首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work is to characterize Nephilengys cruentata in relation to the diploid number, chromosome morphology, type of sex determination chromosome system, chromosomes bearing the Nucleolar Organizer Regions (NORs), C-banding pattern, and AT or GC repetitive sequences. The chromosome preparations were submitted to standard staining (Giemsa), NOR silver impregnation, C-banding technique, and base-specific fluorochrome staining. The analysis of the cells showed 2n = 24 and 2n = 26 chromosomes in the embryos, and 2n = 26 in the ovarian cells, being all the chromosomes acrocentric. The long arm of the pairs 1, 2 and 3 showed an extensive negative heteropycnotic area when the mitotic metaphases were stained with Giemsa. The sexual chromosomes did not show differential characteristics that allowed to distinguish them from the other chromosomes of the complement. Considering the diploid numbers found in N. cruentata and the prevalence of X1X2 sex determination chromosome system in Tetragnathidae, N. cruentata seems to possess 2n = 24 = 22 + X1X2 in the males, and 2n = 26 = 22 + X1X1X2X2 in the females. The pairs 1, 2 and 3 showed NORs which are coincident with the negative heteropycnotic patterns. Using the C-banding technique, the pericentromeric region of the chromosomes revealed small quantity or even absence of constitutive heterochromatin, differing of the C-banding pattern described in other species of spiders. In N. cruentata the fluorochromes DAPI/DA, DAPI/MM and CMA3/DA revealed that the constitutive heterochromatin is rich in AT bases and the NORs possess repetitive sequences of GC bases.  相似文献   

2.
Rozek M  Lachowska D 《Folia biologica》2001,49(3-4):179-182
The C-banding pattern of Bembidion geniculatum, Silpha atrata, Prosternon tesselatum, and Epicometis hirta are presented. All analysed species have pracentromeric C-bands on autosomes and chromosome X but the widest ones are visible in the karyotype of B. geniculatum. In S. atrata, P. tesselatum, and E. hirta sex chromosome y is heterochromatic, only B. geniculatum having the Y chromosome wholly euchromatin. The results indicate that on the chromosomes of the investigated species do not have a terminal and an intercalar segments of heterochromatin.  相似文献   

3.
The basic male karyotype of the six Nabis species (Heteroptera, Nabidae) is confirmed as being 2n=16+XY. The chromosomes are holokinetic while male meiosis is achiasmatic. The sex chromosomes undergo postreduction and in second metaphase show distance pairing, registered in all nabid species examined so far. Using C-banding technique for the first time in the family Nabidae, the heterochromatin was revealed on chromosomes of six species. The species showed different amount and distribution of C-heterochromatin. Only in Nabis (Dolichonabis) limbatus did the C-bands distribution make possible the identification of every chromosome pair in the karyotype. In other species, C-bands were found in some of the autosomes and the X, localized either interstitially or at telomeres. Only the Y usually showed relative stability ofthe C-banding pattern. In four of six species, extra (B) chromosomes were observed and their behaviour in meiosis described.  相似文献   

4.
D. G. Bedo 《Chromosoma》1982,87(1):21-32
Non banded sex chromosome elements have been identified in polytene trichogen cells of Lucilia cuprina using Y-autosome translocations, C-banding and Quinacrine fluorescence. The X chromosome is an irregular granular structure while the much smaller Y chromosome has both a dense darkly stained and a loosely organised segment. The X and Y chromosomes are underreplicated in polytene cells but comparison of C- and Q-banding characteristics of sex chromosomes in diploid and polytene tissues indicates that selective replication of non C-banding material occurs in both the sex chromosomes. Brightly fluorescing material in the Y chromosome is replicated to such an extent that it consists of half the polytene element, while the C-banding material, which makes up most of the diploid X chromosome, is virtually unreplicated. Differential replication also occurs in autosomes. In XXY males, and in males carrying a duplication of the X euchromatic region, a short uniquely banded polytene chromosome is formed. It is suggested that in males carrying two doses of X euchromatin a dosage compensation mechanism operates in which genes in one copy are silenced by forming a banded polytene chromosome.  相似文献   

