首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemipteran chromosomes are holocentric and show regular, special behavior at meiosis. While the autosomes pair at pachytene, have synaptonemal complexes (SCs) and recombination nodules (RNs) and segregate at anaphase I, the sex chromosomes do not form an SC or RNs, divide equationally at anaphase I, and their chromatids segregate at anaphase II. Here we show that this behavior is shared by the X and Y chromosomes of Triatoma infestans and the X(1)X(2)Y chromosomes of Triatoma pallidipennis. As Rec8p is a widely occurring component of meiotic cohesin, involved in meiotic homolog segregation, we used an antibody against Rec8p of Caenorhabditis elegans for immunolocalization in these triatomines. We show that while Rec8p is colocalized with SCs in the autosomes, no Rec8p can be found by immunolabeling in the sex chromosomes at any stage of meiosis. Furthermore, Rec8p labeling is lost from autosomal bivalents prior to metaphase I. In both triatomine species the sex chromosomes conjoin with each other during prophase I, and lack any SC, but they form "fuzzy cores", which are observed with silver staining and with light and electron microscopy during pachytene. Thin, serial sectioning and electron microscopy of spermatocytes at metaphases I and II reveals differential behavior of the sex chromosomes. At metaphase I the sex chromosomes form separate entities, each surrounded by a membranous sheath. On the other hand, at metaphase II the sex chromatids are closely tied and surrounded by a shared membranous sheath. The peculiar features of meiosis in these hemipterans suggest that they depart from the standard meiotic mechanisms proposed for other organisms.  相似文献   

2.
In meiosis I, homologous chromosomes combine to form bivalents, which align on the metaphase plate. Homologous chromosomes then separate in anaphase I. Univalent sex chromosomes, on the other hand, are unable to segregate in the same way as homologous chromosomes of bivalents due to their lack of a homologous pairing partner in meiosis I. Here, we studied univalent segregation in a Hemipteran insect: the spittlebug Philaenus spumarius. We determined the chromosome number and sex determination mechanism in our population of P. spumarius and showed that, in male meiosis I, there is a univalent X chromosome. We discovered that the univalent X chromosome in primary spermatocytes forms an amphitelic attachment to the spindle and aligns on the metaphase plate with the autosomes. Interestingly, the X chromosome remains at spindle midzone long after the autosomes have separated. In late anaphase I, the X chromosome initiates movement towards one spindle pole. This movement appears to be correlated with a loss of microtubule connections between the kinetochore of one chromatid and its associated spindle pole.  相似文献   

3.
The meiotic behaviour and structure of the sex chromosomes of Microtus oeconomus (2n=30) in Giemsa stained preparations are described. The X-Y pair appears as a sex vesicle at late zygotene. At late pachytene an unfolded sex vesicle is visible. A condensed sex vesicle appears during pre-diffuse diplotene and starts to unfold again during post-diffuse diplotene. At diakinesis and metaphase I the X and Y chromosomes can be recognized in an end-to-end association. During anaphase I, interkinesis and metaphase II the sex chromosomes are heteropycnotic and can therefore easily be recognized during the final stages of meiosis. During spermiogenesis the X and Y chromosomes can be identified in Giemsa stained preparations until the stage of spermatid elongation.  相似文献   

4.
In most eutherian mammals, sex chromosomes synapse and recombine during male meiosis in a small region called pseudoautosomal region. However in some species sex chromosomes do not synapse, and how these chromosomes manage to ensure their proper segregation is under discussion. Here we present a study of the meiotic structure and behavior of sex chromosomes in one of these species, the Mongolian gerbil (Meriones unguiculatus). We have analyzed the location of synaptonemal complex (SC) proteins SYCP1 and SYCP3, as well as three proteins involved in the process of meiotic recombination (RAD51, MLH1, and γ-H2AX). Our results show that although X and Y chromosomes are associated at pachytene and form a sex body, their axial elements (AEs) do not contact, and they never assemble a SC central element. Furthermore, MLH1 is not detected on the AEs of the sex chromosomes, indicating the absence of reciprocal recombination. At diplotene the organization of sex chromosomes changes strikingly, their AEs associate end to end, and SYCP3 forms an intricate network that occupies the Y chromosome and the distal region of the X chromosome long arm. Both the association of sex chromosomes and the SYCP3 structure are maintained until metaphase I. In anaphase I sex chromosomes migrate to opposite poles, but SYCP3 filaments connecting both chromosomes are observed. Hence, one can assume that SYCP3 modifications detected from diplotene onwards are correlated with the maintenance of sex chromosome association. These results demonstrate that some components of the SC may participate in the segregation of achiasmate sex chromosomes in eutherian mammals.  相似文献   

