首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
高山被孢霉是一种富含多不饱和脂肪酸的丝状真菌,但其脂质过程中NADPH的来源还没有研究透彻。以高山被孢霉(尿嘧啶营养缺陷型)作为出发菌株,研究亚甲基四氢叶酸脱氢酶(MTHFD1)对高山被孢霉脂质合成的影响。首先构建了过表达载体pBIG2-ura5s-MTHFD1,采用根癌土壤杆菌介导转化真菌的方法,将二元表达载体转化进高山被孢霉CCFM501中,在筛选培养基SC-CS平板上进行筛选,进而得到稳定遗传MTHFD1基因的过表达菌株(MA-MTHFD1);其次提取MA-MTHFD1菌株基因组进行PCR鉴定,并结合qPCR分析结果,表明MTHFD1基因成功在高山被孢霉中实现了过量表达;最后通过对MA-MTHFD1中的脂肪酸含量、NADPH含量及NADPH合成途径中相关基因转录水平进行分析,研究MTHFD1基因过表达对脂质合成的影响。实验结果表明,过表达MTHFD1基因可以提高高山被孢霉脂质合成能力。与原养型高山被孢霉相比,MA-MTHFD1菌株中脂肪酸含量提高了40.13%,NADPH的含量提高了26.45%,而且NADPH合成途径中其他相关基因苹果酸酶(ME)和异柠檬酸脱氢酶(IDH)的转录水平也发生了上调。这一系列研究结果表明,在高山被孢霉脂质合成还原力形成中,MTHFD1基因起到了关键作用。这为解析高山被孢霉中NADPH来源及深入研究脂质合成机制,从而对其胞内脂肪酸代谢通路进行分子水平上的改建提供了一定的理论依据。  相似文献   

2.
γ-亚麻酸(GLA)作为人体必需的不饱和脂肪酸,具有重要的营养和药用价值。Δ6-脂肪酸脱氢酶是γ-亚麻酸合成途径中的关键酶。为了在毕赤酵母中建立一种新的合成γ-亚麻酸的表达体系,将高山被孢霉Δ6-脂肪酸脱氢酶基因与胞内表达载体pPIC3.5K连接,SacⅠ线性化后电击法转化毕赤酵母SMD1168,获得的转化子经PCR鉴定目的基因已整合到毕赤酵母的基因组中。用甲醇诱导表达,通过脂肪酸气相色谱和气相色谱质谱(GC-MS)联用分析表明高山被孢霉Δ6-脂肪酸脱氢酶基因在毕赤酵母中获得表达,γ-亚麻酸含量占总脂肪酸的16.26%。  相似文献   

3.
γ-亚麻酸(GLA)作为人体必需的不饱和脂肪酸,具有重要的营养和药用价值。△^6-脂肪酸脱氢酶是γ-亚麻酸合成途径中的关键酶。为了在毕赤酵母中建立一种新的合成γ-亚麻酸的表达体系,将高山被孢霉△^6-脂肪酸脱氢酶基因与胞内表达载体pPIC3.5K连接,SacⅠ线性化后电击法转化毕赤酵母SMD1168,获得的转化子经PCR鉴定目的基因已整合到毕赤酵母的基因组中。用甲醇诱导表达,通过脂肪酸气相色谱和气相色谱-质谱(GC-MS)联用分析表明高山被孢霉△^6-脂肪酸脱氢酶基因在毕赤酵母中获得表达,γ-亚麻酸含量占总脂肪酸的16.26%。  相似文献   

4.
目的:克隆及分析棘孢木霉木聚糖酶Ⅰ结构基因和上游调控区,以获得内源启动子.方法:根据木霉属木聚糖酶Ⅰ结构基因及上游调控区的保守性,以棘孢木霉基因组DNA为模板,进行简并PCR扩增.产物纯化并克隆至T载体,经酶切鉴定后讲行序列分析.结果:扩增获得1.2 kb的片段,酶切鉴定及序列分析表明,该片段长1 265 bp,由753 bp的木聚糖酶Ⅰ结构基因和512 bp的上游调控区组成.结构基因编码230个氨基酸,具有糖基水解酶第11家族的典型保守区域.上游调控区具备核心启动子和转录起始点,有CAAT-Box、TATA-Box等启动子特征元件,分析其还有Cre Ⅰ、XlnR、Acel、AreA等多个转录因子结合位点.结论:克隆的512 bp上游调控区是典型的丝状真菌基因启动子,可作为内源启动子用于构建棘孢木霉高效外源基因表达系统.  相似文献   