5.
Mitotic metaphase chromosomes of Silene latifolia (white campion) and Silene dioica (red campion) were studied and no substantial differences between the conventional karyotypes of these two species were detected. The classification of chromosomes into three distinct groups proposed for S. latifolia by Ciupercescu and colleagues was considered and discussed. Additionally, a new small satellite on the shorter arm of homobrachial chromosome 5 was found. Giemsa C-banded chromosomes of the two analysed species show many fixed and polymorphic heterochromatic bands, mainly distally and centromerically located. Our C-banding studies provided an opportunity to better characterize the sex chromosomes and some autosome types, and to detect differences between the two Silene karyotypes. It was shown that S. latifolia possesses a larger amount of polymorphic heterochromatin, especially of the centromeric type. The two Silene sex chromosomes are easily distinguishable not only by length or DNA amount differences but also by their Giemsa C-banding patterns. All Y chromosomes invariably show only one distally located band, and no other fixed or polymorphic bands on this chromosome were observed in either species. The X chromosomes possess two terminally located fixed bands, and some S. latifolia X chromosomes also have an extra-centric segment of variable length. The heterochromatin amount and distribution revealed by our Giemsa C-banding studies provide a clue to the problem of sex chromosome and karyotype evolution in these two closely related dioecious Silene species.  相似文献   

6.
The C-banding patterns in the chromosomes ofMicrotus oeconomus, M. arvalis andM. ochrogaster demonstrate differences in the amount and distribution of heterochromatin. Autosomal centromeric heterochromatin appears as conspicuous blocks or as small dots, and in several chromosomes no heterochromatin was detected; interstitial heterochromatin was observed in one autosome pair ofM. ochrogaster. The sex chromosomes also demonstrate differences in the C-banding pattern. InM. oeconomus, the X chromosome exhibits a block of centromeric heterochromatin which is larger than that of the autosomes; this characteristic helps to recognize the X chromosomes in the karyotype. InM. arvalis no heterochromatin was appreciated in the sex chromosomes. The Y chromosomes ofM. ochrogaster andM. oeconomus are entirely heterochromatic. During male meiosis heterochromatin shows condensation, association and chiasma prevention; the sex chromosomes pair end to end in the three species. At pairing, the Y chromosome ofM. arvalis is despiralized, but it appears condensed again shortly before separation of the bivalent.  相似文献   

7.
The karyotypes, sex chromosome systems, and male meiotic patterns in 13 species belonging to 10 genera of the family Tingidae were studied. Data on eleven species, one subgenus, and 5 genera are presented for the first time, and the chromosome formula of Acalypta parvula is revised. Karyotypes of all species included six pairs of autosomes. Most of the species displayed an XY sex chromosome system, in four species, belonging to genera of Acalypta and Kalama, the X0 system was found. Male meiosis is chiasmatic for autosomes. Sex chromosomes are achiasmatic and undergo pre-reductional meiosis. Using C-banding technique, for the first time constitutive heterochromatin was localized on chromosomes in all the species studied. The heterochromatin was found either in telomeres or in some species in interstitial locations, evidencing that a quite substantial redistribution of chromosome material within chromosomes might occur without fragmentations or fusions. In two species, a supernumerary (B) chromosome was found. In addition, the male reproductive system of four species was examined and the number of testicular follicles was determined as two per testis.  相似文献   