5.
During meiosis I in males of the mole cricket Neocurtilla (Gryllotalpa) hexadactyla, the univalent X1 chromosome and the heteromorphic X2Y chromosome pair segregate nonrandomly; the X1 and X2 chromosomes move to the same pole in anaphase. By means of ultrastructural analysis of serial sections of cells in several stages of meiosis I, metaphase of meiosis II, and mitosis, we found that the kinetochore region of two of the three nonrandomly segregating chromosomes differ from autosomal kinetochores only during meiosis I. The distinction is most pronounced at metaphase I when massive aggregates of electron-dense substance mark the kinetochores of X1 and Y chromosomes. The lateral position of the kinetochores of X1 and Y chromosomes and the association of these chromosomes with microtubules running toward both poles are also characteristic of meiosis I and further distinguish X1 and Y from the autosomes. Nonrandomly segregating chromosomes are typically positioned within the spindle so that the kinetochoric sides of the X2Y pair and the X1 chromosome are both turned toward the same interpolar spindle axis. This spatial relationship may be a result of a linkage of X1 and Y chromosomes lying in opposite half spindles via a small bundle of microtubules that runs between their unusual kinetochores. Thus, nonrandom segregation in Neocurtilla hexadactyla involves a unique modification at the kinetochores of particular chromosomes, which presumably affects the manner in which these chromosomes are integrated within the spindle.  相似文献   

6.
In premeiotic stages of the male, the entire Y chromosome and the heterochromatio 3/4 of the X chromosome remain heavily condensed. Pairing of the sex chromosomes does not occur during zygotene. The sex vesicle stage lasts from middle pachytene to the beginning of diplotene. At the more advanced diplotene stages, X and Y lie again separate; chiasma formation has not been observed. Thus, it seems improbable that any pairing occurs at all between X and Y during meiosis. The findings support the hypothesis that heterochromatin does not participate in meiotic exchange, independent of possible homologies between the chromosome segments.  相似文献   

7.
An Australian mantid, Ima fusca, with 2n male equals 34, shows achiasmatic meiosis in the male, as in other Australian members of the subfamily Iridopteryginae. It is, however, unique among approximately 104 mantid species that have been studied cytologically, in having an XY sex chromosome mechanism. The X and Y chromosomes are not associated as a bivalent in first metaphase, but arrange themselves opposite one another on the spindle and regularly pass to different poles at first anaphase.  相似文献   

8.
In the flea beetle species, Alagoasa bicolor, males have two sex chromosomes, X and Y, each of which is larger than the rest of the genome combined. These large sex chromosomes do not pair at meiosis I, and are therefore not joined at metaphase I. Nevertheless, they always segregate from each other at anaphase I. As prometaphase I progresses, the unpaired X and Y undergo reorientation from a parallel to a linear configuration. Using 3F3/2, an antibody that detects the level of phosphorylation of a kinetochore protein or proteins, we have determined that this reorientation is not accompanied by a change in the level of phosphorylation of the kinetochores of either X or Y. This implies that: i) either the reorientation does not involve the loss or gain of kinetochore microtubules, or ii) if such loss or gain occurs, it does not effect a change in the tension placed on the nonrandomly segregating kinetochores, or iii) the sex chromosomes, as in some other species, have lost the ability to sense kinetochore tension changes. Evolution of nonrandom segregation may necessitate the inability of the participating chromosomes to affect the metaphase checkpoint.  相似文献   

9.
The karyotype and meiosis in males of giant water bug Lethocerus patruelis (Heteroptera: Belostomatidae: Lethocerinae) were studied using standard and fluorochrome (CMA3 and DAPI) staining of chromosomes. The species was shown to have 2n = 22A + 2m + XY where 2m are a pair of microchromosomes. NORs are located in X and Y chromosomes. Within Belostomatidae, Lethocerus patruelis is unique in showing sex chromosome pre-reduction in male meiosis, with the sex chromosomes undergoing reductional division at anaphase I and equational division at anaphase II. Cytogenetic data on the family Belostomatidae are summarized and compared. In addition, the structure of the male internal reproductive organs of Lethocerus patruelis is presented, the contemporary distribution of Lethocerus patruelis in Bulgaria and in the northern Aegean Islands is discussed, and the first information about the breeding and nymphal development of this species in Bulgaria is provided.  相似文献   

