首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contractile vacuole complexes are critical components of cell volume regulation and have been shown to have other functional roles in several free-living protists. However, very little is known about the functions of the contractile vacuole complex of the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, other than a role in osmoregulation. Identification of the protein composition of these organelles is important for understanding their physiological roles. We applied a combined proteomic and bioinfomatic approach to identify proteins localized to the contractile vacuole. Proteomic analysis of a T. cruzi fraction enriched for contractile vacuoles and analyzed by one-dimensional gel electrophoresis and LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of expressed proteins of epimastigotes. We also identified different peptides that map to at least 39 members of the dispersed gene family 1 (DGF-1) providing evidence that many members of this family are simultaneously expressed in epimastigotes. Of the proteins present in the fraction we selected several homologues with known localizations in contractile vacuoles of other organisms and others that we expected to be present in these vacuoles on the basis of their potential roles. We determined the localization of each by expression as GFP-fusion proteins or with specific antibodies. Six of these putative proteins (Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter) predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our results demonstrate the utility of combining subcellular fractionation, proteomic analysis, and bioinformatic approaches for localization of organellar proteins that are difficult to detect with whole cell methodologies. The CV localization of the proteins investigated revealed potential novel roles of these organelles in phosphate metabolism and provided information on the potential participation of adaptor protein complexes in their biogenesis.  相似文献   

2.
3.
Clathrin is a scaffold protein found in different types of coated vesicles in most eukaryotic cells. Major forces that drive clathrin coat formation are the adaptor protein complexes. Trypanosoma cruzi is a flagellate protozoan that ingests macromolecules through receptor-mediated endocytosis, but the molecules involved in this process are still poorly known. Bioinformatics was used to identify proteins in the T. cruzi genome database, permitting discrimination of the genes involved in clathrin coat assembly. Clathrin expression was demonstrated in T. cruzi epimastigotes by using several experimental approaches. Western blot analysis showed a single 180-kDa protein band, which corresponds to the molecular mass of mammalian clathrin heavy chain. A flow cytometry assay demonstrated that the clathrin heavy chain was expressed in 97.74% of the cell population analyzed, with a high-fluorescence signal. Immunofluorescence observation showed labeling clustered at the flagellar pocket and Golgi complex region. Coated vesicles budding off from the flagellar pocket and the trans Golgi network membranes were identified by transmission electron microscopy. Our data demonstrate the expression of clathrin in T. cruzi epimastigotes and show the association of this polypeptide with the parasite endocytic and exocytic pathways.  相似文献   

4.
Approximately 50% of the predicted protein-coding genes of the Trypanosoma cruzi CL Brener strain are annotated as hypothetical or conserved hypothetical proteins. To further characterize these genes, we generated 1161 open-reading frame expressed sequence tags (ORESTES) from the mammalian stages of the VL10 human strain. Sequence clustering resulted in 435 clusters, consisting of 339 singletons and 96 contigs. Significant matches to the T. cruzi predicted gene database were found for ~94% contigs and ~69% singletons. These included genes encoding surface proteins, known to be intensely expressed in the parasite mammalian stages and implicated in host cell invasion and/or immune evasion mechanisms. Among 151 contigs and singletons with similarity to predicted hypothetical protein-coding genes and conserved hypothetical protein-coding genes, 83% showed no match with T. cruzi EST and/or proteome databases. These ORESTES are the first experimental evidence that the corresponding genes are in fact transcribed. Sequences with no significant match were searched against several T. cruzi and National Center for Biotechnology Information non-redundant sequence databases. The ORESTES analysis indicated that 124 predicted conserved hypothetical protein-coding genes and 27 predicted hypothetical protein-coding genes annotated in the CL Brener genome are transcribed in the VL10 mammalian stages. Six ORESTES annotated as hypothetical protein-coding genes showing no match to EST and/or proteome databases were confirmed by Northern blot in VL10. The generation of this set of ORESTES complements the T. cruzi genome annotation and suggests new stage-regulated genes encoding hypothetical proteins.  相似文献   

5.
Wang J  Xue Y  Feng X  Li X  Wang H  Li W  Zhao C  Cheng X  Ma Y  Zhou P  Yin J  Bhatnagar A  Wang R  Liu S 《Proteomics》2004,4(1):136-150
The genome of Thermoanaerobacter tengcongensis is estimated to encode 2588 theoretical proteins. In this study, we have vitalized approximately 46% of the theoretical proteome experimentally using a proteomic strategy that combines three different methods, shotgun digestion plus high-performance liquid chromatography (HPLC) with ion-trap tandem mass spectrometry (shotgun-liquid chromatography (LC)/MS), one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) plus HPLC with ion-trap tandem mass spectrometry (one-dimensional electrophoresis (1DE)-LC/MS), and two-dimensional gel electrophoresis plus matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (2DE-MALDI-TOF-MS). Of the 1200 proteins identified, as few as 76 proteins were globally found by all three approaches, and notably, most of these proteins were in the soluble fraction. However, there were a number of unique proteins detected by one method only, suggesting that our strategy provides a means toward obtaining a comprehensive view of protein expression profile. Proteins from the major metabolic pathways are strongly represented on the map, and a number of these enzymes were identified by more than one proteomic method. Based upon the proteins identified in the present study, we are able to broaden the understanding of how T. tengcongensis survives under high temperature environment, whereas several of its properties can not be fully explained by genome data.  相似文献   