8.
C-banding patterns of 32 beetle species from the families Elateridae, Cantharidae, Oedemeridae, Cerambycidae, Anthicidae, Chrysomelidae, Attelabidae and Curculionidae were studied using the C-banding technique. Mitotic and meiotic chromosomes were previously described for 14 species. From among 18 species that had never been cytogenetically studied, we determined the diploid and haploid chromosome numbers and the sex determination system for 12 beetles. The karyotype for 6 species is not described because of a lack of mitotic and meiotic metaphases. Results confirm that most of the beetle species possess a small amount of heterochromatin and C-positive segments are weakly visible in pachytene stages and weakly or imperceptible in mitotic and meiotic metaphases. In some species with a large amount of heterochromatin, C-bands were observed in the centromeric region in all autosomes and the X chromosome. The Y chromosome does not show C-bands with the exception of Oedemera viridis in which it possesses a small band of heterochromatin.  相似文献   

9.
Japanese hop (Humulus japonicus Siebold & Zucc.) was karyotyped by chromosome measurements, fluorescence in situ hybridization with rDNA and telomeric probes, and C-banding/DAPI. The karyotype of this species consists of sex chromosomes (XX in female and XY1Y2 in male plants) and 14 autosomes difficult to distinguish by morphology. The chromosome complement also shows a rather monotonous terminal distribution of telomeric repeats, with the exception of a pair of autosomes possessing an additional cluster of telomeric sequences located within the shorter arm. Using C-banding/DAPI staining and 5S and 45S rDNA probes we constructed a fluorescent karyotype that can be used to distinguish all autosome pairs of this species except for the 2 largest autosome pairs, lacking rDNA signals and having similar size and DAPI-banding patterns. Sex chromosomes of H. japonicus display a unique banding pattern and different DAPI fluorescence intensity. The X chromosome possesses only one brightly stained AT-rich terminal segment, the Y1 has 2 such segments, and the Y2 is completely devoid of DAPI signal. After C-banding/DAPI, both Y chromosomes can be easily distinguished from the rest of the chromosome complement by the increased fluorescence of their arms. We discuss the utility of these methods for studying karyotype and sex chromosome evolution in hops.  相似文献   

10.
Four rodent species with very large heterochromatic regions on the sex chromosomes have been studied using in situ DNA/DNA hybridization techniques. Repetitious DNA fractions were obtained at C0t 0-0.01. Heterochromatic regions of X and X chromosomes of Cricetulus barabensis and Phodopus sungorus, and the heterochromatic long arm of the Y chromosome of Mesocricetus auratus do not contain disproportionately high amounts of repeated DNA sequences. Heterochromatic regions on sex chromosomes of Microtus subarvalis contain high amounts of repeated DNA sequences. Additional heterochromatic autosomal arms, a heterochromatic arm of the X chromosome, and a short arm of the Y chromosome of Mesocricetus auratus contain high amounts of repeated DNA sequences too.  相似文献   

11.
Cytogenetic studies were performed in two syntopic species of Characidium, C. lauroi and Characidium sp. cf. C. alipioi, from Ribeir?o Grande, Paraíba do Sul river basin. Both species have diploid number 2n=50 chromosomes, but differ in chromosome shape, C-banding pattern and location of nucleolar organizing regions. In Characidium sp. cf. C. alipioi a new type of ZW sex chromosome system composed of equal sized metacentric chromosomes is reported for the first time in the genus Characidium. Species of Characidium with a sex chromosome system form a monophyletic group. Variations in this system are interpreted as resulting from geographic isolation among allopatric species.  相似文献   

12.
The use of in situ restriction endonuclease (RE) (which cleaves DNA at specific sequences) digestion has proven to be a useful technique in improving the dissection of constitutive heterochromatin (CH), and in the understanding of the CH evolution in different genomes. In the present work we describe in detail the CH of the three Rodentia species, Cricetus cricetus, Peromyscus eremicus (family Cricetidae) and Praomys tullbergi (family Muridae) using a panel of seven REs followed by C-banding. Comparison of the amount, distribution and molecular nature of C-positive heterochromatin revealed molecular heterogeneity in the heterochromatin of the three species. The large number of subclasses of CH identified in Praomys tullbergi chromosomes indicated that the karyotype of this species is the more derived when compared with the other two genomes analyzed, probably originated by a great number of complex chromosomal rearrangements. The high level of sequence heterogeneity identified in the CH of the three genomes suggests the coexistence of different satellite DNA families, or variants of these families in these genomes.  相似文献   