10.
During meiosis I, homologous chromosomes join together to form bivalents. Through trial and error, bivalents achieve stable bipolar orientations (attachments) on the spindle that eventually allow the segregation of homologous chromosomes to opposite poles. Bipolar orientations are stable through tension generated by poleward forces to opposite poles. Unipolar orientations lack tension and are stereotypically not stable. The behavior of sex chromosomes during meiosis I in the male black widow spider Latrodectus mactans (Araneae, Theridiidae) challenges the principles governing such a scenario. We found that male L. mactans has two distinct X chromosomes, X1 and X2. The X chromosomes join together to form a connection that is present in prometaphase I but is lost during metaphase I, before the autosomes disjoin at anaphase I. We found that both X chromosomes form stable unipolar orientations to the same pole that assure their co-segregation at anaphase I. Using micromanipulation, immunofluorescence microscopy, and electron microscopy, we studied this unusual chromosome behavior to explain how it may fit the current dogma of chromosome distribution during cell division.  相似文献   

11.
Controversy exists regarding the meiotic behaviour of the giant sex chromosomes during spermatogenesis in the field vole, Microtus agrestis. Both univalents and bivalents have been observed between diakinesis and metaphase I. These differences seem to be dependent on the technique used. The present study employs electron microscopy of serially sectioned testes tubules and light microscopy of microspread preparations to re-examine the behaviour of sex chromosomes during meiosis. In microspreads, about one-third of the early pachytene nuclei examined showed end joining of the X and Y axes. The longitudinal heterogeneity of the chromosomes in the form of axial thickenings allowed the detection of two different end-joining patterns. In the remaining early pachytene cells as well as in all mid to late pachytene cells seen, the X and Y axes had, though near to each other, no contact in the form of a synaptonemal complex. If a synaptonemal complex is a prerequisite for genetic exchange, the sex chromosomes in M. agrestis males must be achiasmatic. The analysis of serial sections through an early pachytene and a late prophase I nucleus with the electron microscope revealed that the sex chromosomes occupied a common area. By metaphase I, the centromeres of the X and Y were oriented towards opposite spindle poles while the chromosomes remained attached to one another by their distal segments at the level of the metaphase I plate. As a consequence of the large size of the sex chromosomes their centromeres lay close to the spindle poles. In anaphase I the sex chromosomes maintained their metaphase position until the autosomes approached the spindle poles. During autosomal migration a medial constriction developed where the sex chromosomes were mutually associated, the X and Y became separated, and joined the autosomes. In metaphase II the chromatids of the sex chromosomes lay side by side and exhibited a delayed separation in the subsequent anaphase. It is suggested that heterochromatin, which represents a major part of both sex chromosomes, plays a role in the association of the two achiasmatic sex chromosomes in metaphase I and in the delayed separation of the chromatids of the sex chromosomes in anaphase II.Dedicated to Prof. C.-G. Arnold (Erlangen) on the occasion of his 60th birthday  相似文献   

12.
The behaviour of two chromosome structures in silver-stained chromosomes was analyzed through the first meiotic division in spermatocytes of the acridoid species Arcyptera fusca. Results showed that at diakinesis kinetochores and chromatid cores are individualized while they associate in bivalents of metaphase I; only kinetochores and distal core spots associate in the sex chromosome. Metaphase I is characterized by morphological and localization changes of both kinetochores and cores which define the onset of anaphase I. These changes analyzed in both autosomes and in the sex chromosome allow us to distinguish among three different substages in metaphase I spermatocytes. B chromosomes may be present as univalents, bivalents, or trivalents. Metaphase I B univalents are characterized by separated cores except at their distal ends and individualized and flat sister kinetochores. At anaphase I sister kinetochores of lagging B chromatids remain connected through a silver-stained strand. The behaviour of cores and kinetochores of B bivalents is identical with that found in the autosomal bivalents. The differences in the morphology of kinetochores of every chromosome shown by B trivalents at metaphase I may be related to the balanced forces acting on the multivalent. The results show dramatic changes in chromosome organization of bivalents during metaphase I. These changes suggest that chromatid cores are not involved in the maintenance of bivalents. Moreover, the changes in morphology of kinetochores are independent of the stage of meiosis but correlate with the kind of division (amphitelic-syntelic) that chromosomes undergo.  相似文献   