6.
We report a global proteomic approach for analyzing brain tissue and for the first time a comprehensive characterization of the whole mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 nonredundant proteins ( approximately 34% of the predicted mouse proteome). A total of 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models. The proteomic approach presented here may have broad applications for rapid proteomic analyses of various mouse models of human brain diseases.  相似文献   

7.
8.
Proteome profiling of human epithelial ovarian cancer cell line TOV-112D   总被引:3,自引:0,他引:3  
A proteome profiling of the epithelial ovarian cancer cell line TOV-112D was initiated as a protein expression reference in the study of ovarian cancer. Two complementary proteomic approaches were used in order to maximise protein identification: two-dimensional gel electrophoresis (2DE) protein separation coupled to matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and one-dimensional gel electrophoresis (1DE) coupled to liquid-chromatography tandem mass spectrometry (LC MS/MS). One hundred and seventy-two proteins have been identified among 288 spots selected on two-dimensional gels and a total of 579 proteins were identified with the 1DE LC MS/MS approach. This proteome profiling covers a wide range of protein expression and identifies several proteins known for their oncogenic properties. Bioinformatics tools were used to mine databases in order to determine whether the identified proteins have previously been implicated in pathways associated with carcinogenesis or cell proliferation. Indeed, several of the proteins have been reported to be specific ovarian cancer markers while others are common to many tumorigenic tissues or proliferating cells. The diversity of proteins found and their association with known oncogenic pathways validate this proteomic approach. The proteome 2D map of the TOV-112D cell line will provide a valuable resource in studies on differential protein expression of human ovarian carcinomas while the 1DE LC MS/MS approach gives a picture of the actual protein profile of the TOV-112D cell line. This work represents one of the most complete ovarian protein expression analysis reports to date and the first comparative study of gene expression profiling and proteomic patterns in ovarian cancer.  相似文献   

9.
Differential display of mRNAs from Trypanosoma cruzi epimastigote and metacyclic trypomastigote stages showed several mRNA species differing in their expression level. The cDNA corresponding to one of these mRNAs was used as a probe in Northern blots and identified a RNA product of 2.6 kb with an expression level eight or more times higher in trypomastigotes than in epimastigotes. This probe was also used to screen a genomic library of T. cruzi CL Brener clone prepared in lambda FIX. A clone of about 15 kb was selected that, after partial sequencing, revealed an open reading frame of 688 amino acids encoding a deduced protein with similarity to RNA helicases of the DEAD-box gene family. The presence of the eight conserved motifs characteristic of the DEAD protein family was observed in the T. cruzi sequence, indicating that it corresponds to a putative RNA helicase gene, which we named HelTc. Southern blot analysis indicated that HelTc is a single-copy gene. Pulsed-field gel electrophoresis separation of chromosomes of several isolates of T. cruzi showed that this gene was localized in one or two chromosomal bands.  相似文献   

10.
Tools for the genetic manipulation of Trypanosoma cruzi are largely unavailable, although several vectors for transfection of epimastigotes and expression of foreign or recombinant genes have been developed. We have previously constructed several plasmid vectors in which recombinant genes are expressed in T. cruzi using the rRNA promoter. In this report, we demonstrate that one of these vectors can simultaneously mediate expression of neomycin phosphotransferase and green fluorescent protein when used to stably transfect cultured epimastigotes. These stably transfected epimastigotes can be selected and cloned as unique colonies on solid medium. We describe a simple colony PCR approach to the screening of these T. cruzi colonies for relevant genes. Thus, the methodologies outlined herein provide important new tools for the genetic dissection of this important parasite.  相似文献   

