呈显著正相关(P <0.05),与 N mass 呈极显著正相关关系(P <0.01),橿子栎叶片 SLA 与 LDMC 和N area呈显著负相关关系(P <0.05);(4)橿子栎 LDMC 与 N area 呈显著正相关(P <0.05).通过对云丘山景区橿子栎叶片性状随海拔变化规律的研究,可以探索橿子栎叶片性状与海拔梯度变化的关系以及最适生长环境,从而为景区橿子栎林的保护和抚育提供理论依据,为合理开发橿子栎林资源提供基础资料.  相似文献   

20.
Changes in contents of reactive oxygen species (O2 and H2O2) and non-enzymatic antioxidants, activities of antioxidant enzymes and lipid peroxidation were investigated during senescence of detached cucumber cotyledons dipped in water (control) and 20 mg dm−3 triadimefon (TDM). O2 and H2O2 accumulation and lipid peroxidation were observed during senescence of cucumber cotyledons, which coincided with a drop in the contents of carotenoids (Car) and ascorbic acid (AsA), and the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), and an increase in the activity of peroxidase (POD). However, TDM could significantly inhibit the accumulation of O2 and H2O2, and lipid peroxidation by preventing the decrease of CAT, APX, Car and AsA and the increase of POD, while TDM had little effect on SOD activity during the senescence. Therefore we can draw a conclusion that TDM protects the membrane system and retards the senescence of detached cucumber cotyledons. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号