13.
Cicadellidae in one of the best represented families in the Neotropical Region, and the tribe Proconiini comprises most of the xylem-feeding insects, including the majority of the known vectors of xylem-born phytopathogenic organisms. The cytogenetics of the Proconiini remains largely unexplored. We studied males of Tapajosa rubromarginata (Signoret) collected at El Manantial (Tucumán, Argentina) on native spontaneous vegetation where Sorghum halepense predominates. Conventional cytogenetic techniques were used in order to describe the karyotype and male meiosis of this sharpshooter. T. rubromarginata has a male karyological formula of 2n = 21 and a sex chromosome system XO:XX (male:female). The chromosomes do not have a primary constriction, being holokinetic and the meiosis is pre-reductional, showing similar behavior both for autosomes and sex chromosomes during anaphase I. For this stage, chromosomes are parallel to the acromatic spindle with kinetic activities in the telomeres. They segregate reductionally in the anaphase I, and towards the equator during the second division of the meiosis. This is the first contribution to cytogenetic aspects on proconines sharpshooters, particularly on this economic relevant Auchenorrhyncha species.  相似文献   

14.
A characteristic feature of spider karyotypes is the predominance of unusual multiple X chromosomes. To elucidate the evolution of spider sex chromosomes, their meiotic behavior was analyzed in 2 major clades of opisthothele spiders, namely, the entelegyne araneomorphs and the mygalomorphs. Our data support the predominance of X(1)X(2)0 systems in entelegynes, while rare X(1)X(2)X(3)X(4)0 systems were revealed in the tuberculote mygalomorphs. The spider species studied exhibited a considerable diversity of achiasmate sex chromosome pairing in male meiosis. The end-to-end pairing of sex chromosomes found in mygalomorphs was gradually replaced by the parallel attachment of sex chromosomes in entelegynes. The observed association of male X univalents with a centrosome at the first meiotic division may ensure the univalents' segregation. Spider meiotic sex chromosomes also showed other unique traits, namely, association with a chromosome pair in males and inactivation in females. Analysis of these traits supports the hypothesis that the multiple X chromosomes of spiders originated by duplications. In contrast to the homogametic sex of other animals, the homologous sex chromosomes of spider females were already paired at premeiotic interphase and were inactivated until prophase I. Furthermore, the sex chromosome pairs exhibited an end-to-end association during these stages. We suggest that the specific behavior of the female sex chromosomes may have evolved to avoid the negative effects of duplicated X chromosomes on female meiosis. The chromosome ends that ensure the association of sex chromosome pairs during meiosis may contain information for discriminating between homologous and homeologous X chromosomes and thus act to promote homologous pairing. The meiotic behavior of 4 X chromosome pairs in mygalomorph females, namely, the formation of 2 associations, each composed of 2 pairs with similar structure, suggests that the mygalomorph X(1)X(2)X(3)X(4)0 system originated by the duplication of the X(1)X(2)0 system via nondisjunctions or polyploidization.  相似文献   

15.
Meiotic studies in mice carrying the sex reversal (Sxr) factor   总被引:1,自引:0,他引:1  
A sex reversal factor (Sxr) that causes mice having apparently normal X chromosomes to become phenotypically male is transmitted in an autosomal pattern. The origin of the Sxr factor is still unknown. It seems most likely that it has originated from an autosomal gene mutation or is the result of a translocation of part of the Y chromosome to one of the autosomes. Chromosomes from four XY and six XO mice carrying this sex reversal factor were examined in the diakinesis stage of meiosis. The following unusual observations were noted: (1) in XY males carrying the Sxr factor, the X and Y chromosomes were separated more often than in controls. (2) The Y chromosome tends to be closer to an autosome when the X and Y are separate than when the X and Y are attached. (3) A chromosome fragment was present in 4/226 cells from two XO males and a single cell from an XY, Sxr carrier. Although there is no direct evidence, these observations seem to favor the possibility that the Sxr factor involves a chromosomal rearrangement rather than a single gene mutation.  相似文献   

16.
In a series of about 500 specimens, including 420 males, of karyotyped Polyphaga beetles, 5 males with chromosome Y aneuploidy were detected. One male of each Dicronorrhina derbyana oberthuri (Scarabaeidae), Agapanthia violacea and Morimus funereus (Cerambycidae) were XYY, and 2 probably related and sterile males of Marmylida marginella (Scarabaeidae) were XYYY. These and literature data suggest that Y chromosome aneuploidies are much more frequent in polyphagan beetles than any other group of animals with an XY/XX sex determinism. The origin of this particularity probably lies in the unique mode of sex chromosome association at meiosis I: it is not synaptic but realized through nucleolar proteins forming the well-known parachute-like structure (Xy(p)). This has 2 possible consequences. The first one is the regular association of several sex chromosomes at metaphase I and segregation at anaphase I. It allows, for instance, XYY (Xyy(p)) males to procreate XYY sons. The second consequence is the occasional remain of nucleolar proteins embedding sex chromosomes in spermatocytes II. We propose that it could impede the correct segregation of Y chromatids after centromere split at anaphase II, and contribute to form YY gametes by XY males and YYY gametes by XYY males. The tendency for increasing the number of Ys would not be strongly limited at the XY level, but only at the XYY level by male infertility at higher Y ploidies.  相似文献   