5.
以绿色荧光蛋白(green fluorescent protein,GFP)作为报告基因,将质粒pRH2304转化红冬孢酵母YM25235进行表达分析,荧光显微观察结果表明GFP在YM25235获得表达,建立了红冬孢酵母YM25235遗传转化方法。在此基础上,以高山被孢霉Δ6-脂肪酸脱氢酶基因取代pRH2304中的GFP基因,构建重组质粒pRH2304MAD6,将其转化红冬孢酵母YM25235进行表达分析。PCR结果表明,高山被孢霉Δ6-脂肪酸脱氢酶基因已经整合到YM25235基因组中,进一步的脂肪酸气相色谱分析结果表明,该基因编码产物催化n-6途径中的亚油酸转化成γ-亚麻酸,占细胞总脂肪酸的4.35%,但没有检测到催化n-3途径中的α-亚麻酸转化成十八碳四烯酸。  相似文献   

6.
深黄被孢霉Δ6-脂肪酸脱氢酶基因在大豆中的表达   总被引:9,自引:1,他引:8  
为在传统的油料作物大豆中产生γ 亚麻酸 ,从深黄被孢霉中克隆的Δ6 脂肪酸脱氢酶基因与植物表达载体pBI12 1连接 ,构建了重组质粒pBMICL6 ,采用农杆菌介导的大豆子叶节转化系统成功的将该基因导入到栽培大豆吉林 35、吉林 4 3、吉林 4 7、绥农 10、绥农 14和黑农 37等品种中 ,获得一批转基因植株。经PCR检测和Southern杂交分析 ,证明外源基因已导入并整合到大豆的基因组中。Northern杂交结果表明该基因在转基因大豆的mRNA水平上获得表达。对转基因大豆种子进行脂肪酸成分分析 ,结果表明Δ6 脂肪酸脱氢酶基因获得表达 ,产生了γ 亚麻酸 ,其含量最高可达 2 7 0 6 7% ,这是国内外深黄被孢霉Δ6 脂肪酸脱氢酶基因在大豆中表达的首次报道  相似文献   

7.
深黄被孢霉△^6-脂肪酸脱氢酶基因在大豆中的表达   总被引:4,自引:1,他引:3  
为在传统的油料作物大豆中产生r-亚麻酸,从深黄被孢霉中克隆的△^6-脂肪酸脱氢酶基因与植物表达载体pB1121连接,构建了重组质粒pBMICL-6,采用农杆菌介导的大豆子叶节转化系统成功的将该基因导人到栽培大豆吉林35、吉林43、吉林47、绥农10、绥农14和黑农37等品种中,获得一批转基因植株。经PCR检测和Southern杂交分析,证明外源基因已导人并整合到大豆的基因组中。Northern杂交结果表明该基因在转基因大豆的mRNA水平上获得表达。对转基因大豆种子进行脂肪酸成分分析,结果表明△。-脂肪酸脱氢酶基因获得表达,产生了r-亚麻酸,其含量最高可达27.067%,这是国内外深黄被孢霉△^6-脂肪酸脱氢酶基因在大豆中表达的首次报道。  相似文献   

8.
启动子是控制基因转录的重要顺式元件,也是遗传转化实验中驱动外源基因表达的重要工具。在同一真菌中,不同启动子驱动外源基因表达水平可能存在明显差异。因此,选择合适的启动子是提高外源基因表达水平的关键。本研究分别应用花椰菜病毒35S RNA(cauliflower mosaic virus 35S RNA,CaMV35S)和斑玉蕈甘油醛-3-磷酸脱氢酶(Hypsizygus marmoreus glyceraldehyde-3-phosphate dehydrogenase,HmGPD)基因的启动子构建了两个遗传转化质粒,在斑玉蕈中分别驱动外源的植物花青素合成基因表达,并利用来自刺芹侧耳的萎锈灵抗性基因进行转基因筛选。两个质粒通过农杆菌介导转化斑玉蕈单核菌株后,对具有萎锈灵抗性的转化子经PCR方法进行转基因验证,并运用实时荧光定量PCR对阳性转化子中外源基因的表达水平进行比较分析。结果表明,CaMV35SHmGPD基因的启动子均成功驱动了植物花青素合成基因在斑玉蕈中转录,为增强基因表达而引入的内含子在转录过程中均被正确切割。其中,HmGPD启动子驱动外源基因表达水平比CaMV35S启动子驱动外源基因表达水平强22-36倍。  相似文献   