13.
The karyotype and male meiosis of Macrolophus costalis Fieber (Insecta, Heteroptera, Miridae) were studied using C-banding, AgNOR-banding and DNA sequence specific fluorochrome staining. The chromosome formula of the species is 2n = 28(24+X1X2X3Y). Male meiotic prophase is characterized by a prominent condensation stage. At this stage, two sex chromosomes, "X" and Y are positively heteropycnotic and always appeared together, while in autosomal bivalents homologous chromosomes were aligned side by side along their entire length, that is, meiosis is achiasmatic. At metaphase I, "X" and Y form a pseudobivalent and orient to the opposite poles. At early anaphase I, the "X" chromosome disintegrates into three separate small chromosomes, X1, X2, and X3. Hence both the autosomes and sex chromosomes segregate reductionally in the first anaphase, and separate equationally in the second anaphase. This is the first evidence of sex chromosome pre-reduction in the family Miridae. Data on C-heterochromatin distribution and its composition in the chromosomes of this species are discussed.  相似文献   

14.
中国两种波腿蝗(蝗总科:癞蝗科)染色体C带核型研究   总被引:4,自引:0,他引:4  
李新江  张道川  王文强 《遗传》2005,27(5):735-740
报道中国两种波腿蝗的染色体C带核型,结果表明:红胫波腿蝗Asiotmethis zacharjini (Bei-Bienko, 1926) 2n ♂ =18, neo-X为亚中着丝粒染色体,其他均为近端着丝粒染色体,染色体除强染的着丝粒C带,S8染色体具强染端部C带带纹,neo-Y染色体还具有一条宽的弱染的近着丝粒端居间C带,性别决定机制是neo-XY ♂型,该种染色体组成和性别决定机制在我国癞蝗中为首次报道,蓝胫波腿蝗Asiotmethis jubatus (Uvarov, 1926) 2n=19♂,均为近端着丝粒染色体,仅具有明显强染的着丝粒C带,性别决定机制是XO ♂型;两种波腿蝗的异染色质含量存在显著性差异(α=0.05)。  相似文献   

15.
De Almeida MC  Zacaro AA  Cella DM 《Hereditas》2000,133(2):147-157
The mitotic and meiotic chromosomes of the beetles Epicauta atomaria (Meloidae) and Palembus dermestoides (Tenebrionidae) were analysed using standard staining, C-banding and silver impregnation techniques. We determine the diploid and haploid chromosome numbers, the sex determination system and describe the chromosomal morphology, the C-banding pattern and the chromosome(s) bearing NORs (nucleolar organizer regions). Both species shown 2n = 20 chromosomes, the chromosomal meioformula 9 + Xyp, and regular chromosome segregation during anaphases I and II. The chromosomes of E. atomaria are basically metacentric or submetacentric and P. dermestoides chromosomes are submetacentric or subtelocentric. In both beetles the constitutive heterochromatin is located in the pericentromeric region in all autosomes and in the Xp chromosome; additional C-bands were observed in telomeric region of the short arm in some autosomes in P. dermestoides. The yp chromosome did not show typical C-bands in these species. As for the synaptonemal complex, the nucleolar material is associated to the 7th bivalent in E. atomaria and 3rd and 7th bivalents in P. dermestoides. Strong silver impregnated material was observed in association with Xyp in light and electron microscopy preparations in these species and this material was interpreted to be related to nucleolar material.  相似文献   