17.
A Robertsonian translocation in the mouse between the X chromosome and chromosome 2 is described. The male and female carriers of the Rb(X.2)2Ad were fertile. A homozygous/hemizygous line was maintained. The influence of the X-autosomal Robertsonian translocation on anaphase I non-disjunction in male mice was studied by chromosome counts in cells at metaphase II of meiosis and by assessment of aneuploid progeny. The results conclusively show that the inclusion of Rb2Ad in the male genome induces non-disjunction at the first meoitic division. In second metaphase cells the frequency of sex-chromosomal aneuploidy was 10.8%, and secondary spermatocytes containing two or no sex chromosome were equally frequent. The Rb2Ad males sired 3.9% sex-chromosome aneuploid progeny. The difference in aneuploidy frequencies in the germ cells and among the progeny suggests that the viability of XO and XXY individuals is reduced. The pairing configurations of chromosomes 2, Rb2Ad and Y were studied during meiotic prophase by light and electron microscopy. Trivalent pairing was seen in all well spread nuclei. Complete pairing of the acrocentric autosome 2 with the corresponding segment of the Rb2Ad chromosome was only seen in 3.2% of the cells analysed in the electron microscope. The pairing between the X and Y chromosome in the Rb2Ad males corresponded to that in males with normal karyotype. Reasons for sex-chromosomal non-disjunction despite the normal pairing pattern between the sex chromosomes may be seen in the terminal chiasma location coupled with the asynchronous separation of the sex chromosomes and the autosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A 15-year cytogenetic survey on one population of the leaf litter frog Eleutherodactylus maussi in northern Venezuela confirmed the existence of multiple XXAA male symbol /XAA(Y) female symbol sex chromosomes which originated by a centric (Robertsonian) fusion between the original Y chromosome and an autosome. 95% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population, 5% of the male animals still possess the original, free XY sex chromosomes. In a second population of E. maussi analyzed, all male specimens are characterized by these ancestral XY chromosomes which form normal bivalents in meiosis. E. maussi apparently represents the first vertebrate species discovered in which a derived Y-autosome fusion still coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. DNA flow cytometric measurements show that the genome of E. maussi is among the largest in the anuran family Leptodactylidae. The present study also supplies further data on differential chromosome banding and fluorescence in situ hybridization experiments in this amphibian species.  相似文献   

19.

Background

The monotremes, represented by the duck-billed platypus and the echidnas, are the most divergent species within mammals, featuring a flamboyant mix of reptilian, mammalian and specialized characteristics. To understand the evolution of the mammalian major histocompatibility complex (MHC), the analysis of the monotreme genome is vital.

Results

We characterized several MHC containing bacterial artificial chromosome clones from platypus (Ornithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus) and mapped them onto chromosomes. We discovered that the MHC of monotremes is not contiguous and locates within pseudoautosomal regions of two pairs of their sex chromosomes. The analysis revealed an MHC core region with class I and class II genes on platypus and echidna X3/Y3. Echidna X4/Y4 and platypus Y4/X5 showed synteny to the human distal class III region and beyond. We discovered an intron-containing class I pseudogene on platypus Y4/X5 at a genomic location equivalent to the human HLA-B,C region, suggesting ancestral synteny of the monotreme MHC. Analysis of male meioses from platypus and echidna showed that MHC chromosomes occupy different positions in the meiotic chains of either species.

Conclusion

Molecular and cytogenetic analyses reveal new insights into the evolution of the mammalian MHC and the multiple sex chromosome system of monotremes. In addition, our data establish the first homology link between chicken microchromosomes and the smallest chromosomes in the monotreme karyotype. Our results further suggest that segments of the monotreme MHC that now reside on separate chromosomes must once have been syntenic and that the complex sex chromosome system of monotremes is dynamic and still evolving.  相似文献   

20.
小花蝽属两种核型的研究(半翅目: 花蝽科)   总被引:1,自引:1,他引:0  
本文利用姬姆萨染色空气干燥压片方法,对花蝽科小花蝽属中国2种小花蝽的性细胞核型进行了研究.研究结果表明该2种小花蝽的2倍体均具有24条染色体和X-Y性别机制,但2种间在染色体行为特征方面具有差别,主要表现在细胞减数分裂的晚终变期和中期常染色体以及性染色体的排列形状与位置等方面,该特征可以用于种间的细胞分类.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号