9.
Δ6 脂肪酸脱氢酶是形成γ 亚麻酸的关键酶。从含有高山被孢霉Δ6 脂肪酸脱氢酶基因的重组质粒pT MACL6中 ,酶切出 1 4kb的目的片段 ,亚克隆到大肠杆菌和酿酒酵母的穿梭表达载体 pYES2 .0 ,在大肠杆菌中筛选到含有目的基因的重组质粒 pYMAD6 ,用醋酸锂方法转化到酿酒酵母的缺陷型菌株INCSc1中 ,在SC Ura合成培养基中 ,选择得到酿酒酵母工程株YMAD6。在合适的培养基及培养条件下 ,加入外源底物亚油酸 ,经半乳糖诱导后 ,收集菌体。通过GC MS对酵母工程株进行脂肪酸色谱分析 ,结果表明 ,产生了 31 6 %的γ 亚麻酸。这是迄今为止 ,国内外Δ6 脂肪酸脱氢酶基因在酿酒酵母中表达量最高的报道。  相似文献   

10.
基因启动子甲基化对转录因子结合的抑制作用分析方法   总被引:1,自引:0,他引:1  
基因启动子甲基化对转录因子结合的抑制作用是一种有效的基因转录调控机制.尽管基因启动子甲基化水平已经可以通过实验测量,但仍未有有效的方法利用这些数据定量分析甲基化对转录因子结合的影响.设计一个通用模型来描述基因启动子甲基化对转录因子结合的抑制作用.在特定细胞环境下,通过基因表达与转录因子在基因启动子上结合值之间的相关性分析,实现模型参数求取,并基于该模型进行甲基化对转录因子结合的抑制作用分析.神经细胞生物实验数据测试证明了该方法的有效性.  相似文献   

11.
12.
13.
Rat liver fatty acid-binding protein (FABP) is a 14.3-kDa cytosolic protein which binds long chain free fatty acids (ffa) and is believed to participate in intracellular movement and/or distribution of ffa. In the studies described here fluorescently labeled ffa were used to examine the physical nature of the ffa-binding site on FABP. The fluorescent analogues were 16- and 18-carbon ffa with an anthracene moiety covalently attached at eight different points along the length of the hydrocarbon chain (AOffa). Emission maxima of all FABP-bound AOffa were found to be considerably blue-shifted with respect to emission of phospholipid membrane-bound AOffa, suggesting a high degree of motional constraint for protein-bound ffa. Large fluorescence quantum yields and long excited state life-times indicate that the FABP-binding site for ffa is highly hydrophobic. Analysis of rotational correlation times for the FABP-bound AOffa suggest that the ffa are tightly bound to the protein. Variation of the quantum yield with attachment site suggests that the carboxylic acid group of the fatty acyl chain is located near the aqueous surface of the FABP. The rest of the ffa hydrocarbon chain is buried within the protein in a hydrophobic pocket and is particularly constrained at the midportion of the acyl chain.  相似文献   

14.
The fatty acid transport function of fatty acid-binding proteins   总被引:38,自引:0,他引:38  
The intracellular fatty acid-binding proteins (FABPs) comprise a family of 14-15 kDa proteins which bind long-chain fatty acids. A role for FABPs in fatty acid transport has been hypothesized for several decades, and the accumulated indirect and correlative evidence is largely supportive of this proposed function. In recent years, a number of experimental approaches which more directly examine the transport function of FABPs have been taken. These include molecular level in vitro modeling of fatty acid transfer mechanisms, whole cell studies of fatty acid uptake and intracellular transfer following genetic manipulation of FABP type and amount, and an examination of cells and tissues from animals engineered to lack expression of specific FABPs. Collectively, data from these studies have provided strong support for defining the FABPs as fatty acid transport proteins. Further studies are necessary to elucidate the fundamental mechanisms by which cellular fatty acid trafficking is modulated by the FABPs.  相似文献   