16.
C-banding and silver staining of the somatic and germ cells of the male domestic dog. Canis familiaris, have shown that: (1) the amount of C-banding is small compared to most other mammalian species, (2) three pairs of autosomes have nucleolus organizer regions (NORs) at the terminal ends of their long arms, whereas the Y chromosome has an NOR on the terminal end of the short arm, (3) the organization of the synaptonemal complex (SC) is similar to that of other mammalian species, (4) a distinct SC is formed between the long arm of the Y chromosome and probably the short arm of the X chromosome, and (5) the differential axes of both sex chromosomes do not demonstrate fusiform thickenings nor do they stain darkly with silver as do the XY bivalents in many other mammalian species.  相似文献   

17.
This study presents a comparison of the mitotic chromosomes of the two species of hamsters Cricetus cricetus (European hamster) and Cricetulus griseus (Chinese hamster), which have the same chromosome number of 2n=22. — G-banding procedure reveals striking similarities in both karyotypes and gives the possibility to analyse structural changes so that two examples for Robertsonian rearrangement can be observed. — A remarkable kind of difference between the two karyotypes becomes obvious after C-banding procedure. While Cricetus cricetus shows a large amount of predominantly centromeric heterochromatin, in Cricetulus griseus C-bands are less conspicuous, and a few chromosomes do not exhibit any centromeric heterochromatin at all.  相似文献   

18.
D. G. Bedo 《Chromosoma》1980,77(3):299-308
In Lucilia cuprina C-banding produces procentric bands on all autosomes and deep staining over most of the X and Y chromosomes which conciderably facilitates the analysis of complex Y chromosome rearrangements. The Y chromosome is generally darkly C-banded throughout while in the X chromosome a pale staining segment is found in the distal portion of the long arm. Modulation of the banding reaction results in grey areas in both X and Y. When C-banding is compared with allocycly it is clear that not all heteropycnotic regions in the sex chromosomes C-band to the same extent. Secondary constrictions in the short arms of both X and Y chromosomes are clearly revealed by C-banding, the X satellite being polymorphic for size.— Q-banding results in a brightly fluorescing band in the short arm of structurally normal Y chromosomes. This band loses its fluorescence in some translocations, probably through a position effect. Hoechst 33258 staining does not produce any brightly fluorescing bands.  相似文献   

19.
The karyotypes and C-banding patterns of Chrysomya species C. marginalis, C. phaonis, C. pinguis, C. saffranea, C. megacephala (New Guinean strain), Lucilia sericata, and Protophormia terraenovae are described. All species are amphogenic and have similar chromosome complements (2n = 12), including an XY-XX sex-chromosome pair varying in size and morphology between species. Additionally, the C-banding pattern of the monogenic species Chrysomya albiceps is presented. The DNA contents of these and of further species Chrysomya rufifacies, Chrysomya varipes, and Chrysomya putoria were assessed on mitotic metaphases by Feulgen cytophotometry. The average 2C DNA value of the male genomes ranged from 1.04 pg in C. varipes to 2.31 pg in C. pinguis. The DNA content of metaphase X chromosomes varied from 0.013 pg (= 1.23% of the total genome) in C. varipes to 0.277 pg (12.20%) in L. sericata; that of Y chromosomes ranged from 0.003 pg (0.27%) in C. varipes to 0.104 pg (5.59%) in L. sericata. In most species, the corresponding 5 large chromosome pairs showed similar relative DNA contents. The data suggest that the interspecific DNA differences in most species are mainly due to quantitative variation of (repetitive) sequences lying outside the centromeric heterochromatin blocks of the large chromosomes. The results are also discussed with regard to phylogenetic relationships of some species.  相似文献   

20.
The karyotype of Mastophorus muris (Gmelin, 1790) comprises four pairs of small autosomal chromosomes and two larger sex X chromosomes in females or one X chromosome in males (2n = 8 + XX/XO). All pairs of chromosomes possess rather uniform morphology without distinct primary or secondary constrictions. No heterochromatin bands were found by C-banding analysis. The absolute chromosome length ranges from 4.02 to 2.24 microns. The mean total length of the haploid complement is 14.34 microns. The course of gametogenesis represents a typical pattern common in the order Spirurida. The recently available karyotypes of spirurid nematodes have been reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号