11.
ObjectivesSubcellular fractionation of whole cell lysates offers a means of simplifying protein mixtures, potentially permitting greater depth of proteomic analysis. Here we compare proteins identified from pancreatic duct cells (PaDC) following organelle enrichment to those identified from PaDC whole cell lysates to determine if the additional procedures of subcellular fractionation increase proteome coverage.MethodsWe used differential centrifugation to enrich for nuclear, mitochondrial, membrane, and cytosolic proteins. We then compared – via mass spectrometry-based analysis – the number of proteins identified from these four fractions with four biological replicates of PaDC whole cell lysates.ResultsWe identified similar numbers of proteins among all samples investigated. In total, 1658 non-redundant proteins were identified in the replicate samples, while 2196 were identified in the subcellular fractionation samples, corresponding to a 30% increase. Additionally, we noted that each organelle fraction was in fact enriched with proteins specific to the targeted organelle.ConclusionsSubcellular fractionation of PaDC resulted in greater proteome coverage compared to PaDC whole cell lysate analysis. Although more labor intensive and time consuming, subcellular fractionation provides greater proteome coverage, and enriches for compartmentalized sub-populations of proteins. Application of this subcellular fractionation strategy allows for a greater depth of proteomic analysis and thus a better understanding of the cellular mechanisms of pancreatic disease.  相似文献   

12.
13.
14.
15.
A 1.3 kb cDNA (cDNA52) was derived from Trypanosoma cruzi trypomastigote mRNA. Using single stranded probes in Northern blots, we identified the putative coding strand of cDNA52. In addition, a minor band was detected in RNA from epimastigotes that was absent in RNA from trypomastigotes. Nucleotide sequence analysis revealed that cDNA52 was highly homologous to T. cruzi kinetoplast DNA minicircle sequences. All four conserved regions of T. cruzi minicircles were identified in cDNA52. Using several criteria, we demonstrated that the hybridization signals were not caused by contaminating minicircle DNA in the RNA preparations. The data provide direct evidence for the unprecedented finding that the entire length of a kDNA minicircle is transcribed in T. cruzi.  相似文献   

16.
Aspergilli are an important genus of filamentous fungi that contribute to a multibillion dollar industry. Since many fungal genome sequencing were recently completed, it would be advantageous to profile their proteome to better understand the fungal cell factory. Here, we review proteomic data generated for the Aspergilli in recent years. Thus far, a combined total of 28 cell surface, 102 secreted and 139 intracellular proteins have been identified based on 10 different studies on Aspergillus proteomics. A summary proteome map highlighting identified proteins in major metabolic pathway is presented.  相似文献   

17.
18.
19.
Chagas disease (CD) causes the highest burden of parasitic diseases in the Western Hemisphere and is therefore a priority for drug research and development. Platelet-activating factor (PAF) causes the CD parasite Trypanosoma cruzi to differentiate, which suggests that the parasite may express PAF receptors. Here, we explored the T. cruzi proteome for PAF receptor-like proteins. From a total of 23,000 protein sequences, we identified 29 hypothetical proteins that are predicted to have seven transmembrane domains (TMDs), which is the main characteristic of the G protein-coupled receptors (GPCRs), including the PAF receptor. The TMDs of these sequences were independently aligned with domains from 25 animal PAF receptors and the sequences were analysed for conserved residues. The conservation score mean values for the TMDs of the hypothetical proteins ranged from 31.7-44.1%, which suggests that if the putative T. cruzi PAF receptor is among the sequences identified, the TMDs are not highly conserved. These results suggest that T. cruzi contains several GPCR-like proteins and that one of these GPCRs may be a PAF receptor. Future studies may further validate the PAF receptor as a target for CD chemotherapy.  相似文献   

20.
Hemotrophic mycoplasmas, bacteria without cell walls whose niche is the erythrocytes of their hosts, have never been cultivated in vitro. Therefore, knowledge of their pathogenesis is fundamental. Mycoplasma suis infects pigs, causing either acute fatal hemolytic anemia or chronic low-grade anemia, growth retardation, and immune suppression. Recently, the complete genomes of two hemotrophic mycoplasma species, M. suis and M. haemofelis, were sequenced, offering new strategies for the analysis of their pathogenesis. In this study we implemented a proteomic approach to identify M. suis proteins during acute infection by using tandem mass spectrometry. Twenty-two percent of the predicted proteins encoded in M. suis strain KI_3806 were identified. These included nearly all encoded proteins of glycolysis and nucleotide metabolism. The proteins for lipid metabolism, however, were underrepresented. A high proportion of the detected proteins are involved in information storage and processing (72.6%). In addition, several proteins of different functionalities, i.e., posttranslational modification, membrane genesis, signal transduction, intracellular trafficking, inorganic ion transport, and defense mechanisms, were identified. In its reduced genome, M. suis harbors 65.3% (strain Illinois) and 65.9% (strain KI_3806) of the genes encode hypothetical proteins. Of these, only 6.3% were identified at the proteome level. All proteins identified in this study are present in both M. suis strains and are encoded in more highly conserved regions of the genome sequence. In conclusion, our proteome approach is a further step toward the elucidation of the pathogenesis and life cycle of M. suis as well as the establishment of an in vitro cultivation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号