15.
16.
We have employed a new pseudosubstrate, beta-(2-furyl)propionyl coenzyme A (FPCoA), to study the functional properties of two enzymes, fatty acyl-CoA dehydrogenase from porcine liver and fatty acyl-CoA oxidase from Candida tropicalis, involved in the oxidation of fatty acids. Previous studies from our laboratory have shown that the dehydrogenase exhibits oxidase activity at the rate of dissociation of the product charge-transfer complex. This raises the question of the difference in functionality between these two flavoproteins. To investigate these differences, we have compared the pH dependence of product formation, the isotope effects using tetradeuterio-FPCoA, and the spectral properties and chemical reactivity of the product charge-transfer complexes formed with the two enzymes. The pH dependencies of the reaction of FPCoA with electron-transfer flavoprotein (ETF) for the dehydrogenase and of the reaction of FPCoA with O2 for the oxidase are quite similar. Both reactions proceed more rapidly at basic pH values while substrate binds more tightly at acidic pH values. These data for both enzymes are consistent with a mechanism in which enzyme is involved in protonation of the carbonyl group of substrate followed by base-catalyzed removal of the C-2 proton from substrate. The C-2 anion of substrate may then serve as the active species in reduction of enzyme-bound flavin. The deuterium isotope effects for both enzyme systems are primary across the entire pH range, assuring that the chemically important step of substrate oxidation is rate limiting in these steady-state kinetic experiments. The two enzymes differ in the chemical reactivity of their product charge-transfer complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Intersubunit transfer of fatty acyl groups during fatty acid reduction   总被引:2,自引:0,他引:2  
Fatty acid reduction in Photobacterium phosphoreum is catalyzed in a coupled reaction by two enzymes: acyl-protein synthetase, which activates fatty acids (+ATP), and a reductase, which reduces activated fatty acids (+NADPH) to aldehyde. Although the synthetase and reductase can be acylated with fatty acid (+ATP) and acyl-CoA, respectively, evidence for acyl transfer between these proteins has not yet been obtained. Experimental conditions have now been developed to increase significantly (5-30-fold) the level of protein acylation so that 0.4-0.8 mol of fatty acyl groups are incorporated per mole of the synthetase or reductase subunit. The acylated reductase polypeptide migrated faster on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the unlabeled polypeptide, with a direct 1 to 1 correspondence between the moles of acyl group incorporated and the moles of polypeptide migrating at this new position. The presence of 2-mercaptoethanol or NADPH, but not NADP, substantially decreased labeling of the reductase enzyme, and kinetic studies demonstrated that the rate of covalent incorporation of the acyl group was 3-5 times slower than its subsequent reduction with NADPH to aldehyde. When mixtures of the synthetase and reductase polypeptides were incubated with [3H] tetradecanoic acid (+ATP) or [3H]tetradecanoyl-CoA, both polypeptides were acylated to high levels, with the labeling again being decreased by 2-mercaptoethanol or NADPH. These results have demonstrated that acylation of the reductase represents an intermediate and rate-limiting step in fatty acid reduction. Moreover, the activated acyl groups are transferred in a reversible reaction between the synthetase and reductase proteins in the enzyme mechanism.  相似文献   

18.
19.
20.
Summary Although abundant in most biological tissues and chemically well characterized, the fatty acid-binding protein (FABP) was until recently in search of a function. Because of its strong affinity for long chain fatty acids and its cytoplasmic origin, this protein was repeatedly claimed in the literature to be the transcytoplasmic fatty acid carrier. However, techniques to visualize and quantify the movements of molecules in the cytoplasm are still in their infancy. Consequently the carrier function of FABP remains somewhat speculative. However, FABP binds not only fatty acids but also their CoA and carnitine derivatives, two typical molecules of mitochondrial origin. Moreover, it has been demonstrated and confirmed that FABP is not exclusively cytoplasmic, but also mitochondrial. A function for FABP in the mitochondrial metabolism of fatty acids plus CoA and carnitine derivatives would therefore be anticpated. Using spin-labelling techniques, we present here evidence that FABP is a powerful regulator of acylcarnitine flux entering the mitochondrial -oxidative system. In this perspective FABP appears to be an active link between the cytoplasm and the mitochondria, regulating the energy made available to the cell. This active participation of FABP is shown to be the consequence of its gradient-like distribution in the cardiac cell, and also of the coexistence of multispecies of this protein produced by self-aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号